

Test report No. Page

: 1 of 31

Issued date FCC ID

: 11296853H-A-R1 : October 14, 2016 : HYQDNMWR009

RADIO TEST REPORT

Test Report No.: 11296853H-A-R1

Applicant

DENSO CORPORATION

Type of Equipment

Millimeter Wave Radar Sensor

Model No.

DNMWR009

FCC ID

HYODNMWR009

Test regulation

FCC Part 15 Subpart C: 2016

Test Result

Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. 2.
- This sample tested is in compliance with the above regulation. 3.
- The test results in this report are traceable to the national or international standards. 4.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 11296853H-A. 11296853H-A is replaced with this report.

Date of test:

July 4 to September 10, 2016

Representative test engineer:

Hironobu Ohnishi

Engineer

Consumer Technology Division

Approved by:

Motoya Imura

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile : +81 596 24 8124

Test report No. : 11296853H-A-R1 Page : 2 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

REVISION HISTORY

Original Test Report No.: 11296853H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11296853H-A	September 26, 2016	-	-
1	11296853H-A-R1	October 14, 2016	P.11	Addition of unit in "Final measurement distance with 1 MHz Peak detector" Section 5.
1	11296853H-A-R1	October 14, 2016	P.19	Addition of the following sentences; The system noise floor was validated according to Section 9.8 of the ANSI C63.10-2013. If required, additional tests were performed with reduced RBW to make sure the measurement results.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 31

Issued date FCC ID : October 14, 2016 : HYQDNMWR009

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated Emission (Spurious Emission, Power Density)	
SECTION 6: Frequency Stability	
APPENDIX 1: Test data	
20 dB and 99 % Bandwidth	13
Power Density	14
Spurious Emission	
Frequency Stability	22
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	29
Spurious Emission	
Fundamental Frequency Measurement	
Frequency Stability	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Page : 4 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

Telephone Number : +81-566-87-3456 Facsimile Number : +81-566-25-4683 Contact Person : Kiyohiko Sawada

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Millimeter Wave Radar Sensor

Model No. : DNMWR009

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 12 V (Car battery), DC 8 V to 16 V(Operating range)

Receipt Date of Sample : July 4, 2016 Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: DNMWR009 (referred to as the EUT in this report) is the 76 GHz - 77 GHz vehicle-mounted field disturbance sensor that is a millimeter wave frequency modulated (FM-CW and FCM) radar operating at 76.5 GHz.

FM-CW: Frequency Modulated Continuous Wave

FCM: Fast Chirp Modulation

General Specification

Clock frequency(ies) in the system : 40 MHz

Radio Specification

Radio Type : Transceiver Frequency of Operation : 76.5 GHz

Modulation : Frequency modulation (FM-CW, FCM)

Antenna Type : Microstrip array antenna
Antenna Connector : None (Internal Antenna)
Antenna Gain : Tx_N (FM-CW): 16.2 dBi
Tx_W (FCM): 13.8 dBi

Steerable Antenna : Electronically (Receiving Part only)

Usage location : Vehicle-mounted Power Supply (inner) : DC 3.3 V, DC 5 V

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC part 15 final revised on April 6, 2016.

Title : FCC 47CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.253 Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	N/A	N/A	*1)
20 dB Bandwidth	FCC: ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems IC: -	FCC: Section 15.215 IC: Reference data	See data.	Complied	Radiated
Power Density	ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeterwave systems	FCC: Section 15.253 (d) IC: RSS-251 5.2.2	See data.	Complied	Radiated
Spurious Emissions	FCC: ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems IC: RSS-Gen 6.13	FCC: Section 15.253 (e) IC: RSS-251 5.3	16.0 dB 34069.37 MHz, Peak, Vertical	Complied	Radiated
Frequency Stability	FCC: ANSI C63.10-2013 9. Procedures for testing millimeterwave systems IC: RSS-Gen 8.11	FCC: Section 15.253 (f) IC: RSS-251 5.4	See data.	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line

FCC Part 15.31 (e)

The EUT provides stable voltage (DC 3.3 V, DC 5 V) constantly to RF Part regardless of input voltage. Instead of a new battery, DC power supply was used for the test. That does not affect the test result, therefore the EUT complies with the requirement. As for the Frequency Stability, the test was performed based on 15.253 (f).

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth		IC: -	N/A	-	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Test distance	Radiated emission (+/-)
	9 kHz - 30 MHz
3 m	3.8 dB

^{*}Measurement distance

		Radiated emission (Below 1GHz)			
Polarity	(3 m*	(+/-)	(10 m*)(+/-)		
Polarity	30 – 200 MHz	200 – 1000MHz	30 – 200 MHz	200 – 1000MHz	
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB	
Vertical	4.7 dB	5.9 dB	5.0 dB	5.1 dB	

Radiated emission (Above 1GHz)					
(3 m ³	*)(+/-)	(1 m*)(+/-)		(10 m*)(+/-)	
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz	
5.2 dB	5.4 dB	5.5 dB	5.5 dB	5.4 dB	

^{*} Measurement distance

Radiated emission (<u>+</u> dB)		
40 GHz - 50 GHz	4.1 dB	
50 GHz - 75 GHz	5.1 dB	
75 GHz - 110 GHz	5.4 dB	
110 GHz - 170 GHz	5.0 dB	
170 GHz - 260 GHz	4.9 dB	

Radiated emission (±dB) With Block downconverter		
75 GHz - 83 GHz	4.4 dB	

Radiated emission test

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. Code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) /	Other rooms
			horizontal conducting plane	
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Mode	Test Item
Normal operating mode (FM-CW + FCM)	20 dB and 99 % Bandwidth
	Spurious Emission
	Frequency Stability
Test mode (FM-CW),	Power Density
Test mode (FCM)	

In actual operation, there are FM-CW and FCM modulation parts in one transmission burst. First, the EUT transmits FM-CW modulation. After that, FCM transmission starts immediately.

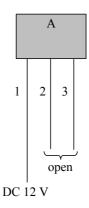
These two modulations do not transmit at the same time. These modulations have individual transmit antennas. (Switching antenna Tx N: FM-CW and Tx W: FCM alternately.)

The test modes (FM-CW only, FCM only) were used for the purpose of power measurement.

Power of the EUT was set by the software as follows;

Power settings: Same as production model Software: mwr_gen5_0041_t717.s

This setting of software is the worst case. Any conditions under the normal use do not exceed the condition of


setting. In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 31

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remark			
Α	Millimeter Wave	DNMWR009	001	DENSO	EUT			
	Radar Sensor		005 *1)	CORPORATION				

^{*1)} Used for Power Density test

List of cables used

No.	Name	Length (m)	Sh	Remark	
			Cable	Connector	
1	DC Cable	1.7	Unshielded	Unshielded	-
2	CAN 1 Cable	1.7	Unshielded	Unshielded	-
3	CAN 2 Cable	1.7	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 10 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

SECTION 5: Radiated Emission (Spurious Emission, Power Density)

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz - 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear voltage average mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	9 kHz –	150 kHz –	30 MHz –	1 GHz – 40 GHz		
	150 kHz	30 MHz	1 GHz			
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analyzer		
Detector	QP, Average	QP, Average	QP	Peak	Average *1)	
IF Bandwidth	BW 200 Hz	BW 9 kHz	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	
				VBW: 3 MHz	VBW: 10 Hz	
Test Distance	3 m	3 m	3 m	4.5 m *2) (1 GHz – 10 GHz)		
				1 m*3) (10 GHz -	- 40 GHz)	

^{*1)} Other than pulsed emission, aVBW was set to 10 Hz and linear voltage average mode was used.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

Test report No. : 11296853H-A-R1
Page : 11 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz –	50 GHz -	75 GHz –	110 GHz –	170 GHz –
	50 GHz	75 GHz	110 GHz	170 GHz	231 GHz
Final measurement distance	0.5 m	0.5 m	0.4 m	0.02 m	0.02 m
with 1 MHz Peak detector					

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

Frequency	Wavelength	Ma	ion	Far Field	
		EUT	Boundary		
	Lambda	D			r
[GHz]	[mm]	[m]	[m]	[m]	[m]
77	3.9	0.013695	0.352		

The test was made on EUT at the normal use position except for carrier measurement.

For the fundamental frequency measurement, the EUT was placed on the jig because the antenna array was mounted on angularly-tilted.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 9 kHz - 231 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 12 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

SECTION 6: Frequency Stability

Test Procedure

The block downconverter was placed in side of the temperature chamber's drain hole.

The power supply was set to 100 % of nominal voltage, the spectrum mask was measured at 20 deg. C. After that, EUT power supply was varied between 85 % and 115 % of nominal voltage and the frequency excursion of the EUT emission mask was recorded.

The EUT operating temperature was raised to 50 deg. C., the frequency excursion of the EUT emission mask was recorded. Measurements were repeated at each 10 deg. C decrement down to –20 deg. C.

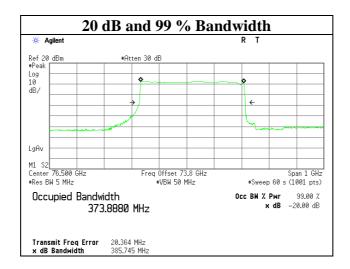
Some measurements were performed at additional temperatures according to operating temperature range of the EUT. (85 deg. C, 70 deg. C, 60 deg. C and -30 deg. C)

Both lower and upper -20 dBc frequencies on the emission mask were recorded.

Test data : APPENDIX Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 13 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009


APPENDIX 1: Test data

20 dB and 99 % Bandwidth

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11296853H
Date July 4, 2016
Temperature / Humidity 24 deg. C / 45 % RH
Engineer Hironobu Ohnishi
Mode Normal operating mode

Frequency	20 dB	99 % Occupied
	Bandwidth	Bandwidth
[GHz]	[MHz]	[MHz]
76.5	385.745	373.888

The measurement was performed with Peak detector and Max Hold since the duty cycle was not 100 %.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 14 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Power Density

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11296853H

Date September 10, 2016
Temperature / Humidity Engineer September 10, 2016
24 deg. C / 49 % RH
Hironobu Ohnishi

Mode Test mode (FM-CW), Test mode (FCM)

Measured data in Test modes

Mode	Power	Freq.	Measured	Tested	Rx	Down	IF	FSL	EI	RP
			Power	Distance	Antenna	Converter	Cable			
					Gain	Gain	Loss			
		[GHz]	[dBm]	[m]	[dBi]	[dB]	[dB]	[dB]	[dBm]	[mW]
FM-CW	Average	76.5	-23.69	2.0	22.33	14.86	1.06	76.14	16.33	42.91
	Peak	76.5	-15.35	2.0	22.33	14.86	1.06	76.14	24.67	292.77
FCM	Average	76.5	-27.15	2.0	22.33	14.86	1.06	76.14	12.87	19.34
	Peak	76.5	-17.89	2.0	22.33	14.86	1.06	76.14	22.13	163.13

Calculating formula:

FSL (Free Space path Loss) = 10 * log10((4 * Pi * Tested Distance / Lambda) ^2)

EIRP = Measured Power - Rx Antenna Gain - Down Converter Gain + IF Cable Loss + FSL

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013

Final result in Normal operation mode (FM-CW + FCM)

			Power Density					
	FM-CW	FCM	Result * Lim		Limit	Margin	at 3m	
							Result	Limit
	[mW]	[mW]	[mW]	[dBm]	[dBm]	[dB]	[uW/cm ²]	[uW/cm ²]
Average power	42.91	19.34	62.25	17.94	50	32.06	0.055	88
Peak power	292.77	163.13	292.77	24.67	55	30.33	0.259	279

Calculating formula:

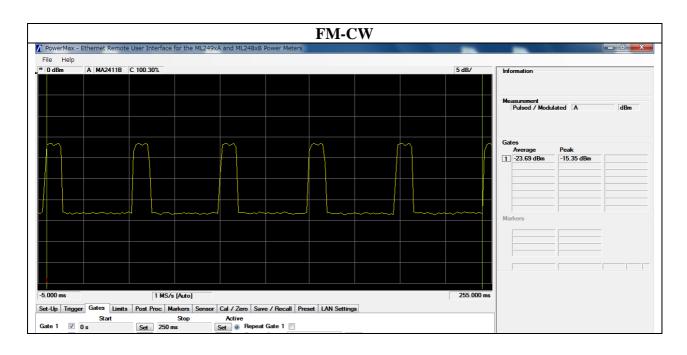
Power Density at 3 m = EIRP / $(4 * Pi * 300 cm ^2)$

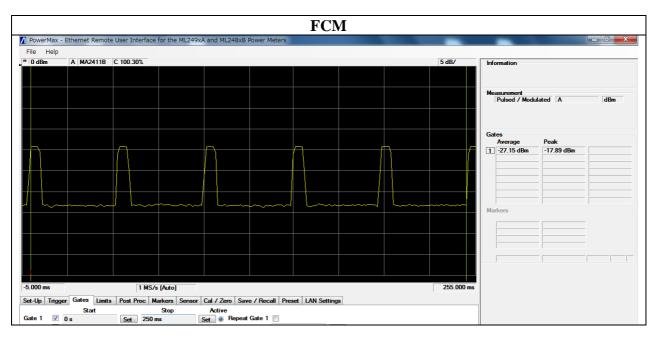
* As for the average power result, FM-CW result and FCM result were added, according to Section 4.1. For the peak power result, it is a maximum power of both FM-CW and FCM.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1 Page : 15 of 31 **Issued date** : October 14, 2016 FCC ID : HYQDNMWR009


Power Density


Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11296853H September 10, 2016

Date Temperature / Humidity 24 deg. C / 49 % RH Engineer Hironobu Ohnishi

Mode Test mode (FM-CW), Test mode (FCM)

UL Japan, Inc. Ise EMC Lab.

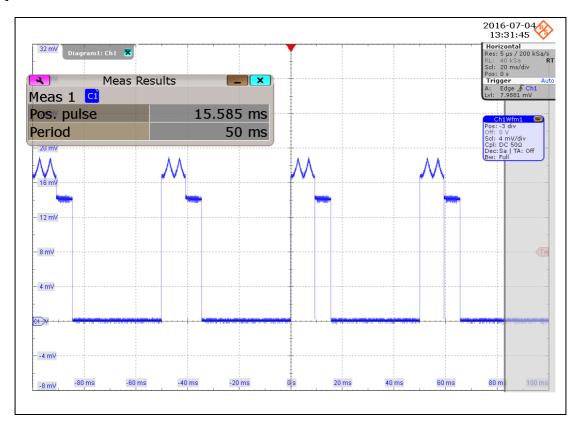
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. : 11296853H-A-R1
Page : 16 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Duty Cycle Confirmation

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber


Report No. 11296853H
Date July 4, 2016
Temperature / Humidity 24 deg. C / 45 % RH
Engineer Hironobu Ohnishi
Mode Normal operating mode

[Duty Factor]

	Tx On	Tx On + Off	Duty factor
	time	time	
	[ms]	[ms]	[dB]
Measured	15.585	50.000	-5.063
Declared *	15.580	50.000	-5.064

Duty factor = 10 * log (Tx On time / Tx On + Off time)

[Data]

^{*} This Duty Cycle is the worst case. Transmitting time does not exceed it.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} See the application document.

Test report No. : 11296853H-A-R1
Page : 17 of 31
Issued date : October 14, 2016

FCC ID : HYQDNMWR009

Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4 No.3

Report No. 11296853H

 Date
 July 5, 2016
 July 6, 2016
 July 22, 2016

 Temperature / Humidity
 23 deg. C / 55 % RH
 25 deg. C / 65 % RH
 24 deg. C / 66 % RH

 Engineer
 Hironobu Ohnishi
 Hironobu Ohnishi
 Hironobu Ohnishi

 26.5 GHz - 40 GHz
 30 MHz - 26.5 GHz
 9 kHz - 30 MHz

Mode Normal operating mode

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	40.000	QP	21.0	14.4	7.5	32.1	10.8	40.0	29.2	
Hori	62.100	QP	21.3	7.2	7.8	32.1	4.2	40.0	35.8	
Hori	65.883	QP	22.0	6.6	7.8	32.1	4.3	40.0	35.7	
Hori	125.000	QP	21.0	13.3	8.5	32.0	10.8	43.5	32.7	
Hori	320.000	QP	25.0	13.9	10.0	31.9	17.0	46.0	29.0	
Hori	400.000	QP	21.1	15.6	10.5	32.1	15.1	46.0	30.9	
Hori	610.000	QP	20.7	19.1	11.6	32.2	19.2	46.0	26.8	
Hori	34069.370	PK	86.3	45.1	-2.6	74.9	53.9	73.9	20.0	
Hori	38168.250	PK	79.9	43.8	-2.0	74.4	47.3	73.9	26.6	
Hori	34069.370	AV	64.9	45.1	-2.6	74.9	32.5	53.9	21.4	
Hori	38168.250	AV	67.3	43.8	-2.0	74.4	34.7	53.9	19.2	
Vert	40.000	QP	21.1	14.4	7.5	32.1	10.9	40.0	29.1	
Vert	62.100	QP	30.8	7.2	7.8	32.1	13.7	40.0	26.3	
Vert	65.883	QP	32.3	6.6	7.8	32.1	14.6	40.0	25.4	
Vert	125.000	QP	21.0	13.3	8.5	32.0	10.8	43.5	32.7	
Vert	320.000	QP	23.5	13.9	10.0	31.9	15.5	46.0	30.5	
Vert	400.000	QP	21.2	15.6	10.5	32.1	15.2	46.0	30.8	
Vert	610.000	QP	20.6	19.1	11.6	32.2	19.1	46.0	26.9	
Vert	34069.370	PK	90.3	45.1	-2.6	74.9	57.9	73.9	16.0	
Vert	38168.250	PK	83.2	43.8	-2.0	74.4	50.6	73.9	23.3	
Vert	34069.370	AV	66.6	45.1	-2.6	74.9	34.2	53.9	19.7	
Vert	38168.250	AV	69.7	43.8	-2.0	74.4	37.1	53.9	16.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

10 GHz - 40 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

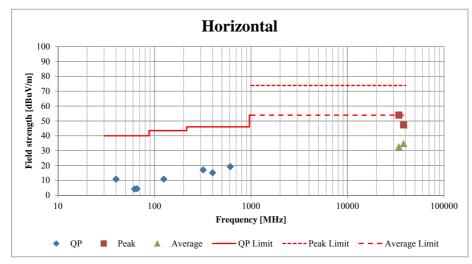
Test report No. : 11296853H-A-R1
Page : 18 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

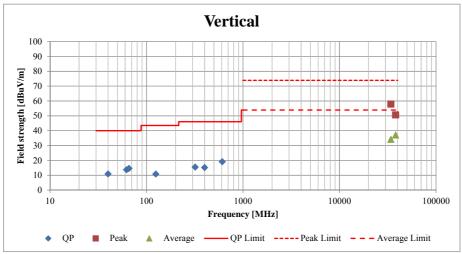
Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4 No.3

Report No. 11296853H


 Date
 July 5, 2016
 July 6, 2016
 July 22, 2016


 Temperature / Humidity
 23 deg. C / 55 % RH
 25 deg. C / 65 % RH
 24 deg. C / 66 % RH

 Engineer
 Hironobu Ohnishi
 Hironobu Ohnishi
 Hironobu Ohnishi

 26.5 GHz - 40 GHz
 30 MHz - 26.5 GHz
 9 kHz - 30 MHz

Mode Normal operating mode

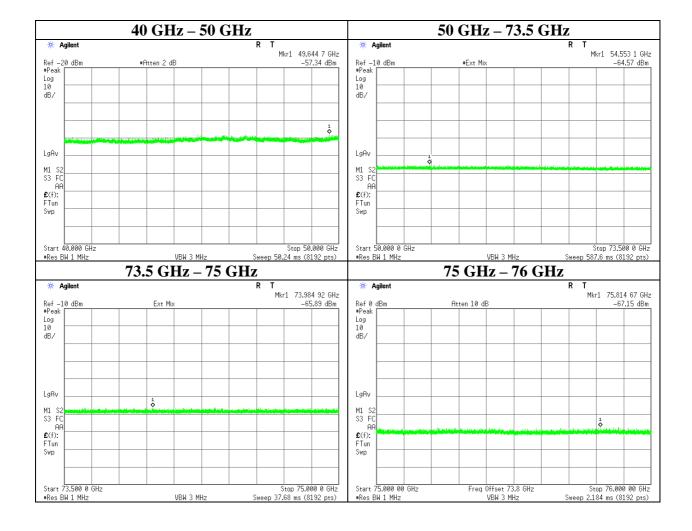
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 19 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Spurious Emission (above 40 GHz)

Report No. 11296853H Test place Ise EMC Lab.

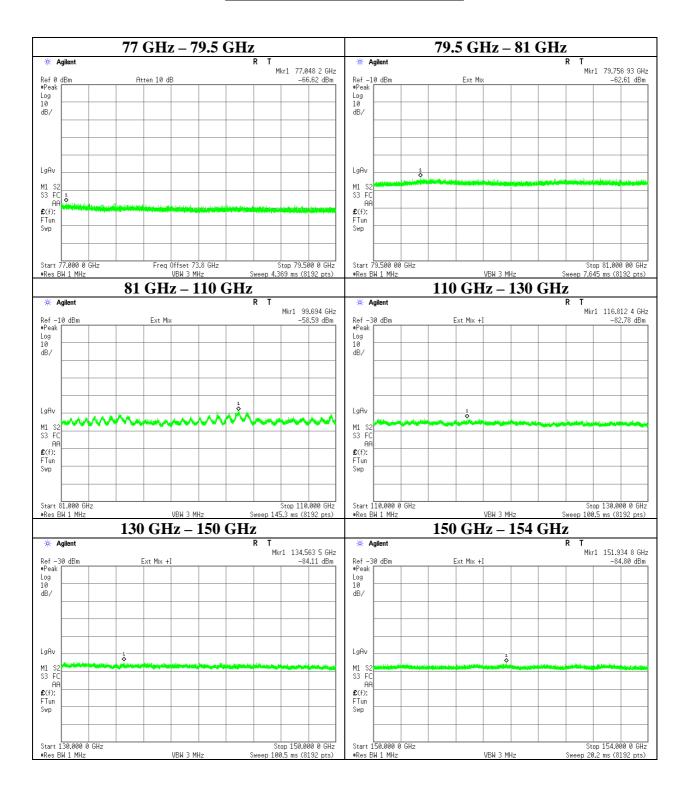

Semi Anechoic Chamber
Date
Date
July 4, 2016
Temperature / Humidity
Engineer
July 4, 2016
24 deg. C / 45 % RH
Hironobu Ohnishi
50 GHz - 75 GHz
July 5, 2016
23 deg. C / 55 % RH
Hironobu Ohnishi
40 GHz - 50 GHz,

75 GHz – 76 GHz, 77 GHz – 231 GHz

Mode Normal operating mode

* The peak density is less than the average limit. There is no spurious emission from 40 GHz to 231 GHz except for operating band.

The system noise floor was validated according to Section 9.8 of the ANSI C63.10-2013. If required, additional tests were performed with reduced RBW to make sure the measurement results.

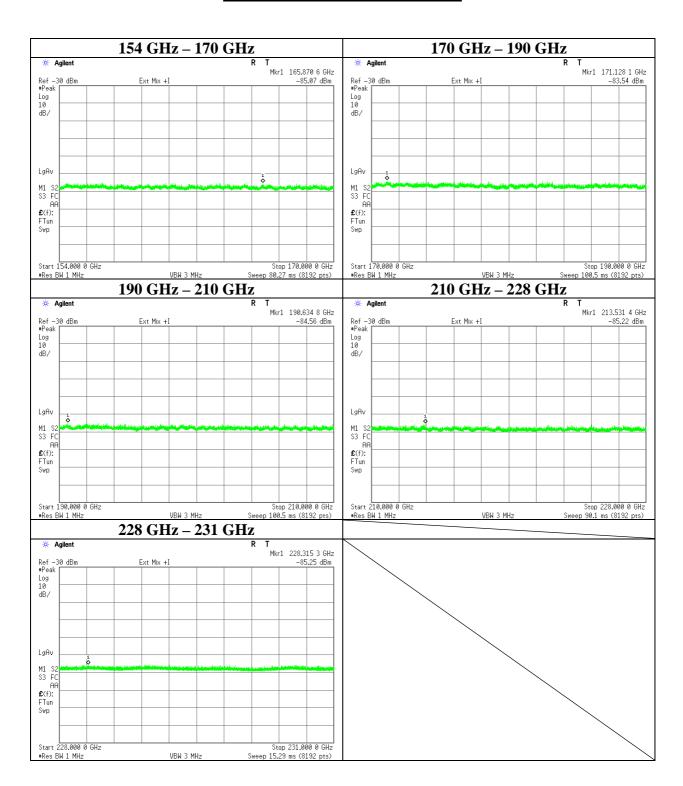


UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 20 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Spurious Emission (above 40 GHz)



UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 21 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Spurious Emission (above 40 GHz)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

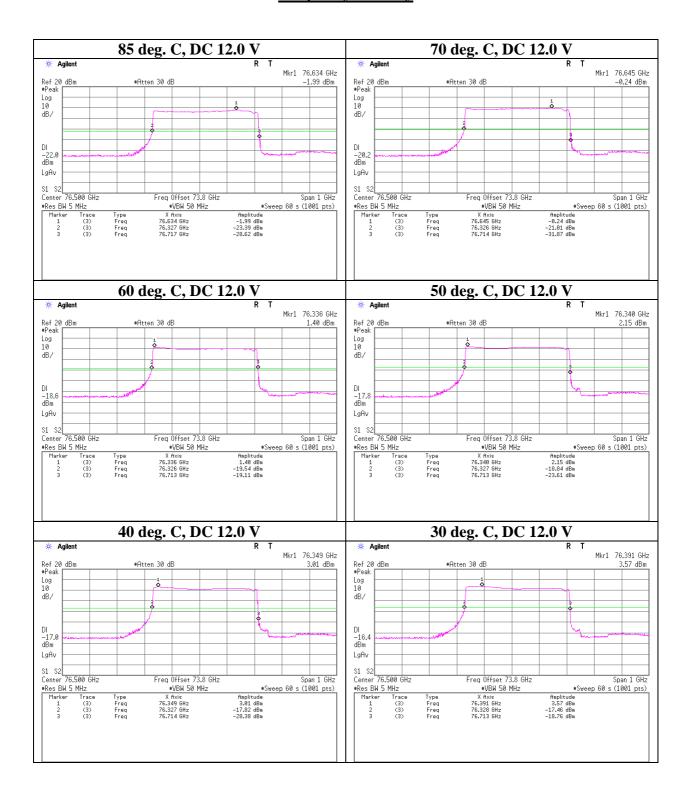
Test report No. : 11296853H-A-R1
Page : 22 of 31
Issued date : October 14, 2016

Issued date : October 14, 2016 FCC ID : HYQDNMWR009

Frequency Stability

Test place Ise EMC Lab. No.6 Measurement room

Report No. 11296853H
Date July 13, 2016
Temperature See data.
Engineer Hironobu Ohnishi
Mode Normal operating mode

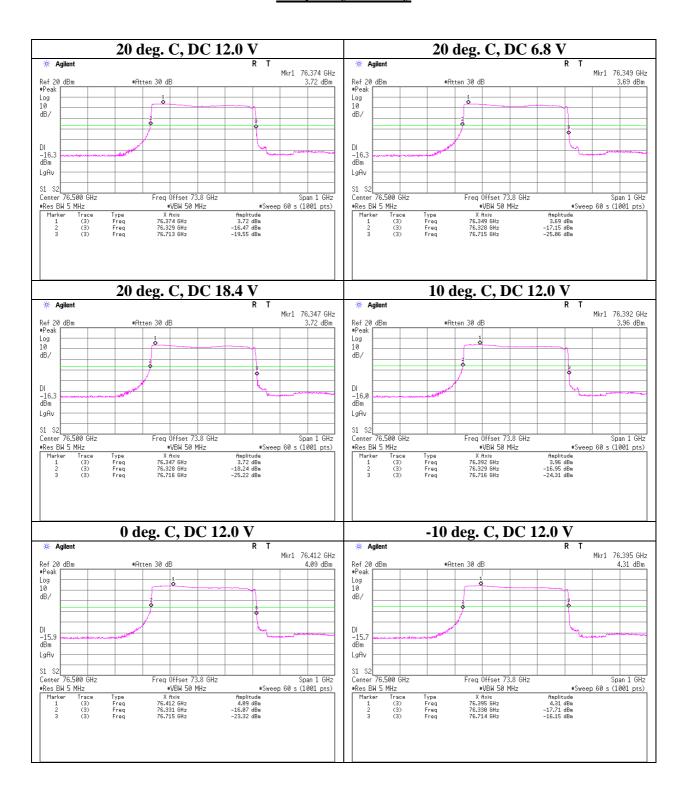

Test Co	ondition	Measured -20	dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[MHz]	
85	12.0	76.327	76.717	Customer requested temperature
70	12.0	76.326	76.714	Maximum operating temperature
60	12.0	76.326	76.713	
50	12.0	76.327	76.713	
40	12.0	76.327	76.714	
30	12.0	76.328	76.713	
20	12.0	76.329	76.713	
20	6.8	76.328	76.715	85 % of the minimum operating voltage, DC 8 V * 0.85
20	18.4	76.328	76.716	115 % of the maximum operating voltage, DC 16 V * 1.15
10	12.0	76.329	76.716	
0	12.0	76.331	76.715	
-10	12.0	76.330	76.714	
-20	12.0	76.331	76.717	
-30	12.0	76.332	76.715	Minimum operating temperature

Fundamental emissions were contained within the frequency band 76 GHz – 77 GHz during all conditions of operation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 23 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Frequency Stability

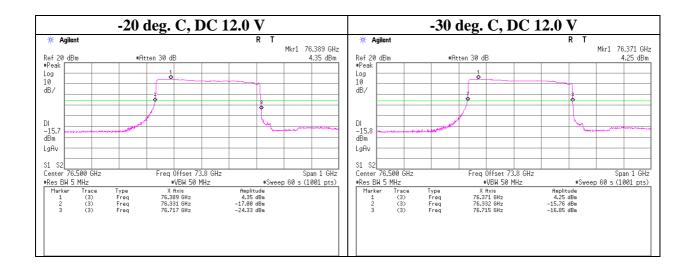


UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 24 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Frequency Stability



UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 25 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1 Page : 26 of 31 Issued date : October 14, 2016 : HYQDNMWR009 FCC ID

APPENDIX 2: Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2016/01/21 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
MLDM-04	Digital laser distance meter	BOSCH	DLE 50	781422774	RE	Pre Check
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2016/02/24 * 12
MMM-10	DIGITAL HITESTER	Hioki	3805	051201148	RE	2016/01/18 * 12
MHA-11	Horn Antenna	WiseWave	ARH1023-02	10766-01	RE	2015/10/22 * 12
MMX-05	Block Downconverter	KEYSIGHT	PS-X30-W10117A	13715	RE	2016/01/05 * 12
MCC-174	Microwave Cable	Junkosha	MWX221	1409S497	RE	2016/03/11 * 12
MPSE-11	Power sensor	Anritsu	MA2411B	011737	RE	2015/10/08 * 12
MPM-08	Power Meter	Anritsu	ML2495A	6K00003338	RE	2015/10/08 * 12
MDO-01	Digital Oscilloscope	Tektronix	TDS7254B	B020518	RE	2016/07/22 * 12
MDT-04	Detector	Millitech	DET-15-RPFW0	34	RE	Pre Check
MHA-10	Horn Antenna	WiseWave	ARH1523-02	10766-02	RE	2015/10/22 * 12
MPA-23	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015- 1515-N1	11599-01	RE	2015/12/08 * 12
MRENT-131	Preselected Millimeter Mixer	Agilent	11974V	MY30013051	RE	2016/06/27 * 12
MCC-135	Microwave Cable	HUBER+SUHNER	SUCOFLEX102	37511/2	RE	2015/08/04 * 12 *1)
MCC-136	Microwave Cable	HUBER+SUHNER	SUCOFLEX102	37512/2	RE	2015/08/04 * 12 *1)
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2016/03/18 * 12
MCC-178	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S305	RE	2016/03/10 * 12
MHF-15	High Pass Filter 81- 110GHz	VCSS	HPF-10-778030	201	RE	2015/08/25 * 12 *1)
MPA-18	Pre Amplifier	AmTechs Corporation	LNA-7511025	9601	RE	2015/08/25 * 12 *1)
MMX-02	Harmonic Mixer	Agilent	11970W	2521 A01909	RE	2016/06/20 * 12
MHA-24	Horn Antenna	Custom Microwave Inc.	HO6R	-	RE	2015/09/10 * 12
MMX-03	Harmonic Mixer	OML Inc.	M06HWD	D100709-1	RE	2015/09/16 * 12
MHA-27	Horn Antenna	Custom Microwave Inc.	HO4R	-	RE	2015/09/10 * 12
MMX-04	Harmonic Mixer	OML Inc.	M04HWD	Y100709-1	RE	2015/09/16 * 12
MDPLX-01	Diplexer	OML Inc.	DPL26	-	RE	2015/09/16 * 12
MHA-07	Horn Antenna	Custom	HO22R	10766-01	RE	2015/10/22 * 12
MPA-03	Microwave System Power Amplifier	Agilent	83050A	3950M00205	RE	2016/06/16 * 12
MHA-29	Horn Antenna 26.5- 40GHz	ETS LINDGREN	3160-10	00152399	RE	2015/09/04 * 12
MPA-22 Pre Amplifier		MITEQ, Inc	AMF-6F-2600400-33- 8P / AMF-4F-2600400- 33-8P	1871355 /1871328	RE	2015/09/03 * 12
MCC-140	Microwave Cable	Junkosha	J12J101596-00	JAN-31-12-001	RE	2016/02/16 * 12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Test report No. : 11296853H-A-R1
Page : 27 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

EMI test equipment (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2015/08/10 * 12 *1)
MCC-141	Microwave Cable	Junkosha	MWX221	1305S002R(1m)	RE	2016/06/21 * 12
				/ 1405S146(5m)		
MPA-12	MicroWave System Amplifier	Agilent	83017A	00650	RE	2015/10/01 * 12
MHA-17	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170307	RE	2016/06/24 * 12
MTR-10	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	RE	2016/01/29 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2015/11/02 * 12
MLA-23	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	RE	2016/01/30 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2016/06/20 * 12
MAT-68	Attenuator	Anritsu	MP721B	6200961025	RE	2015/11/12 * 12
MRENT-130	Spectrum Analyzer	Agilent	E4440A	MY46187750	RE	2016/06/03 * 12
MCH-04	Temperature and Humidity Chamber	Tabai Espec	PL-2KP	14015723	RE	2015/08/02 * 12 *1)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/01 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2016/01/21 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2016/05/19 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2015/10/24 * 12
MCC-112	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W(10m)/ SFM141(3m)/ sucoform141-PE(1m)/ 421-010(1.5m)/RFM- E321(Switcher)	-/00640	RE	2016/07/26 * 12
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2016/06/20 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2016/03/24 * 12
MAT-70	Attenuator(6dB)	Agilent	8491A-006	MY52460153	RE	2016/04/05 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2016/01/13 * 12

^{*1)} This test equipment was used for the tests before the expiration date of the calibration.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11296853H-A-R1
Page : 28 of 31
Issued date : October 14, 2016
FCC ID : HYQDNMWR009

The expiration date of the calibration is the end of the expired month.

[Below 40 GHz]

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

[Above 40 GHz]

Acceptance criteria for untraceable equipment was formulated according to ISO/IEC 17025 5.6.2.2.2, and the regular inspection was performed based on it annually.

For 40 GHz - 110 GHz, power sensor is calibrated by manufacturer, and the measured calibration data is used as in-house reference. The calibration data by manufacturer is checked for acceptance by a calorie meter except for some frequency bands.

For above 110 GHz, output level of millimeter wave source module is used as the reference, and inspection by the calorie meter is performed.

Electric power is checked with the calorie meter by measuring resistance and voltage of reference resistor.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated Emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN