

Test report No. Page **Issued date** FCC ID

: 13652400H-A-R2 : 1 of 39 : April 26, 2021 : HYQDNMWR009

RADIO TEST REPORT

Test Report No.: 13652400H-A-R2

DENSO CORPORATION Applicant

Type of Equipment Millimeter Wave Radar Sensor

Model No. DNMWR009

Test regulation FCC Part 95 Subpart M: 2017

*for Permissive change

FCC ID **HYQDNMWR009**

Test Result Complied (Refer to SECTION 3.2)

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13652400H-A-R1. 13652400H-A-R1 is replaced with this report.

Date of test: January 5 to 14, 2021 Representative test engineer: Yuichiro Yamazaki Engineer Consumer Technology Division Approved by: Tsubasa Takayama

Leader Consumer Technology Division

CERTIFICATE 5107.02

_	_	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
	X	There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 2 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

REVISION HISTORY

Original Test Report No.: 13652400H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13652400H-A	February 10, 2021	-	-
1	13652400H-A-R1	April 23, 2021	P.10	Correction of Configuration and peripherals of Clause 4.2
1	13652400H-A-R1	April 23, 2021	P.12	Correction of Distance Factor, Test distance and Test Volume: Test setup 1 GHz -10 GHz; From; * Test Distance: (3 + Test Volume /2) - r = 4.0 m Test Volume: 2 m to; * Test Distance: (3 + Test Volume /2) - r = 3.75 m Test Volume: 1.5 m
1	13652400H-A-R1	April 23, 2021	P.16	Correction of temperature range for measurement method
1	13652400H-A-R1	April 23, 2021	P.26, 29	Addition of "Customer requested temperature" in Remarks of -30 deg.C.
2	13652400H-A-R2	April 26, 2021	P.12	Correction of Distance Factor: Test setup 1 GHz -10 GHz; From; Distance Factor: 20 x log (3.75 m*/3.0 m) = 1.90 dB to; Distance Factor: 20 x log (3.75 m*/3.0 m) = 1.9 dB
2	13652400H-A-R2	April 26, 2021	P.16	Correction of the description in Section 6. From; Both lower and upper frequencies of the 99% OBW were recorded. To; Both lower and upper frequencies of the -20dB Bandwidth were recorded.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 3 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP AP	Access Point	OBW	
ASK	Amplitude Shift Keying	OFDM	Occupied Band Width Orthogonal Frequency Division Multiplexing
Atten., ATT	Amphitude Sinit Reynig Attenuator	P/M	Power meter
AUCII., ATT		PCB	Printed Circuit Board
BPSK	Average Disagraphese Shift Vaving	PER	Packet Error Rate
BR	Binary Phase-Shift Keying Bluetooth Basic Rate	PHY	
BT	Bluetooth	PK	Physical Layer Peak
		PN	
BT LE BW	Bluetooth Low Energy BandWidth		Pseudo random Noise
	Calibration Interval	PRBS	Pseudo-Random Bit Sequence
Cal Int		PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying Resolution Band Width
CW	Continuous Wave	RBW	
DBPSK	Differential BPSK	RDS	Radio Data System
DC D.f.	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR :	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF H A C	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		

UL Japan, Inc. Ise EMC Lab.

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Laboratory Information Management System

Test report No. Page Issued date FCC ID

: 13652400H-A-R2 : 4 of 39 : April 26, 2021 : HYQDNMWR009

CONTENTS		PAGE
SECTION 1: 0	Customer information	5
SECTION 2: E	Equipment under test (EUT)	5
SECTION 1: Customer information		
		information 5 t under test (EUT) 5 ication, procedures & results 6 of EUT during testing 9 Spurious Emission 11 Stability 16 17 17 18 20 rious radiation 22 sphs of test setup 34 rious radiation 35 (Horizontal: X-axis/ Vertical: X-axis) 38
APPENDIX 2:	Test instruments	32

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

Test report No. : 13652400H-A-R2
Page : 5 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

Telephone Number : +81-78-682-2674
Facsimile Number : +81-78-682-2046
Contact Person : Shozo Taniguchi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Millimeter Wave Radar Sensor

Model Number : DNMWR009 Serial Number : Refer to Clause 4.2

Rating : DC 12 V (Car battery), DC 8 V to 16 V (Operating range)

Receipt Date : December 25, 2020

Country of Mass-production : Japan

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: DNMWR009 (referred to as the EUT in this report) is the 76.0 GHz - 77.0 GHz vehicle-mounted field disturbance sensor that is a millimeter wave fast chirp modulation (FM-CW and FCM) radar operating at 76.0 GHz - 77.0 GHz (Nominal: 76.5 GHz).

FM-CW: Frequency Modulated Continuous Wave

FCM: Fast Chirp Modulation

Radio Specification

Radio Type : Transceiver Frequency of Operation : 76.5 GHz

Modulation:QXN (FCM, FM-CW)Antenna Type:Microstrip array antennaAntenna Connector:None (Internal Antenna)Antenna Gain:Tx_N: 16.2 dBi (Typ)

Tx_W: 13.8 dBi (Typ)

Scanning Antenna (transmit) : Fixed beam
Usage location : Vehicle-mounted
Clock Frequency (maximum) : 40 MHz (Crystal)
Radome loss : 0.5 dB (Typ)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

Test report No. : 13652400H-A-R2
Page : 6 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 95 Subpart M

FCC Part 95 final revised on September 20, 2017

Title : FCC 47CFR Part95 - PERSONAL RADIO SERVICES

Subpart M - The 76-81 GHz Band Radar Service

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: N/A	FCC: N/A	N/A	N/A	*1)
Occupied bandwidth	FCC: ANSI C63.26-2015 5.4 Occupied bandwidth	FCC: Section 2.1049		Complied a)	Radiated
Radiated Power Modulation characteristics	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems	FCC: Section 95.3367 Section 2.1046 Section 2.1047	See data.	Complied b)	Radiated
Field strength of spurious radiation	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing	FCC: Section 95.3379 (a) Section 2.1053 Section 2.1057	11.64 dB 228.284 GHz	Complied c)	Radiated
Frequency stability	FCC: ANSI C63.26-2015 5.6 Frequency stability testing	FCC: Section 95.3379 (b) Section 2.1055	See data.	Complied d)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

Supplied Voltage Information

This EUT provides stable voltage constantly to RF Module regardless of input voltage.

Antenna Information

The antenna is not removable from the EUT.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

a) Refer to APPENDIX 1 (data of Occupied bandwidth)

b) Refer to APPENDIX 1 (data of Radiated Power and Modulation characteristics)

c) Refer to APPENDIX 1 (data of Field strength of spurious radiation)

d) Refer to APPENDIX 1 (data of Frequency Stability)

^{*} In case any questions arise about test procedure, ANSI C63.26-2015 and C63.10-2013 are also referred.

Test report No. : 13652400H-A-R2
Page : 7 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Ise EMC Lab.

isc ENIC Lab.	
Frequency range	Conducted emission using AMN(LISN) (+/-)
0.009 MHz - 0.15 MHz	2.9 dB
0.15 MHz - 30 MHz	3.4 dB

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.3 dB
10 m	3.2 dB

	Radiated emission (Below 1 GHz)				
Polarity	(3 m*) ((+/-) (10 m*) (+/-)		ı*) (+/-)	
1 Olarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -	
		1000 MHz	200 MHz	1000 MHz	
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB	
Vertical	5.0 dB	6.3 dB	4.8 dB	5.0 dB	

Radiated emission (Above 1 GHz)					
(3	m*) (+/-)	(1 m*) (+/-)		(0.5 m*) (+/-)	(10 m*) (+/-)
1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	26.5 GHz -	1 GHz -
6 GHz	18 GHz	26.5 GHz	40 GHz	40 GHz	18 GHz
4.9 dB	5.2 dB	5.5 dB	5.5 dB	5.5 dB	5.2 dB

^{*}M easurement distance

Radiated emission	Uncertainty [+/- dB]	Distance
40 GHz - 50 GHz	4.1	>= 0.5 m
50 GHz - 75 GHz	5.1	>= 0.5 m
75 GHz - 110 GHz	5.4	>= 0.5 m
110 GHz - 170 GHz	5.2	>= 3.8 cm*
170 GHz - 260 GHz	5.0	>= 2.5 cm*

^{*}under consideration about Uncertainty for testing at 1 cm distance

Radiated Emission	Uncertainty [+/- dB]	Distance
(with Block downconverter)		
75 GHz - 83 GHz	4.4*	>= 0.5 m

^{*} This value was used for 75 GHz - 83 GHz in this report.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 8 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

* A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test) : 2.0~m~x~2.0~m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 9 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

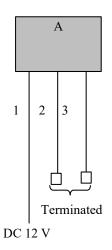
Mode	Test Item
Transmitting mode (Tx)	Occupied bandwidth
- FM-CW	Radiated Power
- FCM	Duty
	Frequency stability
Normal operating mode	Modulation characteristics
	Field strength of spurious radiation

In actual operation, there are FM-CW and FCM modulation parts in one transmission burst. First, the EUT transmits FM-CW modulation. After that, FCM transmission starts immediately.

These two modulations do not transmit at the same time. These modulations have individual transmit antennas. (Switching antenna Tx_N: FM-CW and Tx_W: FCM alternately.)

The test modes (FM-CW only, FCM only) were used for the purpose of power measurement.

EUT has the power settings by the software as follows;


Power settings: Same as production model software: mwr_gen5_0057_p04.s

This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 10 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT

N	No.	o. Item Model number		Serial number	Manufacturer	Remark
	A	Millimeter Wave Radar	DNMWR009	801601793959	DENSO CORPORATION	EUT
		Sensor				

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	9.0	Unshielded	Unshielded	-
2	CAN Cable	1.2	Unshielded	Unshielded	-
3	CAN Cable	1.2	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 11 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 30 MHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

[For above 30 MHz, up to 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz - 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear voltage average mode).

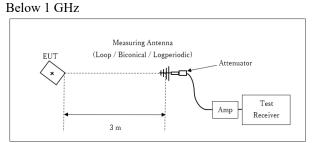
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

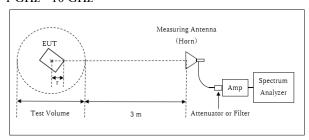
Frequency	9 kHz to 150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	1 GHz to 40 GHz
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analyzer
Detector	CISPR QP, Average	CISPR QP, Average	CISPR QP	Average *1)
IF Bandwidth	200 Hz	9 kHz	120 kHz	RBW: 1 MHz
				VBW: 3 MHz


^{*1)} An RMS average mode was used: 1 ms or less averaging time (integration time period for each spectrum analyzer bin; spectrum analyzer sweeptime / number-of-bins not exceeding one millisecond)

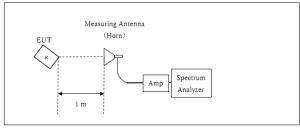
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 12 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009


[Test setup]

 \mathbf{x} : Center of turn table


Test Distance: 3 m

1 GHz - 10 GHz

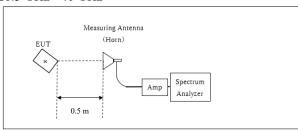
- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 26.5 GHz

×: Center of turn table

Distance Factor: $20 \times \log (3.75 \text{ m}^*/3.0 \text{ m}) = 1.9 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 3.75 m

Test Volume: 1.5 m


(Test Volume has been calibrated based on CISPR 16-1-4.) $r=0.0\ m$

* The test was performed with $r=0.0\,\mathrm{m}$ since that yielded the worst emission levels from the EUT.

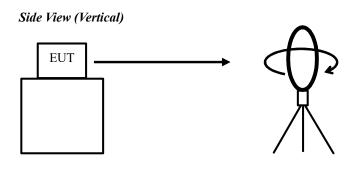
Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

26.5 GHz - 40 GHz

×: Center of turn table

Distance Factor: $20 \times \log (0.5 \text{ m}^* / 3.0 \text{ m}) = -15.6 \text{ dB}$


*Test Distance: 0.5 m

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

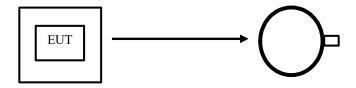
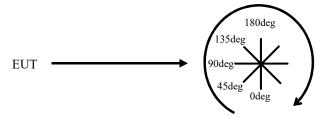

Test report No. : 13652400H-A-R2
Page : 13 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

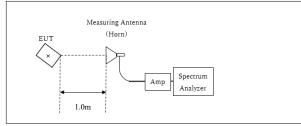
Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 14 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

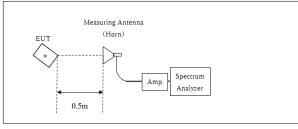
[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

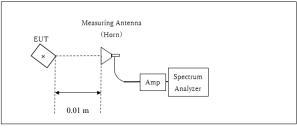

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz to	50 GHz to	81 GHz to	83 GHz to	110 GHz to	170 GHz to
	50 GHz	76 GHz	83 GHz	110 GHz	170 GHz	231 GHz
Final measurement distance	1.0 m	1.0 m	0.5 m	1.0 m	0.01 m	0.01 m
with 1 MHz Peak detector						


[Test setup]

40 GHz - 76 GHz, 83 GHz - 110 GHz


×: Center of turn table

81 GHz - 83 GHz

×: Center of turn table

110 GHz - 231 GHz

×: Center of turn table

*Test Distance: 1.0 m

*Test Distance: 0.5 m

*Test Distance: 0.01 m

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 15 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

	Frequency	Wavelength	N	Far Field		
			EUT	Test Antenna	Maximum	Boundary
		Lambda			D	r
	[GHz]	[mm]	[m]	[m]	[m]	[m]
Γ	77.0	3.9	0.013695	0.025150	0.025150	0.325

- The carrier level and noise levels were confirmed at each position of X, Y axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise

The test results and limit are rounded off to one decimal place, so some differences might be observed.

The Peak Power results was applied to the desensitization correction factor by KDB653005 4.(c). The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.

Desensitization factor was calculated from follow equation.

$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2In(2)}{\pi}\right)^2 \left(\frac{Fs}{Ts B^2}\right)^2}}$$

And

FMCW Desensitization factor = $20 \text{ Log } (\alpha)$

Where

Fs = FMCW Sweep Width or Chirp Width

Ts = FMCW Sweep Time

B = -3dB bandwidth of Gaussian RBW Filter

For the values of Fs, Ts and B, refer to Theory of Operation-Specification.

Measurement range : 9 kHz - 231 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 16 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

SECTION 6: Frequency Stability

Test Procedure

The block downconverter was placed in side of the temperature chamber's drain hole.

The power supply was set to nominal operating voltage (100 %), and the spectrum mask was measured at 20 deg. C. After that, EUT power supply was varied between 85 % and 115 % of nominal voltage and the frequency excursion of the EUT emission mask was recorded.

The EUT operating temperature was raised to 60 deg. C, and the frequency excursion of the EUT emission mask was recorded. Measurements were repeated at each 10 deg. C decrement down to -30 deg. C.

Both lower and upper frequencies of the -20dB Bandwidth were recorded.

Test data : APPENDIX

Test result : Pass

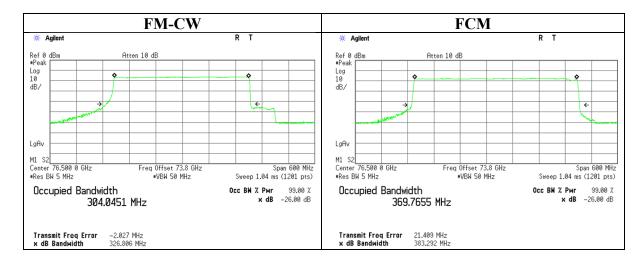
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 17 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

APPENDIX 1: Test data

Occupied bandwidth


Report No. 13652400H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date January 5, 2021
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Yuichiro Yamazaki

Mode Tx

Mode	Frequency	99 % Occupied
		bandwidth
	[GHz]	[MHz]
FM-CW	76.5	304.0451
FCM	76.5	369.7655

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 18 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Radiated Power

Report No. 13652400H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date January 5, 2021
Temperature / Humidity 23 deg. C / 45 % RH
Engineer Yuichiro Yamazaki

Mode Tx

Measured data in Test modes

Mode	Power	Freq.	Measured	Tested	Rx	Down	IF	FSL	EI	RP
			Power	Distance	Antenna	Converter	Cable			
					Gain	Gain	Loss			
		[GHz]	[dBm]	[m]	[dBi]	[dB]	[dB]	[dB]	[dBm]	[mW]
FM-CW	Average	76.5	-23.79	2.0	23.06	14.76	1.41	76.14	15.94	39.22
I IVI-C W	Peak	76.5	-16.31	2.0	23.06	14.76	1.41	76.14	23.42	219.56
FCM	Average	76.5	-28.03	2.0	23.06	14.76	1.41	76.14	11.70	14.78
FCM	Peak	76.5	-20.66	2.0	23.06	14.76	1.41	76.14	19.07	80.64

Calculating formula:

FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)

EIRP = Measured Power - Rx Antenna Gain - Down Converter Gain + IF Cable Loss + FSL

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

Final result in Test modes

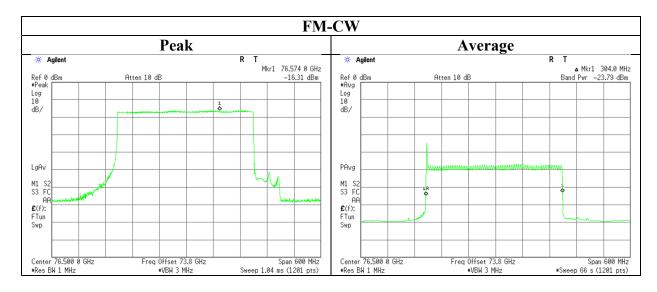
Mode	Power		EIRP						
		Spectrum	Duty	desensitization	Result		Limit	Margin	
		Analyzer	Factor	Factor					
		[dBm]	[dB]	[dB]	[mW]	[dBm]	[dBm]	[dB]	
FM-CW	Average	15.94	7.38	-	214.57	23.32	50	26.68	
FIVI-C W	Peak	23.42	-	0.01	220.06	23.43	55	31.57	
FCM	Average	11.70	8.95	-	116.03	20.65	50	29.35	
	Peak	19.07	-	6.90	395.31	25.97	55	29.03	

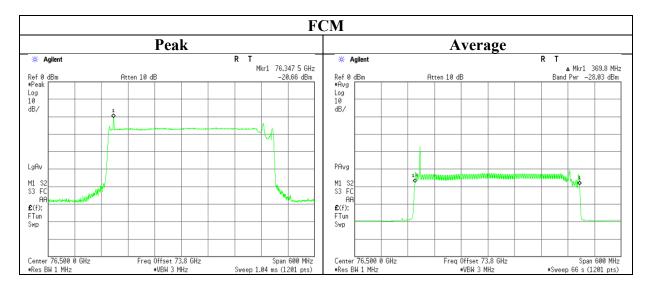
Calculating formula:

EIRP Result (Average) = EIRP(Spectrum Analyzer) + Duty Factor

For the peak power result, it is a maximum power.

The test method referred to KDB653005.


The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.


UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 19 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Radiated Power

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2 Page : 20 of 39 **Issued date** : April 26, 2021 : HYQDNMWR009 FCC ID

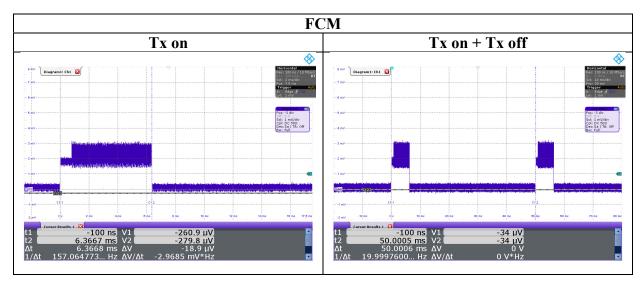
Duty

13652400H Report No. Test place Ise EMC Lab. No.2

Semi Anechoic Chamber

January 6, 2021 21 deg. C / 36 % RH Temperature / Humidity Engineer Yuichiro Yamazaki

Mode


[Duty Factor]

Mode	Txon	Tx on + Tx off	Duty
	time	time	Factor
	[ms]	[ms]	[dB]
FM-CW	9.14	50.00	-7.38
FCM	6.37	50.00	-8.95

Calculation: Duty Factor = 10 * log(Tx on time / Tx on + Tx off time)

[Data]

UL Japan, Inc. Ise EMC Lab.

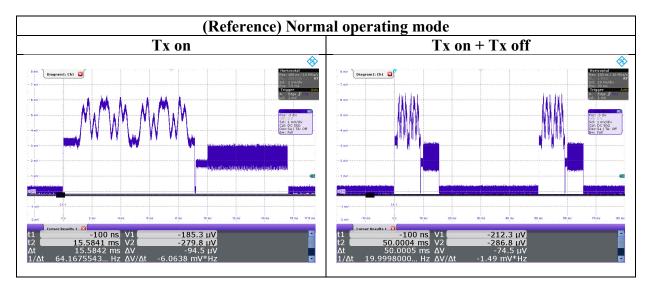
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 21 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Duty

Report No. 13652400H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2


Date January 6, 2021
Temperature / Humidity 21 deg. C / 36 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

[Duty Factor]

	Tx On	Tx On + Off	Duty factor
	time	time	
	[ms]	[ms]	[dB]
Measured	15.58	50.00	-5.06
Declared *	15.00	50.00	-5.23

Duty factor = 10 * log (Tx On time / Tx On + Off time)

[Data]

^{*} This Duty Cycle is the worst case. Transmitting time does not exceed it.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} See the application document.

Test report No. : 13652400H-A-R2 : 22 of 39 Page **Issued date** : April 26, 2021 : HYQDNMWR009 FCC ID

Field strength of spurious radiation (below 40 GHz)

Report No. 13652400H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

January 6, 2021 Temperature / Humidity 21 deg. C / 36 % RH Yuichiro Yamazaki Engineer 9 kHz - 40 GHz

Mode Normal operating mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	31.386	QP	22.1	18.0	6.8	28.6	-	18.2	40.0	21.8	
Hori.	34.781	QP	21.0	16.8	6.8	28.6	-	16.0	40.0	24.1	
Hori.	48.915	QP	21.4	11.6	7.0	28.6	-	11.3	40.0	28.7	
Hori.	126.873	QP	21.7	13.3	7.7	28.4	-	14.2	43.5	29.3	
Hori.	318.663	QP	21.5	14.1	9.0	27.9	-	16.7	46.0	29.3	
Hori.	619.306	QP	22.8	19.5	10.3	29.4	-	23.2	46.0	22.9	
Vert.	31.386	QP	22.6	18.0	6.8	28.6	-	18.7	40.0	21.3	
Vert.	34.781	QP	22.2	16.8	6.8	28.6	-	17.2	40.0	22.9	
Vert.	48.936	QP	36.9	11.6	7.0	28.6	-	26.8	40.0	13.2	
Vert.	126.873	QP	22.5	13.3	7.7	28.4	-	15.0	43.5	28.5	
Vert.	318.663	QP	21.7	14.1	9.0	27.9	-	16.9	46.0	29.1	
Vert.	619.306	QP	22.6	19.5	10.3	29.4	-	23.0	46.0	23.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13652400H-A-R2
Page : 23 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Field strength of spurious radiation (above 40 GHz)

Report No. 13652400H Test place Ise EMC Lab.

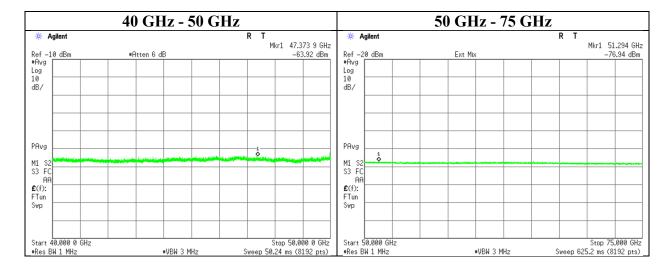
Semi Anechoic Chamber No.2 No.2

Date January 6, 2021 January 7, 2021
Temperature / Humidity 21 deg. C /36 % RH
Engineer Yuichiro Yamazaki
75 GHz - 76 GHz 40 GHz - 75 GHz

81 GHz - 83 GHz 83 GHz - 231 GHz

Mode Normal operating mode

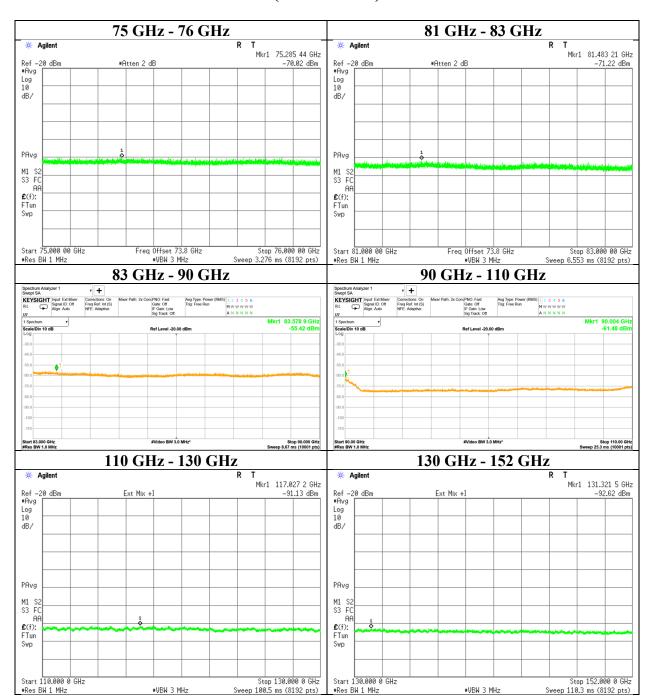
Freq.	Reading	Rx	Filter	LNA	Mixer	IF	IF	Meas.	FSL	EII	RP	Power density at 3 m		ıt 3 m	Remarks
		ant.	loss	gain	loss	amp.	cable	range				Result	Limit	Margin	
		gain				gain	loss	D							
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
47.374	-63.92	22.15	0.00	32.98	0.00	0.00	8.74	1.0	65.95	-44.36	0.000037			42.67	
51.294	-76.94	22.89	0.00	26.40	46.73	31.77	0.12	1.0	66.64	-44.51	0.000035	0.03	600	42.83	
75.285	-70.02	22.96	0.00	0.00	-15.06	0.00	1.26	1.0	69.98	-36.81	0.000209	0.18	600	35.12	
81.483	-71.22	23.44	0.00	0.00	-12.45	0.00	2.55	0.5	64.64	-39.92	0.000102	0.09	600	38.23	
83.579	-55.42	23.55	2.50	32.55	0.00	0.00	0.00	1.0	70.88	-38.14	0.000154	0.14	600	36.45	
90.004	-61.48	23.89	0.77	33.48	0.00	0.00	0.00	1.0	71.53	-46.55	0.000022	0.02	600	44.87	
117.027	-91.13	22.54	0.00	18.79	58.99	0.00	0.00	0.01	33.81	-39.66	0.000108	0.10	600	37.98	
131.322	-92.62	22.98	0.00	20.00	53.36	0.00	0.00	0.01	34.81	-47.43	0.000018	0.02	600	45.75	
152.525	-87.49	23.35	0.00	17.83	56.98	0.00	0.00	0.01	36.11	-35.58	0.000277	0.24	600	33.90	
156.582	-92.95	23.38	0.00	17.75	58.46	0.00	0.00	0.01	36.34	-39.29	0.000118	0.10	600	37.60	
171.236	-91.38	22.42	0.00	0.00	59.67	0.00	0.00	0.01	37.11	-17.02	0.019864	17.6	600	15.34	
192.959	-92.30	22.90	0.00	0.00	57.65	0.00	0.00	0.01	38.15	-19.40	0.011492	10.2	600	17.71	
210.949	-93.17	23.17	0.00	0.00	57.58	0.00	0.00	0.01	38.93	-19.83	0.010395	9.2	1000	20.37	
228.284	-89.17	23.33	0.00	0.00	61.78	0.00	0.00	0.01	39.61	-11.10	0.077540	68.6	1000	11.64	


Calculation: FSL (Free Space path Loss) = $10 * \log ((4 * Pi * D / \lambda)^2)$

EIRP = Reading - Rx ant. gain + Filter loss - LNA gain + Mixer loss - IF amp. gain + IF cable loss + FSL

Power density Result at 3 m = EIRP $/ (4 * Pi * 300^{2})$

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.


The equipment were not used for factor 0 dB of the data sheets.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 24 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Field strength of spurious radiation (above 40 GHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 25 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Field strength of spurious radiation (above 40 GHz)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

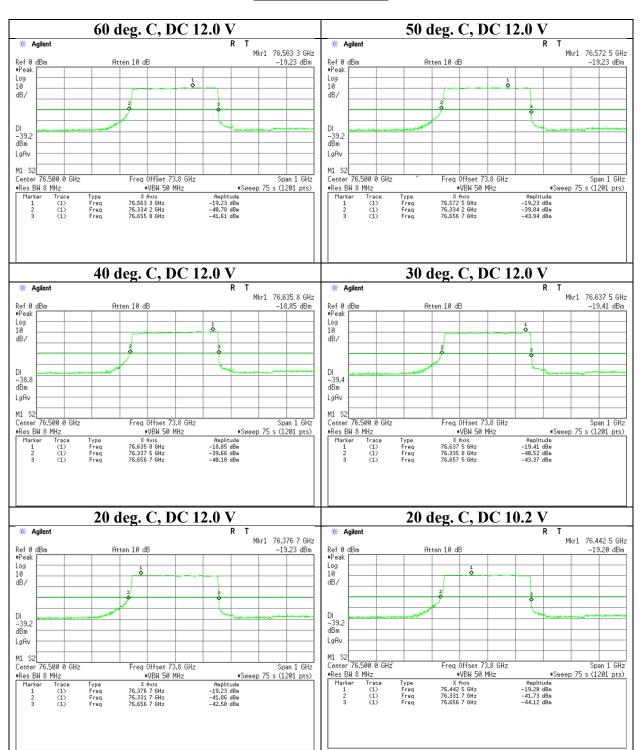
Test report No. : 13652400H-A-R2
Page : 26 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Frequency Stability

Report No. 13652400H

Test place Ise EMC Lab. No.6 Measurement Room

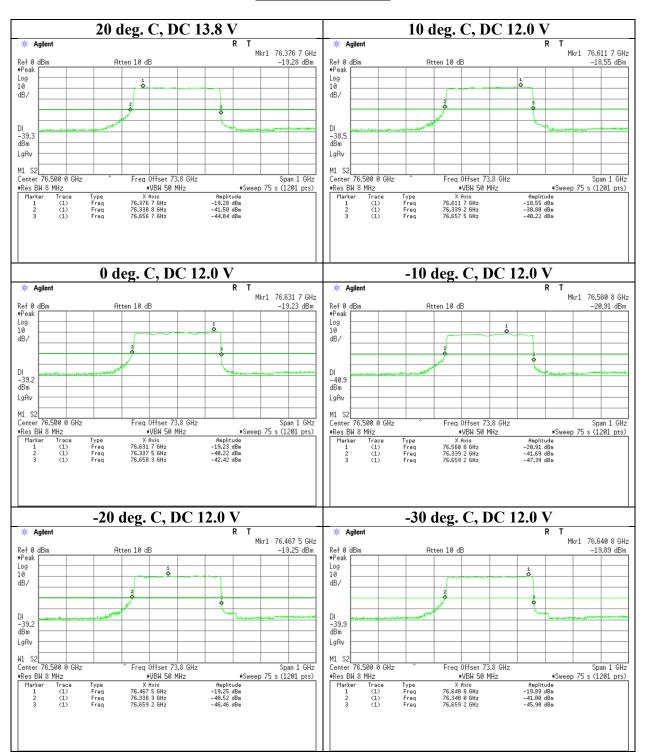
Date January 14, 2021
Temperature / Humidity 23 deg. C / 41 % RH
Engineer Yuichiro Yamazaki
Mode Tx FM-CW


Test Condition		Measured -20	dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
60	12.0	76.334	76.656	Customer requested temperature
50	12.0	76.334	76.657	
40	12.0	76.338	76.657	
30	12.0	76.336	76.658	
20	12.0	76.332	76.657	
20	10.2	76.332	76.657	85 % of the minimum operating voltage, DC 12V * 0.85
20	13.8	76.331	76.657	115 % of the maximum operating voltage, DC 12 V * 1.15
10	12.0	76.339	76.658	
0	12.0	76.338	76.658	
-10	12.0	76.339	76.659	
-20	12.0	76.338	76.659	
-30	12.0	76.340	76.659	Customer requested temperature

Fundamental emissions were contained within the frequency band 76 GHz to 77 GHz during all conditions of operation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 27 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009


Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 28 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 29 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

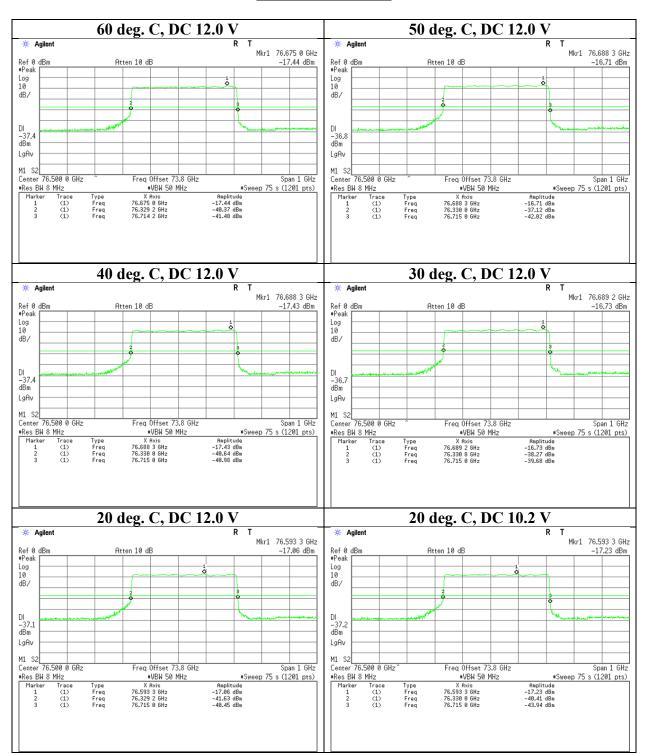
Frequency Stability

Report No. 13652400H

Test place Ise EMC Lab. No.6 Measurement Room

Date January 14, 2021
Temperature / Humidity 23 deg. C / 41 % RH
Engineer Yuichiro Yamazaki

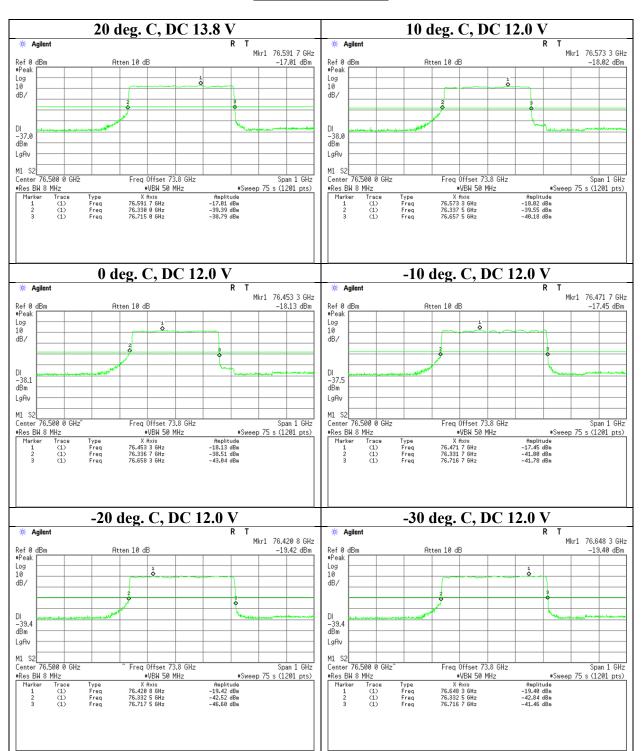
Mode Tx FCM


Test Co	Test Condition		dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
60	12.0	76.329	76.714	Customer requested temperature
50	12.0	76.330	76.715	
40	12.0	76.330	76.715	
30	12.0	76.331	76.715	
20	12.0	76.329	76.715	
20	10.2	76.330	76.715	85 % of the minimum operating voltage, DC 12V * 0.85
20	13.8	76.330	76.715	115 % of the maximum operating voltage, DC 12 V * 1.15
10	12.0	76.338	76.658	
0	12.0	76.337	76.658	
-10	12.0	76.332	76.717	
-20	12.0	76.333	76.718	
-30	12.0	76.333	76.717	Customer requested temperature

Fundamental emissions were contained within the frequency band 76 GHz to 77 GHz during all conditions of operation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 30 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009


Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 31 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 32 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

APPENDIX 2: Test instruments

Test equipment (1/2)

Test equ	ipment (1	(/2)	1	I	1			1
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/26/2020	24
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/06/2020	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/18/2020	12
RE	MJM-27	142228		KOMELON	KMC-36	-	-	-
	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-02- SVSWR		AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/01/2019	24
RE	MAT-07	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/13/2020	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103B+BBA9 106	8031	07/29/2020	12
RE	MCC-12	141317	Coaxial Cable	UL Japan Inc.	-	_	09/25/2020	12
RE	MLA-21	141265	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-190	07/29/2020	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/10/2020	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/18/2020	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	254	09/14/2020	12
RE	MCC-216	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 537073/126E(5 m)	02/18/2020	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	01/12/2021	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess - Elektronik	BBHA9170	BBHA9170306	05/21/2020	12
RE	MHA-29	141517	Horn Antenna 26.5-40GHz	ETS LINDGREN	3160-10	152399	08/03/2020	12
RE	MCC-224	160324		Huber+Suhner	SUCOFLEX 102A	MY009/2A	11/17/2020	12
RE	MSA-10	141899		Keysight Technologies Inc	E4448A	MY46180655	08/04/2020	12
RE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/ 5D-2W(1m)	-	02/25/2020	12
RE	MLPA-02	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	12/04/2020	12
RE	MCC-219	159670	Coaxial Cable	UL Japan	-	-	11/17/2020	12
RE	MHA-35	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/24/2020	12
RE	MMX-05	142050	Block Downconverter	EMC Instruments Corporation	PS-X30-W10117A	13715	02/19/2020	12
	MCC-220	151897		Huber+Suhner	SF101EA/11PC24/1 1PC24/2.5M	SN MY1726/1EA	04/13/2020	12
	MHA-31	142041		Oshima Prototype Engineering Co.	A16-187	1	09/24/2020	12
RE	MPA-25	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018- 2F2F-S1	12559-01	06/30/2020	12
RE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/24/2020	12
RE	MPA-23	142055	1	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	12/11/2020	12
RE	MMX-01	142047	Mixer	Keysight Technologies Inc	11974V-E01	3001A00412	05/25/2020	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2020	12
RE	MCC-177	141226	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S304	03/18/2020	12
RE	MCC-66	141328	40GHz	Suhner	SUCOFLEX102	28636/2	04/02/2020	12
RE	MHF-29	154635	High Pass Filter 83 GHz	Oshima Prototype Engineering Co.	A17-016	1	05/26/2020	12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13652400H-A-R2
Page : 33 of 39
Issued date : April 26, 2021
FCC ID : HYQDNMWR009

Test equipment (2/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MMX-08	186077	Wave guide Harmonic Mixer	Keysight Technologies Inc	M1971W	MY56390146	05/25/2020	12
RE	MPA-31	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515- 1010-E1	17343-01	10/26/2020	12
RE	MHA-24	142036	Horn Antenna	Custom Microwave Inc.	HO6R	-	09/24/2020	12
RE	MPA-29	176027	D-Band Low Noise Amplifier	SAGE Millimeter, Inc.	SBL-1141741860- 0606-EI	15235-01	12/07/2020	12
RE	MMX-03	142049	Harmonic Mixer	OML INC.	M06HWD	D100709-1	11/09/2020	12
RE	MHA-27	142039	Horn Antenna	Custom Microwave Inc.	HO4R	-	09/24/2020	12
RE	MMX-04	142053	Harmonic Mixer	OML INC.	M04HWD	Y100709-1	12/02/2020	12
RE	MDPLX- 01	142026	Diplexer	OML INC.	DPL26	-	11/10/2020	12
RE	MOS-14	141561	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1401	01/15/2021	12
RE	MMM-12	141547	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	60500120	02/03/2020	12
RE	MJM-24	142225	Measure	ASKUL	-	-	-	-
RE	MCH-04	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/24/2020	12
RE	OSC-01	141962	Digital Oscilloscope	Rohde & Schwarz	RTO1004	200355	08/18/2020	12
RE	MDT-05	142529	Detector	HEROTEK, INC.	DT1840P	484823	_	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item: RE: Radiated Emission test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN