Test report No.: 23HE0018-HO-1Page: 1 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

# **EMI TEST REPORT**

Test Report No. : 23HE0018-HO-1

| Applicant         | : | DENSO CORPORATION                    |
|-------------------|---|--------------------------------------|
| Type of Equipment | : | Bluetooth ASSY                       |
| Model No.         | : | BTA-01A                              |
| Test standard     | : | FCC Part 15 Subpart C Section 15.247 |
| FCC ID            | : | HYQBTA01A                            |
| Test Result       | : | Complied                             |

1. This test report shall not be reproduced in full or partial, without the written approval of A-Pex International Co., Ltd.

2. The results in this report apply only to the sample tested.

3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the EMC profile.

4. The test results in this report are traceable to the national or international standards.

5. This test report does not constitute an endorsement by NIST/NVLAP or U.S. Government.

Date of test :\_\_\_\_\_ March 5,6,7 and 8, 2003

Hiroka Umeyama EMC Head Office Division

Approved by :

Tested by

Hironobu Shimoji Group Leader of EMC Head Office Division

A-Pex International Co., Ltd. EMC Head Office Division. 4383-326 Asama-cho, Ise-shi, Mic-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

MF060b(23.04.02)

## **CONTENTS**

### PAGE

| SECTION 1:         | Client information                                     | 3  |
|--------------------|--------------------------------------------------------|----|
| <b>SECTION 2:</b>  | Equipment under test (E.U.T.)                          | 3  |
| SECTION 3:         | Test specification, procedures and results             | 5  |
| SECTION 4:         | Operation of E.U.T. during testing                     | 7  |
| SECTION 5:         | Carrier Frequency Separation, Section 15.247 (a)(1)    | 8  |
| SECTION 6:         | 20dB Bandwidth, Section 15.247(a)(1)                   | 8  |
| SECTION 7:         | Number of Hopping Frequency, Section 15.247(a)(1)(iii) | 8  |
| SECTION 8:         | Dwell time, Section 15.247(a)(1)(iii)                  | 8  |
| SECTION 9:         | Maximum Peak Output Power, Section 15.247(b)(1)        | 8  |
| SECTION 10:        | Band Edge Compliance, Section 15.247(c)                | 9  |
| SECTION 11:        | Spurious Emission, Section 15.247(c)                   | 9  |
|                    |                                                        |    |
| <b>APPENDIX 1:</b> | Photographs of test setup                              | 10 |
| APPENDIX 2:        | Test instruments                                       | 10 |
| APPENDIX 3:        | Data of EMI test                                       | 10 |

Test report No.: 23HE0018-HO-1Page: 3 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

## **<u>SECTION 1:</u>** Client information

| Company Name     | : | DENSO CORPORATION                                    |
|------------------|---|------------------------------------------------------|
| Brand Name       | : | DENSO                                                |
| Address          | : | 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan |
| Telephone Number | : | +81-566-61-3711                                      |
| Facsimile Number | : | +81-566-25-4941                                      |
| Contact Person   | : | Hiroshi Miyazaki                                     |

## **SECTION 2:** Equipment under test (E.U.T.)

### 2.1 Identification of E.U.T.

| Type of Equipment      | : Bluetooth ASSY       |
|------------------------|------------------------|
| Model No.              | : BTA-01A              |
| Serial No.             | : 23, 40               |
| Rating                 | : DC3.3V DC5V          |
| Country of Manufacture | : Japan                |
| Receipt Date of Sample | : March 5, 2003        |
| Condition of EUT       | : Production prototype |

### 2.2 **Product Description**

Model: BTA-01A which was referred to as the EUT in this report is a Bluetooth ASSY. This product is installed in Display in a Navigation system. And this product is used for a Hands free system. Instead of having connected using the cable, a Navigation system is connected with a cellular phone on radio by using this product.

The specification is as following;

| Equipment Type                  | : | Transceiver                                 |
|---------------------------------|---|---------------------------------------------|
| Clock frequency used in EUT     | : | 13MHz                                       |
| Frequency characteristics       | : | from 2402MHz to 2480MHz                     |
| Type of modulation              | : | GFSK                                        |
| Bandwidth & Channel spacing     | : | 78MHz, 1MHz                                 |
| Emission Designation (ITU Code) | : | F1D                                         |
| Antenna Type                    | : | λ/ 4 Uni-pole                               |
| Antenna Connector type          | : | MM8430-2600B                                |
| Antenna gain                    | : | 1.0dBi (Max)                                |
| Method of Frequency Generation  | : | ■ Crystal ■ Synthesizer □ Other (Resonator) |
| Power Supply                    | : | DC3.3V                                      |
| Operating voltage               | : | DC3.1-3.5V                                  |
| Duty cycle                      | : | 0.78                                        |
| Operating temperature           | : | -30deg.C. to+85deg.C.                       |
| Power & Signal Cable Length     | : | $\Box > 3m \blacksquare \leq 3m$            |

\*FCC Part 15.31(e) Verification of Input Power:

The host device BTA-01A provide the stable power-supply (DC 3.3V); and the Bluetooth ASSY complies power supply regulation.

\*FCC Part 15.203 Antenna requirement

The antenna built in the BTA-01A is a chip antenna and is permanently mounted by soldering on a printed electronic circuit board in BTA-01A. It is impossible for end users to replace it, because a special tool is necessary for removal of the antenna.

### **SECTION 3:** Test specification, procedures and results

### 3.1 Test Specification

| Test Specification<br>Title | : | FCC Part 15 Subpart C and Section15.247<br>FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators |
|-----------------------------|---|--------------------------------------------------------------------------------------------------------------------|
|                             |   | Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,                                              |
|                             |   | 5725-5850MHz                                                                                                       |

### 3.2 Procedures and results

| No.  | Item                                                                                                              | Test Procedure  | Specification            | Remarks    | Deviation | Worst margin | Results  |
|------|-------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|------------|-----------|--------------|----------|
| 1    | Conducted                                                                                                         | ANSI C63.4:2001 | Section 15.207           | N/A        | Excluded  | N/A          | Complied |
|      | Emission                                                                                                          |                 |                          |            | *         |              |          |
| 2    | Carrier                                                                                                           | ANSI C63.4:2001 | Section15.247(a)(1)      | Conducted  | N/A       | N/A          | Complied |
|      | Frequency                                                                                                         |                 |                          |            |           |              |          |
|      | Separation                                                                                                        |                 |                          |            |           |              |          |
| 3    | 20dB Bandwidth                                                                                                    | ANSI C63.4:2001 | Section15.247(a)(1)      | Conducted  | N/A       | N/A          | Complied |
| 4    | Number of                                                                                                         | ANSI C63.4:2001 | Section15.247(a)(1)(iii) | Conducted  | N/A       | N/A          | Complied |
|      | Hopping                                                                                                           |                 |                          |            |           |              |          |
|      | Frequency                                                                                                         |                 |                          |            |           |              |          |
| 5    | Dwell time                                                                                                        | ANSI C63.4:2001 | Section15.247(a)(1)(iii) | Conducted  | N/A       | N/A          | Complied |
| 6    | Maximum Peak                                                                                                      | ANSI C63.4:2001 | Section15.247(b)(1)      | Conducted  | N/A       | N/A          | Complied |
|      | Output Power                                                                                                      |                 |                          |            |           |              |          |
| 7    | Band                                                                                                              | ANSI C63.4:2001 | Section15.247(c)         | Conducted  | N/A       | N/A          | Complied |
|      | Edge Compliance                                                                                                   |                 |                          |            |           |              |          |
| 8    | Spurious                                                                                                          | ANSI C63.4:2001 | Section15.247(c)         | Conducted/ | N/A       | 5.8dB        | Complied |
|      | Emission                                                                                                          |                 |                          | Radiated   |           | 223.20MHz    |          |
|      |                                                                                                                   |                 |                          |            |           | Horizontal/  |          |
|      |                                                                                                                   |                 |                          |            |           | Vertical     |          |
| * Th | <sup>5</sup> The test is not applicable since the EUT does not have possibility to be connected with the AC Power |                 |                          |            |           |              |          |

These tests were performed without any deviations from test procedure except for additions or exclusions.

### 3.3 Confirmation

# A-Pex International Co., Ltd. hereby confirms that E.U.T. , in the configuration tested, complies with the specifications FCC Part15 Subpart C Section 15.247.

### 3.4 Uncertainty

### Spurious Emission(Radiated)

The measurement uncertainty (with a 95% confidence level) for this test using Biconical antenna is  $\pm 4.5$ dB. The measurement uncertainty (with a 95% confidence level) for this test using Logperiodic antenna is  $\pm 5.2$ dB. The measurement uncertainty (with a 95% confidence level) for this test using Horn antenna is  $\pm 6.6$ dB.

The data listed in this test report may exceed the test limit because it does not have enough margin.

Other test except Conducted Emission and Spurious Emission(Radiated)

The measurement uncertainty (with a 95% confidence level) for this test was  $\pm 3.0$  dB. The data listed in this test report has enough margin.

A-Pex International Co., Ltd. EMC Head Office Division. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Test report No.: 23HE0018-HO-1Page: 6 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

## 3.5 Test Location

A-Pex International Co., Ltd. EMC Head Office Division. No.2 semi anechoic chamber, 7.5 x 5.8 x 5.2m. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124 This site has been fully described in a report submitted to FCC office, and listed on June 05, 2002 (Registration number: 846015). \*NVLAP Lab. code: 200572-0 Industry Canada: IC4247-2

### 3.6 Test setup, Data of EMI and Test instruments

Refer to APPENDIX 1 to 3.

Test report No.: 23HE0018-HO-1Page: 7 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

## SECTION 4: Operation of E.U.T. during testing

### 4.1 Operating Modes

The EUT exercise program used during radiated testing was designed to exercise the various system components in a manner similar to typical use.

The operating mode/system was as follows:

Operation mode : Transmitting

| 1.Transmitting mode(2402 MHz)            |
|------------------------------------------|
| 2.Transmitting mode(2441 MHz)            |
| 3.Transmitting mode(2480MHz)             |
| 4. Transmitting mode(Hopping on)         |
| *This system does not have Inquiry mode  |
| *This system uses only DH5 type (packet) |
|                                          |

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

## 4.2 Configuration and peripherals



\* Cabling was taken into consideration and test data was taken under worst case conditions.

### **Description of EUT and Support equipment**

| No. | Item            | Model number | Serial number | Manufacturer | Remark |
|-----|-----------------|--------------|---------------|--------------|--------|
| 1   | Bluetooth ASSY  | BTA-01A      | 23, 40        | DENSO        | EUT    |
|     |                 |              |               | CORPORATION  |        |
| 2   | DC Power Supply | MY40000510   | 6654A         | Agilent      | -      |
| 3   | DC Power Supply | PCM35-2A     | 13D90501      | KIKUSUI      | -      |
| 4   | JIGU            | N/A          | N/A           | DENSO        | -      |
|     |                 |              |               | CORPORATION  |        |

### List of cables used

| No. | Name           | Length (m) | Shield | Backshell Material |
|-----|----------------|------------|--------|--------------------|
| a   | DC Power Cable | 2.0        | Ν      | Polyvinyl chloride |
| b   | DC Power Cable | 1.0        | Ν      | Polyvinyl chloride |
| c   | DC Power Cable | 0.2        | Ν      | Polyvinyl chloride |

A-Pex International Co., Ltd. EMC Head Office Division. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

## SECTION 5: Carrier Frequency Separation, Section 15.247(a)(1)

### **Test Procedure**

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna port.
Test data
Fest result
Pass

|                  | • | 1 ass          |
|------------------|---|----------------|
| Test instruments | : | MTR-01, MCC-05 |

### SECTION 6: 20dB Bandwidth, Section 15.247(a)(1)

### **Test Procedure**

The 20dB bandwidth was measured with a spectrum analyzer connected to the antenna port.Test data:APPENDIX 2Test result:PassTest instruments:MTR-01, MCC-05

### SECTION 7: Number of Hopping Frequency, Section 15.247(a)(1)(iii)

### **Test Procedure**

The Number of Hopping Frequency was measured with a spectrum analyzer connected to the antenna port.Test data:APPENDIX 2Test result:PassTest instruments:MTR-01, MCC-05

### SECTION 8: Dwell time, Section 15.247(a)(1)(iii)

### **Test Procedure**

The Dwell time was measured with a spectrum analyzer connected to the antenna port.

| Test data        | : | APPENDIX 2     |
|------------------|---|----------------|
| Test result      | : | Pass           |
| Test instruments | : | MTR-01, MCC-05 |

### SECTION 9: Maximum Peak Output Power, Section 15.247(b)(1)

### **Test Procedure**

The Maximum Peak Output Power was measured with a spectrum analyzer connected to the antenna port.

| Test data        | : | APPENDIX 2             |
|------------------|---|------------------------|
| Test result      | : | Pass                   |
| Test instruments | : | MTR-01, MCC-05, MAT-21 |

### SECTION 10: Band Edge Compliance, Section 15.247(c)

### **Test Procedure**

The Band Edge Compliance was measured with a spectrum analyzer connected to the antenna port.Test data:APPENDIX 2Test result:PassTest instruments:MTR-01, MCC-05

## SECTION 11: Spurious Emission, Section 15.247(c)

### [Conducted]

### **Test Procedure**

The Spurious Emission (Conducted) was measured with a spectrum analyzer connected to the antenna port.

| Test data        | : | APPENDIX 2     |
|------------------|---|----------------|
| Test result      | : | Pass           |
| Test instruments | : | MTR-01, MCC-05 |

### [Radiated]

### **Test Procedure**

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

The Radiated Electric Field Strength intensity has been measured in No.2 semi anechoic chamber (7.5x5.8x5.2m) with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 to 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

| Test data        | : | APPENDIX 2                                     |
|------------------|---|------------------------------------------------|
| Test result      | : | Pass                                           |
| Test instruments | : | MTR-01, MCC-12, MCC-05, MCC-06, MHA-05, MPA-01 |
|                  |   | MBA-03, MLA-03, MPA-04, MAT-07, MCC-11         |
|                  |   | MBF-01, MHA-01, MSA-02, MTR-02                 |

Test report No.: 23HE0018-HO-1Page: 10 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

## APPENDIX 1: Photographs of test setup

Page 11 : Spurious Emission (Radiated)

Page 12 : Other tests except Conducted emission and Spurious Emission (Radiated)

### **APPENDIX 2:** Test instruments

Page 13 : Test instruments

### **APPENDIX 3: Data of EMI test**

- Page 14-16 : Carrier Frequency Separation
- Page 17-19 : 20dB Bandwidth
- Page 20-22 : Number of Hopping Frequency
- Page 23-29 : Dwell time
- Page 30-32 : Maximum Peak Output Power
- Page 33-35 : Band Edge Compliance
- Page 36-47 : Spurious Emission

Test report No.: 23HE0018-HO-1Page: 11 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A

## APPENDIX 1: Photographs of test setup

## **Spurious Emission (Radiated)**





A-Pex International Co., Ltd. EMC Head Office Division. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Test report No.: 23HE0018-HO-1Page: 12 of 47Issued date: March 14, 2003FCC ID: HYQBTA01A



Other tests except Conducted emission and Spurious Emission (Radiated)

A-Pex International Co., Ltd. EMC Head Office Division. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

### Test Report No :23HE0018-HO- 1

|                  | · · · · · · · · · · · · · · · · · · · | <br> |
|------------------|---------------------------------------|------|
| APPENDIX 2       | · · · · ·                             |      |
| Test Instruments |                                       |      |
|                  |                                       |      |

### EMI test equipment

0

1

Θ

| Control No.    | Instrument              | Manufacturer                                                                                                     | Model No            | Test Item | Calibration Date *           |
|----------------|-------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------------------------------|
| MTP-01         | Tost Beesiver           | Pahda & Sahwarz                                                                                                  | ES140               | DE        | Interval(month)              |
|                | Anna hair Obamban       | TDK                                                                                                              |                     |           | 2002/11/01 + 12              |
| MAEC-UZ        | Anechoic Gnamber        | IDK                                                                                                              | Chamber 3m          | RE        | 2002/04/12 * 12              |
| MCC-11         | Microwave coaxial cable | Suhner                                                                                                           | SUCOFLEX 104        | RE        | 2002/03/27 * 12              |
| MBF-01         | SHF Bandpass Filter     | M-City                                                                                                           | 5GHz BPF            | RE        | 2002/04/30 * 12              |
| MAT-21         | Attenuator              | HIROSE ELECTRIC<br>CO.,LTD.                                                                                      | AT-120              | RE        | 2003/02/03 * 12              |
| MCC-12         | Coaxial Cable           | Fujikura/Agilent                                                                                                 | e 🚽 da e en primero | RE        | 2002/05/09 * 12              |
| MHA-05         | Hom Antenna             | Schwarzbeck                                                                                                      | BBHA9120D           | RE        | 2003/01/11 * 12              |
| MPA-01         | Pre Amplifier           | Agilent                                                                                                          | 8449B               | RE        | 2003/02/08 * 12              |
| MCC-05         | Microwave Cable         | Storm                                                                                                            | 421-011             | RE        | 2003/01/14 * 12              |
| MCC-06         | Microwave Cable         | Storm                                                                                                            | 421-011             | RE        | 2003/01/14 * 12              |
| MBA-03         | Biconical Antenna       | Schwarzbeck                                                                                                      | BBA9106             | RE        | 2002/05/02 * 12              |
| MLA-03         | Logperiodic Antenna     | Schwarzbeck                                                                                                      | USLP9143            | RE        | 2002/05/02 * 12              |
| MPA-04         | Pre Amplifier           | Agilent                                                                                                          | 8447D               | RE        | 2002/03/13 * 12              |
| MAT-07         | Attenuator(6dB)         | Weinschel Corp                                                                                                   | 2                   | RE        | 2002/12/24 * 12              |
| MHA-01         | Horn Antenna            | EMCO                                                                                                             | 3160-09             | RE        | 2003/01/11 * 12              |
| MSA-02         | Spectrum Analyzer       | Advantest                                                                                                        | R3265A              | RE        | 2002/09/20 * 12              |
| MTR-02         | Test Receiver           | Rohde & Schwarz                                                                                                  | ESCS30              | RE        | 2003/01/31 * 12              |
| and the second | 1                       |                                                                                                                  |                     |           |                              |
|                |                         | and the second |                     |           | and the second second second |

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards. Test Item:

**RE: Radiated emission** 

# A-PEX INTERNATIONAL CO., LTD.

# **DATA OF CARRIER FREQUENCY SEPARATION**

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

Hiroka Umeyama

| COMPANY   | :   | DENSO CORPORATION | REPORT NO     | : | 23HE0018-HO_ 1                                                                                                                                                                                                                     |
|-----------|-----|-------------------|---------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EQUIPMENT | :   | Bluetooth ASSY    | REGULATION    | : | Fcc Part15 Subpart C 15.247(a)(1)                                                                                                                                                                                                  |
| MODEL     | :   | BTA-01A           | TEST DISTANCE | : | na ann an Aonaichtean ann an Aonai<br>Ann an Aonaichtean ann an Aonaichtea |
| S/ N      | :   | 40                | DATE          | : | 03/05/2003                                                                                                                                                                                                                         |
| FCC ID    | · : | HYQBTA01A         | TEMPERATURE   | : | 24°C                                                                                                                                                                                                                               |
| IC Number | :   | 1551A-BTA01A      | HUMIDITY      | : | 34%                                                                                                                                                                                                                                |
| POWER     | :   | DC3.3V            |               |   |                                                                                                                                                                                                                                    |
| MODE      | :   | Tx (Hopping on)   | in            |   |                                                                                                                                                                                                                                    |
|           |     |                   |               |   | malan                                                                                                                                                                                                                              |

Enginee:

## PK DETECT(S/A :span 3MHz, RBW 100kHz, VBW 100kHz, sweep time AUTO )

| CH   | FREQ   | Channel separation | Limit                       |
|------|--------|--------------------|-----------------------------|
|      | [MHz]  | [MHz]              |                             |
| Low  | 2402.0 | 0.998              | >20dB Bandwidth and 25[kHz] |
| Mid  | 2441.0 | 1.022              | >20dB Bandwidth and 25[kHz] |
| High | 2480.0 | 1.028              | >20dB Bandwidth and 25[kHz] |

0

 $\left( \right)$ 

Θ

| Test Report No. | :23HE0018-HO-1 |
|-----------------|----------------|
| FCC ID          | :HYQBTA01A     |
| IC No.          | :1551A-BTA01A  |

## Carrier Frequency Separation: TX(Hopping on)2402MHz

0

 $\bigcirc$ 

9

 $\bigcirc$ 

Э



## Carrier Frequency Separation: TX(Hopping on)2441MHz



| Test Report No. | :23HE0018-HO- <b>1</b> |
|-----------------|------------------------|
| FCC ID          | :HYQBTA01A             |
| IC No.          | :1551A-BTA01A          |

# Carrier Frequency Separation:TX(Hopping on)2480MHz

θ

 $\bigcirc$ 

Ô

 $\bigcirc$ 



# **DATA OF 20dB BANDWIDTH**

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

| COMPANY   | :   | DENSO CORPORATION | <b>REPORT NO</b> |    | 23НЕ0018-НО- 1                    |
|-----------|-----|-------------------|------------------|----|-----------------------------------|
| EQUIPMENT | :   | Bluetooth ASSY    | REGULATION       | :  | Fcc Part15 Subpart C 15.247(a)(1) |
| MODEL     | . : | BTA-01A           | TEST DISTANCE    | :  |                                   |
| S/ N      | :   | 40                | DATE             | :  | 03/05/2003                        |
| FCC ID    | :   | HYQBTA01A         | TEMPERATURE      | :  | 24°C                              |
| IC Number | :   | 1551A-BTA01A      | HUMIDITY         | :: | 34%                               |
| POWER     | :   | DC3.3V            |                  |    |                                   |
| MODE      | :   | Tx (Hopping off)  |                  |    |                                   |
|           |     |                   | Sta              | 4  | mapma                             |

Engineer: Hiroka Uneyama

PK DETECT(S/A: span 3MHz, RBW 30kHz, VBW 30kHz, sweep time AUTO)

| CH   | FREQ   | 20dB Bandwidth | Limit |
|------|--------|----------------|-------|
|      | [MHz]  | [MHz]          | [MHz] |
| Low  | 2402.0 | 0.751          | 1.0   |
| Mid  | 2441.0 | 0.812          | 1.0   |
| High | 2480.0 | 0.745          | 1.0   |

0

Э

Test Report No. :23HE0018-HO-1 FCC ID :HYQBTA01A IC No. :1551A-BTA01A



# 20dB Bandwidth:TX(Hopping off)2402MHz

Date:

0

Ì

| Test Report No. | :23HE0018-HO- <b>1</b> |
|-----------------|------------------------|
| FCC ID          | :HYQBTA01A             |
| IC No.          | :1551A-BTA01A          |

# 20dB Bandwidth: TX(Hopping off)2480MHz

θ

 $\bigcirc$ 

 $\Theta$ 

(----



# DATA OF NUMBER OF HOPPING FREQUENCY

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

| COMPANY   | : DENSO CORPORATION | <b>REPORT NO</b> | : 23HE0018-HO- <b>1</b>                  |
|-----------|---------------------|------------------|------------------------------------------|
| EQUIPMENT | : Bluetooth ASSY    | REGULATION       | : Fcc Part15 Subpart C 15.247(a)(1)(iii) |
| MODEL     | : BTA-01A           | TEST DISTANCE    |                                          |
| S/ N      | : 40                | DATE             | : 03/05/2003                             |
| FCC ID    | : HYQBTA01A         | TEMPERATURE      | : 24℃                                    |
| IC Number | : 1551A-BTA01A      | HUMIDITY         | : 34%                                    |
| POWER     | : DC3.3V            |                  |                                          |
| MODE      | : Tx (Hopping on)   | S HA             | annom                                    |

Engineer

: Hiroka Umeyama

## PK DETECT(S/A : RBW 300kHz , VBW 300kHz, sweep time AUTO )

9

( ]

 $\mathbf{O}$ 

| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number of channel |   | Limit  | 11 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|--------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |   |        |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [time]            | • | [time] |    |
| Tx(Hoppng on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79                |   | ≧15    |    |
| and the second s |                   |   |        |    |

| Test Report No. | :23HE0018-HO-1 |
|-----------------|----------------|
| FCCID           | :HYQBTA01A     |
| IC No.          | : 1551A-BTA01A |

## Number of Hopping Frequency:TX(Hopping on)2400-2430MHz

θ

()

 $\mathbf{O}$ 







| Test Report No. | :23HE0018-HO-1 |
|-----------------|----------------|
| FCC ID          | :HYQBTA01A     |
| IC No.          | :1551A-BTA01A  |

# Number of Hopping Frequency:TX(Hopping on)2460-2490MHz

θ

 $\bigcirc$ 

0



# DATA OF DWELL TIME

0

 $\Theta$ 

(\_\_\_\_\_

Θ

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

|   | COMPANY                                                                                                         | :   | DENSO CORPORATION             | REPORT             | NO     | : 23HE0018-1   | HO- <b>1</b>                |
|---|-----------------------------------------------------------------------------------------------------------------|-----|-------------------------------|--------------------|--------|----------------|-----------------------------|
|   | EQUIPMENT                                                                                                       | :   | Bluetooth ASSY                | REGULA             | TION   | : Fcc Part15 S | Subpart C 15.247(a)(1)(iii) |
|   | MODEL                                                                                                           | :   | BTA-01A                       | TEST DIS           | STANCE | : -            |                             |
|   | S/N                                                                                                             | :   | 40                            | DATE               |        | : 03/05/2003   |                             |
|   | FCC ID                                                                                                          | :   | HYQBTA01A                     | TEMPER             | ATURE  | : 24°C         |                             |
|   | IC Number                                                                                                       | . : | 1551A-BTA01A                  | HUMIDI             | ſY     | : 34%          |                             |
|   | POWER                                                                                                           | :   | DC3.3V                        |                    |        | •              |                             |
|   | MODE                                                                                                            | :   | Tx (Hopping off)              | Ċ                  |        |                |                             |
|   |                                                                                                                 |     |                               |                    | V      | map            | ma                          |
|   |                                                                                                                 |     |                               | Engineer           |        | Hiroka Umey    | ama                         |
|   | PK DETECT(                                                                                                      | S/A | :span ZERO, RBW 1MHz ,VBW 3MH | Iz, sweep time 20m | is)    |                |                             |
|   | Mode                                                                                                            |     | Number of transmission        | Length of          | Result | Limit          |                             |
| 5 | e e e porte de la composition de la com |     | in a 31.6(79 Hopping x 0.4)   | transmission time  |        | in the second  |                             |
|   |                                                                                                                 |     | second period                 | [msec]             | [msec] | [msec]         |                             |
|   | DH5                                                                                                             |     | 116 times                     | 2.906              | 337    | 400            |                             |

Test Report No. FCC ID IC No.

:23HE0018-HO-1 :HYQBTA01A :1551A-BTA01A



## **Dwell time:**TX(Hopping on)DH5(1)

0

 $\bigcirc$ 

()

Э

Cantor 2.441 GHz 320 ms/ 5.MAR.2003 20:43:36 Date:

| Test Report No. | :23HE001  |
|-----------------|-----------|
| FCC ID          | : HYQBTA  |
| IC No.          | : 1551A-B |

18-НО- **1** 101A TA01A

#### BOX LVL Delta 1 (Tlj REM 104 1882 RF Att 10 dB 0.00 48 VEW 100 kHz - 107 dBµV 2.905812 mic SNT 3.2 \$ Unit ď₿µV 107 100 g idel Idel 13HAX -7 4 34 Conter 2.441 GHz 320 ma/ 5.MAR.2003 20:43:09 Datar

## **Dwell time:**TX(Hopping on)DH5(3)

0

()

e

 $\odot$ 

## **Dwell time: TX(Hopping on)DH5(4)**



Test Report No. FCC ID IC No. : 23HE0018-HO- **1** : HYQBTA01A : 1551A-BTA01A

#### 100 kHz Delta 1 [T1] REW RF Att 10 18 Rof Lvl. 0.00 dB VEW 100 kHz 2.905812 ms Unit dBµV tor dBuV SPAT 3.2 a 10 2 20 -3311 1961 70 Center 2.441 GHz 320 383/ 5.MAR. 2003 20141:52 Dates

## **Dwell time:**TX(Hopping on)DH5(5)

0

 $\left( \right)$ 

 $\left( \right)$ 

Θ



| Test Report No. | :23HE0018·HO-1 |
|-----------------|----------------|
| FCC ID          | :HYQBTA01A     |
| IC No.          | :1551A-BTA01A  |

#### Delta 1 [TI] 100 kHz 100 kHz RP ALL 10 dB RIM Ref Lui 0.00 dB VEW 107 dBuV 2.905912 mm SWT 3.2 0 Unit dBµ¥ 30 10 KAT. 91 ŭ 1143 1143 1148.8 7 2 Center 2.441 GHz 320 mm/ 5.MRR.2003 20:40:36 Dates

## Dwell time: TX(Hopping on)DH5(7)

0

 $\Theta$ 

fer t

Э

### Dwell time: TX(Hopping on)DH5(8)



| Test Report No. | :23H   |
|-----------------|--------|
| FCC ID          | : HYG  |
| IC No.          | : 1551 |

: 23HE0018-HO- **1** : HYQBTA01A : 1551A-BTA01A

#### RF Att 10 dB 100 kHz Delta 1 [T1] 0.00 dB REW ROE LVL VEW 100 kHz diany 3.2 = Unit SHI 107 dBuV 2.903612 me 16 10 9 2012 100. 2 10 320 ma/ Centar 2.441 GHz 5. MAR. 2003 20139134 Dates

## Dwell time: TX(Hopping on)DH5(9)

0

О

### **Dwell time: TX(Hopping on)DH5(10)**



Test Report No.: 23HFCC ID: HYOIC No.: 155

: 23HE0018-HO- **1** : HYQBTA01A : 1551A-BTA01A

### 100 kHz 100 kHz Delta 1 (T1) RF ALL 10 dB REN Ref LV1 9.00 dB 2.905912 ms VEW 107 depv 3.2 s Unit SHT dBhy 10 10 9 ñ 2013. 3360a 2 1 Contor 2.441 GHz 320 ms/ Date: 5.MAR.2003 20130150

# Dwell time: TX(Hopping on)DH5(11)

0

 $\bigcirc$ 

 $\Theta$ 

Ο

# **DATA OF PEAK OUTPUT POWER(CONDUCTED)**

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

| COMPANY   | :   | DENSO CORPORATION | REPORT NO     | : | 23НЕ0018-НО- 1                    |
|-----------|-----|-------------------|---------------|---|-----------------------------------|
| EQUIPMENT | :   | Bluetooth ASSY    | REGULATION    | • | Fcc Part15 Subpart C 15.247(b)(1) |
| MODEL     | :   | BTA-01A           | TEST DISTANCE | : |                                   |
| S/N       | . : | 40                | DATE          | ÷ | 03/05/2003                        |
| FCC ID    | :   | HYQBTA01A         | TEMPERATURE   | : | 24℃                               |
| IC Number |     | 1551A-BTA01A      | HUMIDITY      | : | 34%                               |
| POWER     | • : | DC3.3V            |               |   |                                   |
| MODE      | :   | Tx (Hopping off)  | Stor          | 2 | metoma                            |

Engineer : Hiroka Umeyama

|      | ·      | and the second |       |        |        |       |
|------|--------|------------------------------------------------------------------------------------------------------------------|-------|--------|--------|-------|
| CH   | FREQ   | T/R Reading                                                                                                      | Cable | Result | Result | Limit |
|      |        |                                                                                                                  | Loss  |        |        | (1W)  |
|      | [MHz]  | [dBuV]                                                                                                           | [dB]  | [dBuV] | [dBm]  | [dBm] |
| Low  | 2402.0 | 86.0                                                                                                             | 19.6  | 105.6  | -1.40  | 30.0  |
| Mid  | 2441.0 | 86.5                                                                                                             | 19.6  | 106.1  | -0.90  | 30.0  |
| High | 2480.0 | 86.6                                                                                                             | 19.6  | 106.2  | -0.80  | 30.0  |
|      |        |                                                                                                                  |       |        |        |       |

Sample Calculation :

0

8

Э

Result = T/R Reading + Cable Loss(include attenuator)

Test Report No. :23HE0018-HO-1 FCC ID IC No.

# :HYQBTA01A :1551A-BTA01A



### Peak Output Power(Conducted):Tx(2402MHz)

0

 $\bigcirc$ 

---

0

 $\bigcirc$ 

Э





| Test Report No. | :23HE0018-HO- <b>1</b> |
|-----------------|------------------------|
| FCC ID          | :HYQBTA01A             |
| IC No.          | : 1551A-BTA01A         |

## Peak Output Power(Conducted):Tx(2480MHz)

0

 $\bigcirc$ 

 $\Theta$ 

 $\bigcirc$ 

Ô



## DATA OF BAND EDGE COMPLIANCE

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISION No.2 SEMI ANECHOIC CHAMBER

: 34%

ret

| COMPANY   | : | DENSO CORPORATION            |
|-----------|---|------------------------------|
| EQUIPMEN  | : | Bluetooth ASSY               |
| MODEL     | : | BTA-01A                      |
| S/ N      | : | 40                           |
| FCCID     | : | HYQBTA01A                    |
| IC Number | : | 1551A-BTA01A                 |
| POWER     | : | DC3.3V                       |
| MODE      | : | TX(Hopping on)               |
|           |   | TX(Hopping off 2402/2480MHz) |

REPORT NO REGULATION TEST DISTANCE DATE TEMPERATURE HUMIDITY : 23HE0018-HO- **1** : Fcc Part15 Subpart C 15.247(c) : -: 03/05/2003 : 24°C

Engineer

Hiroka Umeyama

PK DETECT(S/A :Span 30MHz, RBW 300kHz/1MHz ,VBW 300kHz, sweep time AUTO ) [Hopping on] Conducted

| Frequency | Reading | Cable | Е      | Р    | Difference of                   | Field    | Limit       |
|-----------|---------|-------|--------|------|---------------------------------|----------|-------------|
|           |         | Loss  |        |      | level                           | Strength |             |
| [MHz]     | [dBuV]  | [dB]  | [dBuV] | [nW] | [dB]                            | [dBuV/m] |             |
| 2390.0    | 45.1    | 0.1   | 45.2   | 0.66 |                                 | 34.4     | <74[dBuV/m] |
| 2399.8    | 57.0    | 0.1   | 57.1   |      | 48.6*                           | - 1. S   | >20[dB]     |
| 2483.7    | 50.3    | 0.1   | 50.4   | 2.19 | an an <mark>a</mark> n an an an | 39.6     | <74[dBuV/m] |

\* Reference : Reading (105.6[dBuV]) + Cable Loss (0.1[dB]) = E (105.7[dBuV]) at 2402MHz.

#### [Hopping off Tx (2402/2480MHz)] Conducted

| L         |         | /3    |        |      |                                         |          |                                                                                                                  |
|-----------|---------|-------|--------|------|-----------------------------------------|----------|------------------------------------------------------------------------------------------------------------------|
| Frequency | Reading | Cable | E      | Р    | Difference of                           | Field    | Limit                                                                                                            |
| r i tege  |         | Loss  |        |      | level                                   | Strength |                                                                                                                  |
| [MHz]     | [dBuV]  | [dB]  | [dBuV] | [nW] | [dB]                                    | [dBuV/m] |                                                                                                                  |
| 2389.6    | 48.0    | 0.1   | 48.1   | 1.29 | -                                       | 37.3     | <74[dBuV/m]                                                                                                      |
| 2400.0    | 62.0    | 0.1   | 62.1   | •    | 43.6*                                   | •        | >20[dB]                                                                                                          |
| 2483.6    | 56.8    | 0.1   | 56.9   | 9.77 | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | 46.1     | <74[dBuV/m]                                                                                                      |
|           |         |       |        |      |                                         | **       | and the second |

\* Reference : Reading (105.6[dBuV]) + Cable Loss (0.1[dB]) = E (105.7[dBuV]) at 2402MHz.

 $\square$ 

é

0

Sample Calculation: Field Strength =  $(\sqrt{30*P*10^{-9*}G}) / d$ 

E : Reading + Cable Loss

P: Converted to nW

d : Test distance(3.0m)

G: Numeric Antenna Gain 1.26

| Test Report No. | :23HE0018-HO- 1 |
|-----------------|-----------------|
| FCC ID          | :HYQBTA01A      |
| IC No.          | :1551A-BTA01A   |

## Band Edge: TX(Hopping on)2402MHz

Ø

 $\bigcirc$ 

 $\bigcirc$ 

Q

|                |         |        |    |       |          | *1              | [71] | Πſĭ     | BAT               |
|----------------|---------|--------|----|-------|----------|-----------------|------|---------|-------------------|
|                |         |        |    |       |          | ₹2              | [21] | 2.39000 | 06 8151<br>012 69 |
| -D1 85.        | 56 dBuV | ļ      |    |       | 1. N. 1. | <sup>47</sup> 3 | [TL] | 57      | 04 dBµ            |
| 1999 - S.      |         | [      |    | 1. S. |          |                 |      | 2.30981 | 964 GH            |
| 1 <b>56</b> 03 |         |        |    |       |          |                 |      |         |                   |
|                |         |        |    |       |          |                 |      |         |                   |
|                |         |        |    |       |          |                 |      |         | <b></b>           |
| 1              |         |        |    |       | INK      |                 | Ŵ    |         |                   |
| d, with        | When I  | Hille. | WW | AMA   | 1.1.     | 1.16            |      |         |                   |
|                |         |        |    |       |          |                 |      | -<br>-  | [                 |
|                |         |        |    |       |          |                 |      |         |                   |

# Band Edge:TX(Hopping on)2480MHz

| ROI LVL                                 | Marker 1 [T1]<br>105.5<br>2.471815 | 52 dBµV<br>187 GHz | rew<br>Vew<br>Swt | 300 k<br>300 k<br>5 л | HZ R<br>HZ<br>W W | 10 dB<br>dBµV |                               |
|-----------------------------------------|------------------------------------|--------------------|-------------------|-----------------------|-------------------|---------------|-------------------------------|
| <u>Innnnn</u>                           | INAAL S                            | 1.11               |                   | *1                    | [71]              | 105           | 52 dispr                      |
| <u></u>                                 |                                    |                    |                   | ₹2                    | [T1]              | 2.49109       | 007-011<br>29 ЦВру<br>048 GH2 |
| -101 85.52 dBu                          | v                                  |                    |                   |                       |                   | [             |                               |
| o                                       |                                    |                    |                   |                       |                   |               |                               |
| THUN                                    |                                    |                    |                   |                       |                   |               |                               |
|                                         |                                    |                    |                   |                       |                   | ·             |                               |
| 0                                       |                                    | 2 11               | 4                 |                       | · · · · · ·       |               |                               |
|                                         |                                    | hin                |                   | Manie                 | W                 | NUL I         | HAN                           |
|                                         |                                    |                    | ¢.                | * *                   | • 1               | 11            | 111 <b>7</b>                  |
|                                         |                                    |                    |                   |                       |                   |               |                               |
| • · · · · · · · · · · · · · · · · · · · |                                    |                    |                   |                       | · ·               |               |                               |
|                                         |                                    | <u> </u>           |                   |                       |                   |               | <u> </u>                      |
| CURLOS 2.4803                           | 10351 0412                         | 3 M                | mz/               |                       |                   | Spar          | 30 MH2                        |

| Test Report No. | :23HE0018-HO- <b>1</b> |
|-----------------|------------------------|
| FCC ID          | :HYQBTA01A             |
| IC No.          | :1551A-BTA01A          |

#### Ref Ivi 107 dBuv Narker 1 [T1] 105.62 dBµV 2.40185322 GHz 800 kHz 300 kHz 5 ms ren Vin 6wt RF Att 10 48 dBuV Uni 14 ₩1 [11] 105 62 2844 É. 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 62 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 720 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 105 700 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 1000 2 19 ¥2 (11) V3 1711 D1 65.62 day 1911 2140. 23-08X ų, rel خذ ۰., Start 2.377324151 GHz 3 Miz/ Stop 2. 407324161 GHz Dates 6.MAR.2003 13:36:08

## Band Edge: TX(Hopping off)2402MHz

θ

 $\left( \right)$ 

0

 $\mathbb{C}$ 

O





# **DATA OF RADIATION TEST**

0

(`)

Э

A-Pex International Co., Ltd. No.2 SEMI ANECHOIC CHAMBER Report No. : 23HE0018-H0-1

| Appli<br>Kind<br>Model<br>Seria<br>Power<br>Mode<br>Remar<br>Date<br>Test<br>Test<br>Test<br>Humid<br>Regul | cant<br>of Equ<br>No.<br>I No.<br>ks<br>Distand<br>rature<br>ity<br>ation | ipment<br>ce                     |                                              | Dens<br>Blue<br>BTA-<br>23<br>DC 3<br>TX (2<br>DETE<br>3/8/<br>3 m<br>24 °<br>34 9<br>FCC | o Corpo<br>tooth A<br>01A<br>.3V<br>402MHz)<br>CTOR:QP<br>2003<br>C<br>6<br>§ 15. 24 | FCC                                          | ו<br>ID:HYQB                           | TAO1A I<br>En                                | C NUMBE<br>St<br>gineer-                     | R:1551                                       | A-BTA01<br>Sector<br>iroka-U                       | A<br>#77772<br>meyama                              | 20                                                |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| No.                                                                                                         | FREQ.<br>[MHz]                                                            | ANT<br>TYPE                      | READ<br>HOR<br>[dB/                          | VER<br>VER<br>VV]                                                                         | ANT<br>FACTOR<br>[dB/m]                                                              | AMP<br>GAIN<br>[dB]                          | CABLE<br>LOSS<br>[dB]                  | ATTEN.<br>[dB]                               | RESU<br>HOR<br>[dB µ \                       | JLT I<br>VER<br>V/m] [d]                     | LIMITS<br>BµV/m]                                   | MAF<br>HOR<br>[c                                   | KGIN<br>VER<br>∐B]                                |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                                                                            | 90. 00<br>126. 04<br>500. 37<br>600. 50<br>630. 46<br>800. 58             | BB<br>BB<br>BB<br>BB<br>BB<br>BB | 31.0<br>18.4<br>24.9<br>25.6<br>29.7<br>29.7 | 33. 1<br>22. 9<br>35. 3<br>31. 7<br>35. 8<br>26. 8                                        | 8.3<br>13.4<br>18.5<br>19.1<br>19.1<br>22.0                                          | 27.0<br>26.7<br>27.6<br>27.7<br>27.7<br>27.1 | 1.1<br>1.2<br>2.6<br>3.1<br>3.4<br>3.5 | 6. 1<br>6. 0<br>6. 2<br>6. 1<br>6. 1<br>6. 1 | 19.5<br>12.3<br>24.6<br>26.2<br>30.6<br>34.2 | 21.6<br>16.8<br>35.0<br>32.3<br>36.7<br>31.3 | 43, 5<br>43, 5<br>46, 0<br>46, 0<br>46, 0<br>46, 0 | 24. 0<br>31. 2<br>21. 4<br>19. 8<br>15. 4<br>11. 8 | 21. 9<br>26. 7<br>11. 0<br>13. 7<br>9. 3<br>14. 7 |

CALCULATION: READING[dB $\mu$ V] + ANT.FACTOR[dB/m] + CABLE LOSS[dB] - AMP.GAIN[dB] + ATTEN[dB]. All other spurious emissions were less than 20dB for the limit. ANT.TYPE : 30-300MHz Biconical, 300-1000MHz Logperiodic, 1000MHz- Horn

Page: 36

# **DATA OF RADIATION TEST**

0

( )

 $\mathbf{O}$ 

A-Pex International Co., Ltd. No.2 SEMI ANECHOIC CHAMBER Report No. : 23HE0018-H0-1

| Appli<br>Kind<br>Model<br>Seria<br>Power<br>Mode<br>Remar<br>Date<br>Test<br>Tempe<br>Humic<br>Regul | icant<br>of Equ<br>No.<br>al No.<br>rks<br>Distance<br>rature<br>lity<br>lation | ipment                           | <b>t</b>                                     | Dense<br>Blue<br>BTA-(<br>23<br>DC 3.<br>TX (24<br>DETE(<br>3/8/2<br>3 m<br>24 °C<br>34 %<br>FCC | o Corpo<br>tooth A<br>01A<br>.3V<br>441MHz)<br>CTOR:QP<br>2003<br>5<br>5<br>5<br>5 15.24 | ratio<br>SSY<br>FCC<br>7 (C)                 | n<br>ID:HYQB                           | TAO1A IO<br>Eng                              | C NUMBER:<br>Sineer                                                                                                         | 1551A-BTA<br>ZM<br>: Hiroka                                                                                                                    | 01A<br><u>ce</u> que<br>Umeyama                    | na                                                |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| No.                                                                                                  | FREQ.<br>[MHz]                                                                  | ANT<br>TYPE                      | READ<br>HOR<br>[dB µ                         | ING<br>VER<br>1 V]                                                                               | ANT<br>FACTOR<br>[dB/m]                                                                  | AMP<br>GAIN<br>[dB]                          | CABLE<br>LOSS<br>[dB]                  | ATTEN.<br>[dB]                               | RESULT<br>HOR V<br>[dB $\mu$ V/m                                                                                            | LIMITS<br>ΈR<br>δ] [dBμV/m                                                                                                                     | MA<br>HOR<br>] [                                   | RGIN<br>VER<br>dB]                                |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                                                                     | 90. 00<br>126. 04<br>500. 37<br>600. 50<br>630. 46<br>800. 58                   | BB<br>BB<br>BB<br>BB<br>BB<br>BB | 29.7<br>25.5<br>26.6<br>23.4<br>30.4<br>26.4 | 35. 6<br>24. 2<br>34. 9<br>31. 7<br>36. 3<br>26. 4                                               | 8.3<br>13.4<br>18.5<br>19.1<br>19.1<br>22.0                                              | 27.0<br>26.7<br>27.6<br>27.7<br>27.7<br>27.1 | 1.1<br>1.2<br>2.6<br>3.1<br>3.4<br>3.5 | 6. 1<br>6. 0<br>6. 2<br>6. 1<br>6. 1<br>6. 1 | 18. 2       2         19. 4       1         26. 3       3         24. 0       3         31. 3       3         30. 9       3 | 4. 1       43. 5         8. 1       43. 5         44. 6       46. 0         2. 3       46. 0         7. 2       46. 0         0. 9       46. 0 | 25. 3<br>24. 1<br>19. 7<br>22. 0<br>14. 7<br>15. 1 | 19. 4<br>25. 4<br>11. 4<br>13. 7<br>8. 8<br>15. 1 |

CALCULATION: READING[dB $\mu$ V] + ANT.FACTOR[dB/m] + CABLE LOSS[dB] - AMP.GAIN[dB] + ATTEN[dB]. All other spurious emissions were less than 20dB for the limit. ANT.TYPE : 30-300MHz Biconical, 300-1000MHz Logperiodic, 1000MHz- Horn

Page: 37

# **DATA OF RADIATION TEST**

A-Pex International Co., Ltd. No.2 SEMI ANECHOIC CHAMBER Report No. : 23HE0018-H0- 1

| Appli<br>Kind<br>Model<br>Seria<br>Power<br>Mode<br>Remar<br>Date<br>Test<br>Test<br>Humid<br>Regul | cant<br>of Equ<br>No.<br>I No.<br>ks<br>Distand<br>rature<br>ity<br>ation | ipment<br>ce                     |                                              | Dens<br>Blue<br>BTA-<br>23<br>DC 3<br>TX (2<br>DETE<br>3/8/<br>3 m<br>24 °C<br>34 9<br>FCC | o Corpo<br>tooth A<br>01A<br>.3V<br>480MHz)<br>CTOR:QP<br>2003<br>C<br>6<br>\$ 15.24 | ration<br>SSY<br>FCC<br>7(C)                 | n<br>I D : HYQB                        | TAO1A IO<br>Eng                              | C NUMBE<br>S<br>gineer                       | R: 1551                                            | A-BTA01<br>Brai<br>i roka U                        | A<br>1999<br>meyama                          | 10)                                          |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|
| No.                                                                                                 | FREQ.<br>[MHz]                                                            | ANT<br>TYPE                      | READ<br>HOR<br>[dB µ                         | ING<br>VER<br>ιV]                                                                          | ANT<br>FACTOR<br>[dB/m]                                                              | AMP<br>GAIN<br>[dB]                          | CABLE<br>LOSS<br>[dB]                  | ATTEN.<br>[dB]                               | RESU<br>HOR<br>[dB µ V                       | LT<br>VER<br>/m] [d]                               | LIMITS<br>ΒμV/m]                                   | MAI<br>HOR<br>[c                             | RGIN<br>VER<br>1B]                           |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                                                                    | 90.00<br>126.04<br>500.37<br>600.50<br>630.46<br>800.58                   | BB<br>BB<br>BB<br>BB<br>BB<br>BB | 27.2<br>22.1<br>22.6<br>26.5<br>31.2<br>23.6 | 35.5<br>36.4<br>35.7<br>35.2<br>28.3<br>22.3                                               | 8.3<br>13.4<br>18.5<br>19.1<br>19.1<br>22.0                                          | 27.0<br>26.7<br>27.6<br>27.7<br>27.7<br>27.1 | 1.1<br>1.2<br>2.6<br>3.1<br>3.4<br>3.5 | 6. 1<br>6. 0<br>6. 2<br>6. 1<br>6. 1<br>6. 1 | 15.7<br>16.0<br>22.3<br>27.1<br>32.1<br>28.1 | 24. 0<br>30. 3<br>35. 4<br>35. 8<br>29. 2<br>26. 8 | 43. 5<br>43. 5<br>46. 0<br>46. 0<br>46. 0<br>46. 0 | 27.8<br>27.5<br>23.7<br>18.9<br>13.9<br>17.9 | 19.5<br>13.2<br>10.6<br>10.2<br>16.8<br>19.2 |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

All other spurious emissions were less than 20dB for the limit. ANT.TYPE : 30-300MHz Biconical, 300-1000MHz Logperiodic, 1000MHz- Horn

0

( ]

Э

Page: 38

# **DATA OF SPURIOUS EMISSIONS(1GHz to 25GHz)**

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISON No.2 SEMI ANECHOIC CHAMBER

| COMPANY        | : | DENSO CORPORATION        | REPORTNO      | · 2211E0018 110 1                       |
|----------------|---|--------------------------|---------------|-----------------------------------------|
| EQUIPMENT      | : | Bluetooth ASSY           | REGULATION    | Eco Port15 Submert C 15 047( )          |
| MODEL          | : | BTA-01A                  | TEST DISTANCE | • 3 and 1 m                             |
| <b>S/ N</b>    | : | 23                       | DATE          | • 03/06/2002                            |
| FCC ID         | : | HYQBTA01A                | TEMPERATURE   | · 200/2003                              |
| IC Number      | : | 1551A-BTA01A             | HUMIDITY      | · 22 C                                  |
| POWER          | : | DC3.3V                   |               | • • • • • • • • • • • • • • • • • • • • |
| MODE           | • | Tx 2402MHz (Hopping off) | ) VZ          | anafranco                               |
| DIZ DIZIDI CON |   |                          | Engineer :    | Hiroka Umeyama                          |

### **PK DETECT**

0

| No       | EDEO       | T/D DI    | DADDIO   | 4.3.100 |         |           |                |          |            |                   | and the second |       |
|----------|------------|-----------|----------|---------|---------|-----------|----------------|----------|------------|-------------------|----------------|-------|
| 110.     | TREQ       |           |          | ANT     | AMP     | CABLE     | Band-Pass      | RES      | SULT       | Limit             | MA             | RGIN  |
| ľ.       |            | HOR       | VER      | Factor  | GAIN    | LOSS      | Filter         | HOR      | VER        | РК                | HOR            | VER   |
|          | [MHz]      | [dBi      | ıV/m]    | [dB/m]  | [dB]    | [dB]      | [dB]           | [dBi     | 1V/m1      | [dBuV/m]          | [JD]           | L'ULI |
|          | Test dis   | stance 3r | neters R | ESHLT-  | Reading | L ANT 1   | Fastan A.      |          |            |                   |                | [ɑɒ]  |
|          | 1000.0     | 10.6      |          | DOULT   | Acauing | TANI      | LACTOL - UDIOR | ip Gain  | + CABL     | E LOSS + E        | land Pas       | S.    |
| <u> </u> | 1200.0     | 49.6      | 47.8     | 23.3    | 37.6    | 4.7       | 0.0            | 40.0     | 38.2       | 74.0              | 34.0           | 35.8  |
| 1        | 2390.0     | 43.1      | 43.0     | 30.7    | 36.9    | 6.3       | 0.0            | 43.2     | 43 1       | 74.0              | 20.0           | 20.0  |
| 2        | 4803.7     | 49.2      | 50.6     | 35.1    | 36.8    | 11.6      | 03             | 50.4     | 60.0       | 74.0              | 30.0           | 30.9  |
| 3        | 7206.0     | 43.0      | 43.0     | 275     | 26.5    | 107       | 0.5            | 37.4     | 00.0       | /4.0              | 14.6           | 13.2  |
|          | 0609.0     | 42.0      | 40.0     | 57.5    | 30.3    | 10.7      | 0.0            | 54.7     | 54.7       | 74.0              | 19.3           | 19.3  |
|          | 9008.0     | 43.0      | 43.0     | 37.4    | 37.2    | 12.7      | 0.0            | 55.9     | 55.9       | 74.0              | 18.1           | 181   |
| 1        | est distan | ce 1mete  | rs RES   | ULT=Re  | ading + | ANT For   | tor - Amn      | Coin + C | A TOT IN T | OCC I D           | 1 22           |       |
| 5        | 12010.0    | 44.0      | 44.0     | 40.0    |         | Chill Lat | aur - Amp      | Jain + C |            | <u> USS + Ban</u> | d Pass -       | Dfac  |
|          | 12010.0    | 44.0      | 44.0     | 40.5    | 36.8    | 14.2      | 0.0            | 52.4     | 52.4       | 74.0              | 21.6           | 21.6  |
| 0        | 14412.0    | 43.0      | 43.0     | 42.8    | 35.3    | 15.8      | 0.0            | 56.8     | 56.8       | 74.0              | 17.2           | 17.2  |
| 7        | 16814.0    | 43.0      | 43.0     | 45.2    | 36.5    | 17.6      | 0.0            | 50.8     | 50.9       | 74.0              | 11.4           | 1/.2  |
| 8        | 19216.0    | 43.0      | 43.0     | 41.0    | 35.9    | 100       | 0.0            | 57.0     | 39.0       | /4.0              | 14.2           | 14.2  |
| 0        | 21619.0    | 44.0      | 44.0     | 40.0    | 35.0    | 10.9      | 0.0            | 57.6     | 57.6       | 74.0              | 16.4           | 16.4  |
| 7        | 41010.0    | 44.0      | 44.0     | 40.9    | 36.8    | 19.5      | 0.0            | 58.1     | 58.1       | 74.0              | 15.9           | 15.9  |
| 10       | 24020.0    | 44.0      | 44.0     | 40.3    | 36.4    | 20.8      | 0.0            | 59.2     | 59.2       | 74.0              | 14.8           | 14.8  |

### **AV DETECT**

| No   | EDEO       | 70 01     | ADDIT           | 1      |         | The second s | -           |          |          |           | 1. A. |      |
|------|------------|-----------|-----------------|--------|---------|----------------------------------------------------------------------------------------------------------------|-------------|----------|----------|-----------|-------------------------------------------|------|
| INO, | FREQ       | I/K KI    | SADING          | ANT    | AMP     | CABLE                                                                                                          | Band-Pass   | RES      | SULT     | Limit     | MA                                        | RGIN |
|      |            | HOR       | VER             | Factor | GAIN    | LOSS                                                                                                           | Filter      | HOR      | VER      | AV        | HOR                                       | VFR  |
| _    | [MHz]      | [dBi      | 1V/m]           | [dB/m] | [dB]    | [dB]                                                                                                           | [dB]        | [dBi     | ıV/ml    | IdBuV/m1  | [dB]                                      | [dD] |
|      | Test dis   | stance 3r | neters <b>R</b> | ESULT= | Reading | + ANT                                                                                                          | Factor - Am | n Coin   | L CLADIT |           |                                           |      |
| 0    | 1200.0     | 250       | 1 22 6          |        |         |                                                                                                                | avivi - Ail | p Gam.   | T CABL   | LUSS + L  | sand Pas                                  | S.   |
|      | 1200.0     | 33.9      | 33.3            | 23.3   | 37.6    | 4.7                                                                                                            | 0.0         | 26.3     | 23.9     | 54.0      | 27.7                                      | 30.1 |
|      | 2390.0     | 31.0      | 30.9            | 30.7   | 36.9    | 6.3                                                                                                            | 0.0         | 31.1     | 31.0     | 54.0      | 22.9                                      | 23.0 |
| 2    | 4803.9     | 32.9      | 33.3            | 35.1   | 36.8    | 11.6                                                                                                           | 0.3         | 43.1     | 43.5     | 54.0      | 10.0                                      | 10.5 |
| 3    | 7206.0     | 30.3      | 30.3            | 37.5   | 36.5    | 10.7                                                                                                           | 0.0         | 42.0     | 120      | 54.0      | 10.9                                      | 10.5 |
| 4    | 9608.0     | 30.7      | 207             | 274    | 27.0    | 10.7                                                                                                           | 0.0         | 42.0     | 42.0     | 54.0      | 12.0                                      | 12.0 |
|      | Foot dist. | 30.7      | 30.7            | 37.4   | 31.4    | 12.7                                                                                                           | 0.0         | 43.6     | 43.6     | 54.0      | 10.4                                      | 10.4 |
|      | est distan | ce imete  | <u>rs res</u>   | ULT=Re | ading + | ANT Fac                                                                                                        | tor - Amp ( | Gain + C | ABLEL    | OSS + Ban | d Dogo                                    | Dfor |
| 5    | 12010.0    | 30.9      | 31.3            | 40.5   | 36.8    | 142                                                                                                            | 0.0         | 20.2     |          |           | u 1 ass -                                 | Diac |
| 6    | 14412.0    | 30.0      | 20.1            | 40.0   | 25.0    | 14.2                                                                                                           | 0.0         | 39.3     | 39.7     | 54.0      | 14.7                                      | 14.3 |
| ~    | 1 (01 / 0  | 50.0      | 50.1            | 42.0   | 35.5    | 15.8                                                                                                           | 0.0         | 43.8     | 43.9     | 54.0      | 10.2                                      | 10.1 |
| 7    | 16814.0    | 30.5      | 30.5            | 45.2   | 36.5    | 17.6                                                                                                           | 0.0         | 47.3     | 47.3     | 54.0      | 67                                        | 67   |
| 8    | 19216.0    | 30.5      | 30.5            | 41.0   | 35.8    | 18.9                                                                                                           | 0.0         | 451      | 15 1     | 54.0      | 0.7                                       | 0.7  |
| 9    | 21618.0    | 31.0      | 31.5            | 40.9   | 36.8    | 10.5                                                                                                           | 0.0         | 45 1     | 45.6     | 34.0      | 0.9                                       | 8.9  |
| 10   | 24020 0    | 21.5      | 21.6            | 40.2   | 26.4    | 19.5                                                                                                           | 0.0         | 43.1     | 45.6     | 54.0      | 8.9                                       | 8.4  |
| 10   | 27020.0    | 51.5      | 51.5            | 40.3   | 36.4    | 20.8                                                                                                           | 0.0         | 46.7     | 46.7     | 54.0      | 73                                        | 73   |

Test Distance 1.0m : Distance Factor(Dfac) = 20log(3/1.0) =

9.5 dB

\*Except for the above table : All other spurious emissions were less than 20dB for the limit.

# DATA OF SPURIOUS EMISSIONS(1GHz to 25GHz)

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISON No.2 SEMI ANECHOIC CHAMBER

| COMPANY   | : | DENSO CORPORATION        | <b>REPORT NO</b> | ••• | 23НЕ0018-НО- 1                   |
|-----------|---|--------------------------|------------------|-----|----------------------------------|
| EQUIPMENT | : | Bluetooth ASSY           | REGULATION       | :   | Fcc Part15 Subpart C 15.247( c ) |
| MODEL     | : | BTA-01A                  | TEST DISTANCE    | :   | 3 and 1 m                        |
| S/N       | : | 23                       | DATE             | :   | 03/06/2003                       |
| FCC ID    | : | HYQBTA01A                | TEMPERATURE      | :   | 22°C                             |
| IC Number | : | 1551A-BTA01A             | HUMIDITY         | :   | 49%                              |
| POWER     | : | DC3.3V                   | 5                |     |                                  |
| MODE      | : | Tx 2441MHz (Hopping off) |                  | 4   | mana                             |
|           |   |                          | Engineer :       | F   | iroka Umevama                    |

### **PK DETECT**

()

| No.                                                                                    | FREQ       | T/R READING |        | ANT    | AMP     | CABLE   | Band-Pass | RESULT          |             | Limit     | MARGIN    |      |
|----------------------------------------------------------------------------------------|------------|-------------|--------|--------|---------|---------|-----------|-----------------|-------------|-----------|-----------|------|
|                                                                                        |            | HOR         | VER    | Factor | GAIN    | LOSS    | Filter    | HOR             | VER         | PK.       | HOR       | VER  |
|                                                                                        | [MHz]      | [dBuV/m]    |        | [dB/m] | [dB]    | [dB]    | [dB]      | [dBu            | <u>V/m]</u> | [dBuV/m]  | [dB]      | [dB] |
| Test distance 3meters RESULT=Reading + ANT Factor - Amp Gain + CABLE LOSS + Band Pass. |            |             |        |        |         |         |           |                 |             |           |           |      |
| 0                                                                                      | 1220.0     | 49.3        | 47.8   | 23.3   | 37.6    | 4.7     | 0.0       | 39.7            | 38.2        | 74.0      | 34.3      | 35.8 |
| 1                                                                                      | 4881.6     | 50.2        | 48.6   | 35.5   | 36.8    | 11.7    | 0.4       | 61.0            | 59.4        | 74.0      | 13.0      | 14.6 |
| 2                                                                                      | 7323.0     | 43.0        | 43.0   | 37.8   | 36.6    | 10.8    | 0.0       | 55.0            | 55.0        | 74.0      | 19.0      | 19.0 |
| 3                                                                                      | 9764.0     | 43.0        | 43.0   | 37.0   | 37.2    | 12.8    | 0.0       | 55.6            | 55.6        | 74.0      | 18.4      | 18.4 |
| Т                                                                                      | est distan | ce 1meter   | rs RES | ULT=Re | ading + | ANT Fac | tor - Amp | <u>Gain + C</u> | ABLE I      | OSS + Ban | nd Pass - | Dfac |
| 4                                                                                      | 12205.0    | 43.0        | 43.0   | 41.2   | 36.7    | 14.4    | 0.0       | 52.4            | 52.4        | 74.0      | 21.6      | 21.6 |
| 5                                                                                      | 14646.0    | 43.0        | 43.0   | 43.1   | 35.5    | 16.0    | 0.0       | 57.1            | 57.1        | 74.0      | 16.9      | 16.9 |
| 6                                                                                      | 17087.0    | 43.2        | 42.0   | 45.5   | 36.2    | 17.8    | 0.0       | 60.8            | 59.6        | 74.0      | 13.2      | 14.4 |
| 7                                                                                      | 19528.0    | 43.0        | 42.8   | 40.6   | 36.0    | 19.0    | 0.0       | 57.1            | 56.9        | . 74.0    | 16.9      | 17.1 |
| 8                                                                                      | 21969.0    | 45.3        | 45.6   | 40.9   | 36.0    | 19.6    | 0.0       | 60.3            | 60.6        | 74.0      | 13.7      | 13.4 |
| 9                                                                                      | 24410.0    | 44.0        | 44.0   | 40.5   | 36.9    | 21.0    | 0.0       | 59.1            | 59.1        | 74.0      | 14.9      | 14.9 |

### AV DETECT

Ę

Θ

| No.                                                                                    | FREQ       | T/R READING |        | ANT    | AMP     | CABLE   | <b>Band-Pass</b> | RESULT   |        | Limit      | MARGIN   |      |
|----------------------------------------------------------------------------------------|------------|-------------|--------|--------|---------|---------|------------------|----------|--------|------------|----------|------|
|                                                                                        |            | HOR         | VER    | Factor | GAIN    | LOSS    | Filter           | HOR      | VER    | AV         | HOR      | VER  |
|                                                                                        | [MHz]      | [dBu        | V/m]   | [dB/m] | [dB]    | [dB]    | [dB]             | [dBu     | V/m]   | [dBuV/m]   | [dB]     | [dB] |
| Test distance 3meters RESULT=Reading + ANT Factor - Amp Gain + CABLE LOSS + Band Pass. |            |             |        |        |         |         |                  |          |        |            |          |      |
| 0                                                                                      | 1220.0     | 35.5        | 35.5   | 23.3   | 37.6    | 4.7     | 0.0              | 25.9     | 25.9   | 54.0       | 28.1     | 28.1 |
| 1                                                                                      | 4881.6     | 33.3        | 32.6   | 35.5   | 36.8    | 11.7    | 0.4              | 44.1     | 43.4   | 54.0       | 9.9      | 10.6 |
| 2                                                                                      | 7323.0     | 30.3        | 30.3   | 37.8   | 36.6    | 10.8    | 0.0              | 42.3     | 42.3   | 54.0       | 11.7     | 11.7 |
| 3                                                                                      | 9764.0     | 30.7        | 30.7   | 37.0   | 37.2    | 12.8    | 0.0              | 43.3     | 43.3   | 54.0       | 10.7     | 10.7 |
| Т                                                                                      | est distan | ce 1meter   | rs RES | ULT=Re | ading + | ANT Fac | tor - Amp        | Gain + C | ABLE I | .OSS + Ban | d Pass - | Dfac |
| 4                                                                                      | 12205.0    | 30.6        | 31.0   | 41.2   | 36.7    | 14.4    | 0.0              | 40.0     | 40.4   | 54.0       | 14.0     | 13.6 |
| 5                                                                                      | 14646.0    | 30.5        | 30.5   | 43.1   | 35.5    | 16.0    | 0.0              | 44.6     | 44.6   | 54.0       | 9.4      | 9.4  |
| 6                                                                                      | 17087.0    | 29.6        | 29.6   | 45.5   | 36.2    | 17.8    | 0.0              | 47.2     | 47.2   | 54.0       | 6.8      | 6.8  |
| 7                                                                                      | 19528.0    | 30.3        | 30.2   | 40.6   | 36.0    | 19.0    | 0.0              | 44.4     | 44.3   | 54.0       | 9.6      | 9.7  |
| 8                                                                                      | 21969.0    | 32.5        | 32.6   | 40.9   | 36.0    | 19.6    | 0.0              | 47.5     | 47.6   | 54.0       | 6.5      | 6.4  |
| 9                                                                                      | 24410.0    | 31.6        | 31.7   | 40.5   | 36.9    | 21.0    | 0.0              | 46.7     | 46.8   | 54.0       | 7.3      | 7.2  |

Test Distance 1.0m : Distance Factor(Dfac) =  $20\log(3/1.0) =$ 

9.5 dB

\*Except for the above table : All other spurious emissions were less than 20dB for the limit.

# DATA OF SPURIOUS EMISSIONS(1GHz to 25GHz)

A-Pex International Co., Ltd. EMC HEAD OFFICE DIVISON No.2 SEMI ANECHOIC CHAMBER

| COMPANY   | : | DENSO CORPORATION                                                  | <b>REPORT NO</b> | :      | 23HE0018-HO- 1                   |
|-----------|---|--------------------------------------------------------------------|------------------|--------|----------------------------------|
| EQUIPMENT | : | Bluetooth ASSY                                                     | REGULATION       | :      | Fcc Part15 Subpart C 15.247( c ) |
| MODEL     | : | BTA-01A                                                            | TEST DISTANCE    | :      | 3 and 1 m                        |
| S/N       | : | 23                                                                 | DATE             | :      | 03/06/2003                       |
| FCC ID    | : | HYQBTA01A                                                          | TEMPERATURE      | :      | 22°C                             |
| IC Number | : | 1551A-BTA01A                                                       | HUMIDITY         | :      | 49%                              |
| POWER     | ; | DC3.3V                                                             |                  |        |                                  |
| MODE      | • | Tx 2480MHz (Hopping off)                                           | ) A              | $\leq$ | mayma                            |
|           |   | 그는 것이 같은 것이 같은 것같은 것이 없는 것이 많이 | Engineer '       | L      | liroka Umeyama                   |

## **PK DETECT**

0

| No. | FREQ                                                                                   | T/R RE    | ADING   | ANT    | AMP      | CABLE    | <b>Band-Pass</b> | RES      | ULT   | Limit     | MAF       | RGIN |
|-----|----------------------------------------------------------------------------------------|-----------|---------|--------|----------|----------|------------------|----------|-------|-----------|-----------|------|
|     |                                                                                        | HOR       | VER     | Factor | GAIN     | LOSS     | Filter           | HOR      | VER   | PK        | HOR       | VER  |
|     | [MHz]                                                                                  | [dBu      | V/m]    | [dB/m] | [dB]     | [dB]     | [dB]             | [dBu     | V/m]  | [dBuV/m]  | [dB]      | [dB] |
|     | Test distance 3meters RESULT=Reading + ANT Factor - Amp Gain + CABLE LOSS + Band Pass. |           |         |        |          |          |                  |          |       |           |           |      |
| 0   | 1240.0                                                                                 | 48.3      | 46.5    | 23.4   | 37.6     | 4.8      | 0.0              | 38.9     | 37.1  | 74.0      | 35.1      | 36.9 |
| 1   | 2483.5                                                                                 | 43.0      | 42.7    | 30.7   | 36.9     | 6.3      | 0.0              | 43.1     | 42.8  | 74.0      | 30.9      | 31.2 |
| 2   | 4960.0                                                                                 | 49.6      | 49.5    | 36.0   | 36.8     | 11.8     | 0.5              | 61.1     | 60.5  | 74.0      | 12.9      | 13.5 |
| 3   | 7440.0                                                                                 | 43.6      | 43.6    | 38.1   | 36.7     | 10.9     | 0.0              | 55.9     | 55.9  | 74.0      | 18.1      | 18.1 |
| 4   | 9920.0                                                                                 | 43.0      | 43.0    | 36.5   | 37.3     | 13.0     | 0.0              | 55.2     | 55.2  | 74.0      | 18.8      | 18.8 |
| ]   | lest distar                                                                            | ice 1mete | ers RES | SULT=R | eading + | · ANT Fa | ctor - Amp       | Gain + ( | CABLE | LOSS + Ba | nd Pass - | Dfac |
| 5   | 12400.0                                                                                | 43.0      | 43.0    | 41.8   | 36.6     | 14.5     | 0.0              | 53.2     | 53.2  | 74.0      | 20.8      | 20.8 |
| 6   | 14880.0                                                                                | 43.0      | 43.0    | 43.3   | 35.7     | 16.1     | 0.0              | 57.2     | 57.2  | 74.0      | 16.8      | 16.8 |
| 7   | 17360.0                                                                                | 43.0      | 43.0    | 45.4   | 36.2     | 18.0     | 0.0              | 60.7     | 60.7  | 74.0      | 13.3      | 13.3 |
| 8   | 19840.0                                                                                | 43.0      | 43.0    | 41.0   | 36.1     | 19.1     | 0.0              | 57.5     | 57.5  | 74.0      | 16.5      | 16.5 |
| 9   | 22320.0                                                                                | 45.0      | 45.7    | 40.8   | 35.5     | 19.8     | 0.0              | 60.6     | 61.3  | 74.0      | 13.4      | 12.7 |
| 10  | 24800.0                                                                                | 44.0      | 44.0    | 40.6   | 36.7     | 21.1     | 0.0              | 59.5     | 59.5  | 74.0      | 14.5      | 14.5 |

### **AV DETECT**

 $\odot$ 

| No. | FREQ                                                                                   | T/R READING |         | ANT    | AMP      | CABLE  | <b>Band-Pass</b> | RESULT   |         | Limit      | MARGIN    |      |
|-----|----------------------------------------------------------------------------------------|-------------|---------|--------|----------|--------|------------------|----------|---------|------------|-----------|------|
|     |                                                                                        | HOR         | VER     | Factor | GAIN     | LOSS   | Filter           | HOR      | VER     | AV         | HOR       | VER  |
|     | [MHz]                                                                                  | [dBu        | V/m]    | [dB/m] | [dB]     | [dB]   | [dB]             | [dBu     | V/m]    | [dBuV/m]   | [dB]      | [dB] |
|     | Test distance 3meters RESULT=Reading + ANT Factor - Amp Gain + CABLE LOSS + Band Pass. |             |         |        |          |        |                  |          |         |            |           |      |
| 0   | 1240.0                                                                                 | 34.0        | 32.7    | 23.4   | 37.6     | 4.8    | 0.0              | 24.6     | 23.3    | 54.0       | 29.4      | 30.7 |
| 1   | 2483.5                                                                                 | 30.8        | 30.8    | 30.7   | 36.9     | 6.3    | 0.0              | 30.9     | 30.9    | 54.0       | 23.1      | 23.1 |
| 2   | 4960.0                                                                                 | 33.0        | 32.8    | 36.0   | 36.8     | 11.8   | 0.5              | 44.5     | 44.3    | 54.0       | 9.5       | 9.7  |
| 3   | 7440.0                                                                                 | 30.7        | 30.7    | 38.1   | 36.7     | 10.9   | 0.0              | 43.0     | 43.0    | 54.0       | 11.0      | 11.0 |
| 4   | 9920.0                                                                                 | 30.6        | 30.6    | 36.5   | 37.3     | 13.0   | 0.0              | 42.8     | 42.8    | 54.0       | 11.2      | 11.2 |
| 7   | lest distar                                                                            | ice 1mete   | ers RES | SULT=R | eading + | ANT Fa | ctor - Amp       | Gain + ( | CABLE ] | LOSS + Bai | nd Pass - | Dfac |
| 5   | 12400.0                                                                                | 31.1        | 31.1    | 41.8   | 36.6     | 14.5   | 0.0              | 41.3     | 41.3    | 54.0       | 12.7      | 12.7 |
| 6   | 14880.0                                                                                | 30.5        | 30.5    | 43.3   | 35.7     | 16.1   | 0.0              | 44.7     | 44.7    | 54.0       | 9.3       | 9.3  |
| 7   | 17360.0                                                                                | 29.9        | 29.9    | 45.4   | 36.2     | 18.0   | 0.0              | 47.6     | 47.6    | 54.0       | 6.4       | 6.4  |
| 8   | 19840.0                                                                                | 30.3        | 30.3    | 41.0   | 36.1     | 19.1   | 0.0              | 44.8     | 44.8    | 54.0       | 9.2       | 9.2  |
| 9   | 22320.0                                                                                | 32.6        | 32.6    | 40.8   | 35.5     | 19.8   | 0.0              | 48.2     | 48.2    | 54.0       | 5.8       | 5.8  |
| 10  | 24800.0                                                                                | 31.9        | 31.9    | 40.6   | 36.7     | 21.1   | 0.0              | 47.4     | 47.4    | 54.0       | 6.6       | 6.6  |

Test Distance 1.0m: Distance Factor(Dfac) =  $20\log(3/1.0) =$ 9.5 dB\*Except for the above table : All other spurious emissions were less than 20dB for the limit.

| Test Report No. | :23HE0018-HO-1 |
|-----------------|----------------|
| FCC ID          | :HYQBTA01A     |
| IC No.          | :1551A-BTA01A  |



## Spurious Emission(Conducted):Tx(2402MIHz)

0

 $\bigcirc$ 

 $\mathbf{)}$ 

0

## Spurious Emission(Conducted):Tx(2402MIHz)



| Test Report No. | :23HE0018-HO- <b>1</b> |
|-----------------|------------------------|
| FCC ID          | HYQBTA01A              |
| IC No.          | : 1551A-BTA01A         |

# Spurious Emission(Conducted):Tx(2402MHz)

0

 $\square$ 

θ

 $\bigcirc$ 

Θ

|        | . • . |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | °. <b>▼</b> 1 | (T1) | 39.            | 91 dBµ            |
|--------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|---------------|------|----------------|-------------------|
|        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | ₹2            | (71) | 45             | 82 dBµ<br>980 GH  |
|        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    | ¢3            | (TI) | 36.<br>7.20843 | 79 двµ<br>683 GH: |
| 33465  |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |               |      |                |                   |
|        |       | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |               |      |                |                   |
| e      |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | am | L.A.M.        |      |                |                   |
| a mart | ~~~~~ | pr.J.l. | a set of the set of th |                |    |               |      |                |                   |
|        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |               |      |                |                   |
|        |       | н.,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |               |      |                |                   |
|        |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.<br>1. 1. 1. |    |               |      |                |                   |

## Spurious Emission(Conducted):Tx(2402MHz)



Ê :

 Test Report No.
 : 23HE0018-HO- 1

 FCC ID
 : HYQBTA01A

 IC No.
 : 1551A-BTA01A

## Spurious Emission(Conducted);Tx(2441MHz)

0

 $\bigcirc$ 

9

0

 $\bigcap$ 

Θ



## Spurious Emission(Conducted):Tx(2441MHz)



| :23HE0018-HO- 1 |
|-----------------|
| :HYQBTA01A      |
| : 1551A-BTA01A  |
|                 |

## Spurious Emission(Conducted):Tx(2441MHz)

9

 $\bigcirc$ 

0

 $\bigcirc$ 

Э



## Spurious Emission(Conducted):Tx(2441MHz)



| Test Report No. | :23HE0018-HO- |
|-----------------|---------------|
| FCCID           | :HYQBTA01A    |
| IC No.          | :1551A-BTA01A |

## Spurious Emission(Conducted):Tx(2480MHz)

0

 $\bigcirc$ 

 $\bigcirc$ 

Q



## Spurious Emission(Conducted):Tx(2480MHz)



| Test Report No. | :23HE0018-HO-1 |
|-----------------|----------------|
| FCCID           | :HYQBTA01A     |
| IC No.          | : 1551A-BTA01A |

## Spurious Emission(Conducted):Tx(2480MHz)

| Ref LV | L<br>A <b>V</b> | Narkor   | 1 (T1)<br>47.7<br>4.795591 | 79 dByv<br>L18 GHz | ren<br>Ven<br>Sut                | 100 )<br>300 )<br>1.75 | (Hz )<br>(Hz<br>S U | AF AFE<br>Mit          | 10 108<br>c)Byd    |
|--------|-----------------|----------|----------------------------|--------------------|----------------------------------|------------------------|---------------------|------------------------|--------------------|
|        | Γ               |          |                            |                    |                                  | ¥1                     | (T1)                | 47                     | 79 eBµ             |
| ]      |                 |          |                            |                    | N Navada<br>Historia<br>Historia | 72                     | [11]                | 4.7955<br>37<br>7.4468 | 36 авµ<br>379 бн   |
|        |                 |          |                            |                    |                                  | *3                     | [T1]                | 34<br>4.9639           | .16 овн<br>2786 он |
| SHAX   |                 |          |                            |                    |                                  |                        |                     |                        |                    |
|        |                 |          |                            |                    |                                  |                        |                     |                        |                    |
|        |                 | 3        |                            |                    | inother                          | Jac                    | eta antes e         |                        |                    |
| Mayn   | - Participant   | -indella |                            |                    |                                  |                        |                     |                        |                    |
|        |                 |          |                            |                    |                                  |                        |                     |                        |                    |
| ]      |                 |          |                            |                    |                                  |                        | •                   |                        |                    |
|        |                 |          |                            |                    |                                  |                        |                     |                        |                    |
|        | 3 69/2          |          |                            | 700                | 107-4                            |                        |                     |                        |                    |

Dete: 5.MAR.2003 16:53:57

0

 $\bigcirc$ 

C

0

## Spurious Emission(Conducted):Tx(2480MHz)

