

RADIO TEST REPORT

Test Report No. 14795980H-A-R3

Customer	DENSO CORPORATION
Description of EUT	BLE ECU
Model Number of EUT	17EAD
FCC ID	HYQ17EAD
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	June 19, 2023
Remarks	-

Representative Test Engineer	Approved By
Ken. Fujita	J. Takammon
Ken Fujita Engineer	Tsubasa Takayama Leader
	IAC-MRA ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 22.0

Test Report No. 14795980H-A-R3 Page 2 of 40

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14795980H-A

This report is a revised version of 14795980H-A-R2. 14795980H-A-R2 is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14795980H-A	May 26, 2023	-
(Original)			
1	14795980H-A-R1	June 1, 2023	Correction of the unit for antenna gain value in
			Clause 2.2.
			From "dBm" to "dBi"
1	14795980H-A-R1	June 1, 2023	Modification of frequency described in mode
			(page 28);
			From "2802 MHz" to "2480 MHz"
1	14795980H-A-R1	June 1, 2023	Correction of the Y-axis photo of Worst Case
			Position (Loop Antenna) in APPENDIX 3.
2	14795980H-A-R2	June 15, 2023	Addition of the 5th harmonic data in 2402 MHz,
			2440 MHz and 2480 MHz of Radiated Spurious
			Emission (Loop Antenna) (page 19, 21, 22).
2	14795980H-A-R2	June 15, 2023	Addition of the data below 1 GHz in 2440 MHz of
			Radiated Spurious Emission (Loop Antenna)
			(page 21).
3	14795980H-A-R3	June 19, 2023	Correction of the Plot data for Inverted F
			Antenna due to correction the Radiated Spurious
			Emission data.

Test Report No. 14795980H-A-R3 Page 3 of 40

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

CONTENTS		PAGE
SECTION 1:	Customer Information	5
SECTION 2:	Equipment Under Test (EUT)	
SECTION 3:	Test Specification, Procedures & Results	
SECTION 4:	Operation of EUT during testing	
SECTION 5:	Radiated Spurious Emission	
SECTION 6:	•	
APPENDIX 1 :	: Test Data	14
99 % O	ccupied Bandwidth and 6 dB Bandwidth	14
	m Peak Output Power	
	Output Power	
	d Spurious Emission	
	ted Spurious Emission	
Power [Density	32
	: Test Instruments	
	: Photographs of Test Setup	
Radiate	d Spurious Emission	36
	Case Position	
	a Terminal Conducted Tests	

Test Report No. 14795980H-A-R3 Page 5 of 40

SECTION 1: Customer Information

Company Name	DENSO CORPORATION
Address	1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan
Telephone Number	+81-566-61-7253
Contact Person	Shingo Moritoh

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	BLE ECU		
Model Number	17EAD		
Serial Number	Refer to SECTION 4.2		
Condition	Production prototype		
	(Not for Sale: This sample is equivalent to mass-produced items.)		
Modification	No Modification by the test lab		
Receipt Date	May 14, 2023		
Test Date	May 14 to 16, 2023		

2.2 Product Description

General Specification

Rating	DC 12 V DC 3.3 V (BLE IC)
Operating temperature	-40 deg. C to 85 deg. C

Radio Specification

Bluetooth (Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2400 MHz to 2483.5 MHz
Type of Modulation	GFSK
Antenna Type	Inverted F Antenna or Loop Antenna
Antenna Gain	+2.09 dBi (max) (Inverted F Antenna)
	+0.99 dBi (max) (Loop Antenna)

Test Report No. 14795980H-A-R3 Page 6 of 40

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

^{*}The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	-		
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)	See data.	Complied	Conducted
İ	ISED: -	ISED: RSS-247 5.2(a)]		
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)		Complied	Conducted
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)	_		
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied	Conducted
	ISED: -	ISED : RSS-247 5.2(b)	1		
Spurious Emission Restricted	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	2.6 dB 9920.00 MHz, Horizontal, AV	Complied	Conducted (below 30 MHz)/ Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10			(above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Parts regardless of input voltage.

Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	=	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.
*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 14795980H-A-R3 Page 7 of 40

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range	Frequency range			
3 m	9 kHz to 30 MHz		3.2 dB		
10 m			3.0 dB		
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB		
		Vertical	5.0 dB		
	200 MHz to 1000 MHz	Horizontal	5.1 dB		
		Vertical	6.2 dB		
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB		
		Vertical	4.8 dB		
	200 MHz to 1000 MHz	Horizontal	5.0 dB		
		Vertical	5.0 dB		
3 m	1 GHz to 6 GHz		4.9 dB		
	6 GHz to 18 GHz 10 GHz to 26.5 GHz 26.5 GHz to 40 GHz		5.2 dB		
1 m			5.4 dB		
			5.4 dB		
10 m	1 GHz to 18 GHz	·	5.4 dB		

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

Test Report No. 14795980H-A-R3 Page 8 of 40

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 14795980H-A-R3 Page 9 of 40

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

ModeRemarks*Bluetooth Low Energy (BT LE) 1M-PHY Uncoded PHY (1M-PHY)Maximum Packet Size, PRBS9

*Power of the EUT was set by the software as follows;

Power Setting: 5 dBm

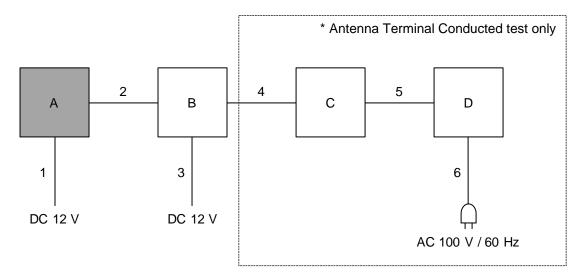
Software: AuthTestSndRcv_ECU_CC2642R_20230509.hex

(Date: 2023.05.09, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.


*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Antenna	Tested Frequency
Radiated Spurious Emission (Below 1 GHz) *1)	Tx BT LE, 1M-PHY	Inverted F Antenna Loop Antenna	2440 MHz
Radiated Spurious Emission (Above 1 GHz)	Tx BT LE, 1M-PHY	Inverted F Antenna Loop Antenna	2402 MHz 2440 MHz 2480 MHz
6 dB Bandwidth, 99 % Occupied Bandwidth, Maximum Peak Output Power, Power Density, Conducted Spurious Emission	Tx BT LE, 1M-PHY	-	2402 MHz 2440 MHz 2480 MHz

^{*1)} Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

Test Report No. 14795980H-A-R3 Page 10 of 40

4.2 Configuration and Peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

= 5 5 5		a Capport Equipment			
No.	Item	Model number	Manufacturer	Remarks	
Α	BLE ECU	17EAD	#2-Inverted F *1)	DENSO	EUT
			#2-Loop *2)	CORPORATION	
			#2-Conducted *3)		
В	MTL Advance	5CF1SD2	5953	MPRISM	-
С	Laptop PC	PR63PBAA337AD7X	6F053913H	TOSHIBA	-
D	AC Adapter	PA51770-1ACA	FX10800NSKACC	TOSHIBA	-

^{*1)} Used for Radiated Emission test (for Inverted F Antenna)

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.1	Unshielded	Unshielded	-
2	UART Cable	2.4	Unshielded	Unshielded	-
3	DC Cable	1.5	Unshielded	Unshielded	-
4	USB Cable	1.7	Shielded	Shielded	-
5	DC Cable	1.7	Unshielded	Unshielded	
6	AC Cable	0.8	Unshielded	Unshielded	-

^{*2)} Used for Radiated Emission test (for Loop Antenna)

^{*3)} Used for Antenna Terminal Conducted test

Test Report No. 14795980H-A-R3 Page 11 of 40

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

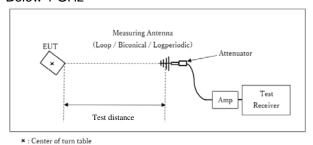
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

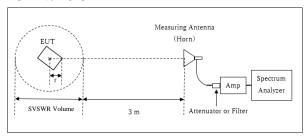
Frequer	су	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna	Туре	Loop	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

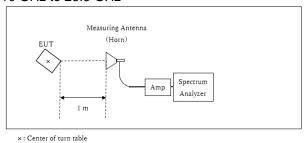
Frequency	Below 1 GHz	Above 1 GHz	•	20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

Test Report No. 14795980H-A-R3 Page 12 of 40


Figure 2: Test Setup

Below 1 GHz

Test Distance: 3 m


1 GHz to 10 GHz

- Distance Factor: $20 \times \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 3.95 m
- SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.05 m

- \boldsymbol{r} : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX

Test Result : Pass

Test Report No. 14795980H-A-R3 Page 13 of 40

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *4) *5)	150 kHz to 30 MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

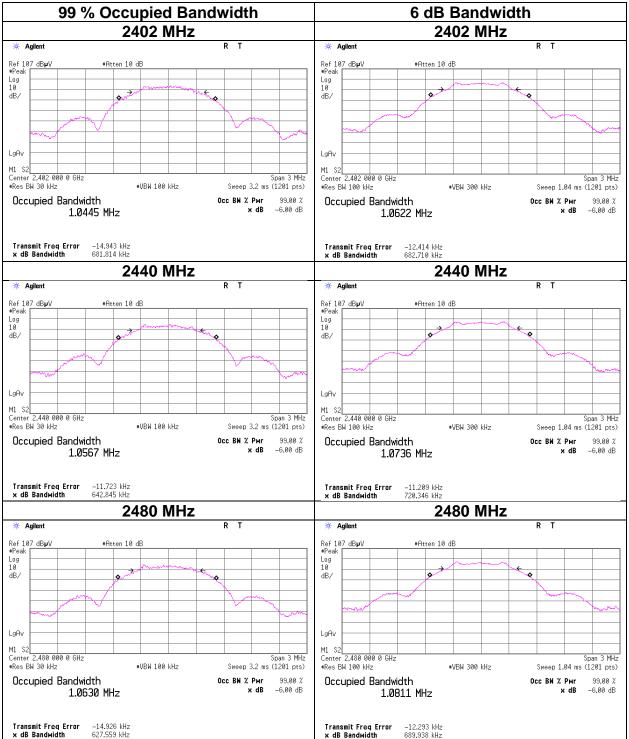
Test Report No. 14795980H-A-R3 Page 14 of 40

APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.6 Shielded Room

Date May 16, 2023 Temperature / Humidity 23 deg. C / 39 % RH


Engineer Ken Fujita Mode Tx BT LE

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BLE	2402	1044.5	0.683	> 0.5000
	2440	1056.7	0.720	> 0.5000
	2480	1063.0	0.690	> 0.5000

Test Report No. 14795980H-A-R3 Page 15 of 40

99 % Occupied Bandwidth and 6 dB Bandwidth

BTLE

Test Report No. 14795980H-A-R3 Page 16 of 40

Maximum Peak Output Power

Test place Ise EMC Lab. No.3 Preparation room

Date May 14, 2023
Temperature / Humidity 25 deg. C / 48 % RH
Engineer Takafumi Noguchi

Mode Tx BT LE

					Conducted Power					e.i	.r.p. for l	RSS-247		
Freq.	Reading	Cable	Atten.	Result Limit		Margin	Antenna	Result		Limit		Margin		
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-12.75	1.44	9.52	-1.79	0.66	30.00	1000	31.79	2.09	0.30	1.07	36.02	4000	35.72
2440	-12.46	1.45	9.52	-1.49	0.71	30.00	1000	31.49	2.09	0.60	1.15	36.02	4000	35.42
2480	-12.93	1.46	9.52	-1.95	0.64	30.00	1000	31.95	2.09	0.14	1.03	36.02	4000	35.88

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test Report No. 14795980H-A-R3 Page 17 of 40

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.3 Preparation room

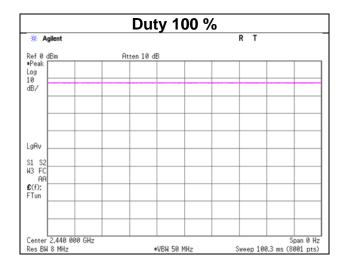
Date May 14, 2023
Temperature / Humidity 25 deg. C / 48 % RH
Engineer Takafumi Noguchi

Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result		Duty	Re	sult
		Loss	Loss	(Time a	(Time average)		(Burst pow	er average)
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-13.16	1.44	9.52	-2.20	0.60	0.00	-2.20	0.60
2440	-12.85	1.45	9.52	-1.88	0.65	0.00	-1.88	0.65
2480	-13.37	1.46	9.52	-2.39	0.58	0.00	-2.39	0.58

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor


Test Report No. 14795980H-A-R3 Page 18 of 40

Burst rate confirmation

Test place Ise EMC Lab. No.3 Preparation room

Date May 14, 2023 25 deg. C / 48 % RH Temperature / Humidity Engineer Takafumi Noguchi

Tx BT LE Mode

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 14795980H-A-R3 Page 19 of 40

Radiated Spurious Emission

Loop Antenna

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date May 15, 2023 May 16, 2023 Temperature / Humidity 24 deg. C / 37 % RH 24 deg. C / 37 % RH Takafumi Noguchi Engineer Ken Fujita (1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx BT LE 2402 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP/PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	42.1	33.3	27.7	5.4	32.4		42.7	33.9	73.9	53.9	31.2	20.0	
Hori.	4804.0	43.7	35.8	31.5	7.5	31.4	-	51.3	43.4	73.9	53.9	22.6	10.5	
Hori.	7206.0	43.0	34.2	35.8	8.8	32.3	-	55.4	46.6	73.9	53.9	18.5	7.3	
Hori.	9608.0	44.1	35.3	38.8	9.3	32.9	-	59.3	50.5	73.9	53.9	14.7	3.4	
Hori.	12010.0	47.1	37.8	39.3	-1.8	32.9		51.6	42.4	73.9	53.9	22.3	11.6	
Vert.	2390.0	43.6	33.4	27.7	5.4	32.4	-	44.2	34.0	73.9	53.9	29.7	19.9	
Vert.	4804.0	43.7	35.8	31.5	7.5	31.4	-	51.2	43.3	73.9	53.9	22.7	10.6	
Vert.	7206.0	43.8	34.1	35.8	8.8	32.3	-	56.2	46.5	73.9	53.9	17.7	7.4	
Vert.	9608.0	44.9	35.7	38.8	9.3	32.9	-	60.1	50.9	73.9	53.9	13.8	3.0	
Vert.	12010.0	44.4	34.7	39.3	-1.8	32.9	-	48.9	39.2	73.9	53.9	25.0	14.7	

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	91.1	27.6	5.4	32.4	91.7	-	-	Carrier
Hori.	2400.0	53.6	27.6	5.4	32.4	54.2	71.7	17.5	
Vert.	2402.0	93.8	27.6	5.4	32.4	94.4	-	-	Carrier
Vert.	2400.0	55.6	27.6	5.4	32.4	56.2	74.4	18.2	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
*QP detector was used up to 1GHz.

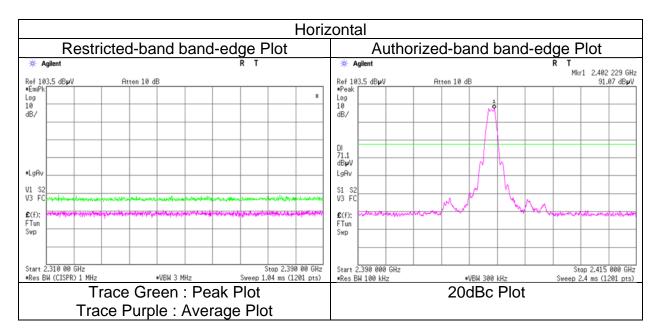
Radiated Spurious Emission (Reference Plot for band-edge)

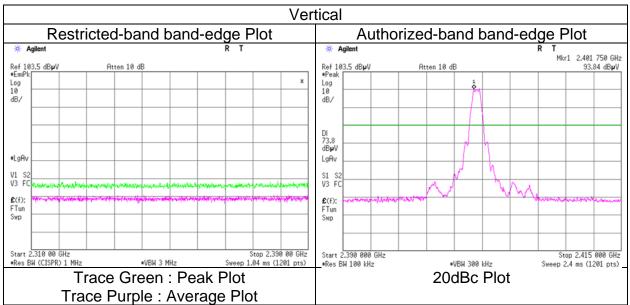
Loop Antenna

Test place Semi Anechoic Chamber

Semi Anechoic Chamber No.:
Date No.:

Temperature / Humidity


Engineer


Mode

No.3 May 15, 2023 24 deg. C / 37 % RH Ken Fujita

Ise EMC Lab.

(1 GHz to 10 GHz) Tx BT LE 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14795980H-A-R3 Page 21 of 40

Radiated Spurious Emission

Loop Antenna

Test place Semi Anechoic Chamber Ise EMC Lab.

No.3 No.3

Date Temperature / Humidity May 15, 2023 24 deg. C / 37 % RH

Ken Fujita

May 16, 2023 24 deg. C / 37 % RH Takafumi Noguchi

Engineer

(1 GHz to 10 GHz)

(Above 10 GHz) (Below 1 GHz)

Tx BT LE 2440 MHz Mode

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
n	0.41.3	(QP/PK)	(AV)	Factor	r in	(10)	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	37.8	22.2	-	15.8	7.2	32.2	-	13.0	-	40.0	-	27.1	-	Floor noise
Hori.	41.9	22.3	-	14.3	7.2	32.2	-	11.7	-	40.0	-	28.3	-	Floor noise
Hori.	94.3	22.6	-	9.4	8.0	32.1	-	7.8	-	43.5	-	35.7	-	Floor noise
Hori.	350.7	22.0	-	15.2	10.4	32.0	-	15.6	-	46.0	-	30.4	-	Floor noise
Hori.	483.2	22.0	-	17.5	11.3	32.0	-	18.8	-	46.0	-	27.2	-	Floor noise
Hori.	515.2	21.8	-	17.8	11.5	32.0	-	19.1	-	46.0	-	26.9	-	Floor noise
Hori.	4880.0	43.6	36.7	31.5	7.5	31.4	-	51.2	44.4	73.9	53.9	22.7	9.5	
Hori.	7320.0	43.6	33.6	36.0	8.8	32.3	-	56.1	46.1	73.9	53.9	17.8	7.8	
Hori.	9760.0	44.6	35.2	39.1	9.4	33.0	-	60.0	50.7	73.9	53.9	13.9	3.2	
Hori.	12200.0	48.1	39.4	39.1	-1.7	32.9	-	52.6	43.9	73.9	53.9	21.3	10.0	
Vert.	37.8	22.2	-	15.8	7.2	32.2	-	13.0	-	40.0	-	27.1		Floor noise
Vert.	41.9	22.3	-	14.3	7.2	32.2	-	11.7	-	40.0	-	28.3	-	Floor noise
Vert.	94.3	22.6	-	9.4	8.0	32.1	-	7.8	-	43.5	-	35.7	-	Floor noise
Vert.	350.7	22.0	-	15.2	10.4	32.0	-	15.6	-	46.0	-	30.4	-	Floor noise
Vert.	483.2	22.0	-	17.5	11.3	32.0	-	18.8	-	46.0	-	27.2	-	Floor noise
Vert.	515.2	21.8	-	17.8	11.5	32.0	-	19.1	-	46.0	-	26.9	-	Floor noise
Vert.	4880.0	43.7	35.2	31.5	7.5	31.4	-	51.3	42.8	73.9	53.9	22.6	11.1	
Vert.	7320.0	42.6	34.0	36.0	8.8	32.3	-	55.0	46.5	73.9	53.9	18.9	7.4	
Vert.	9760.0	44.4	35.5	39.1	9.4	33.0	-	59.9	51.0	73.9	53.9	14.0	2.9	
Vert.	12200.0	44.9	35.3	39.1	-1.7	32.9	-	49.4	39.8	73.9	53.9	24.5	14.1	

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14795980H-A-R3 Page 22 of 40

Radiated Spurious Emission

Loop Antenna

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date May 15, 2023 May 16, 2023 Temperature / Humidity 24 deg. C / 37 % RH 24 deg. C / 37 % RH Takafumi Noguchi Engineer Ken Fujita (1 GHz to 10 GHz) (Above 10 GHz)

Mode Tx BT LE 2480 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	43.8	35.1	27.5	5.4	32.4	-	44.4	35.7	73.9	53.9	29.5	18.3	
Hori.	4960.0	41.4	34.2	31.6	6.8	31.4	-	48.4	41.2	73.9	53.9	25.5	12.7	
Hori.	7440.0	42.6	33.4	36.2	8.1	32.4	-	54.5	45.2	73.9	53.9	19.4	8.7	
Hori.	9920.0	44.1	34.9	39.1	8.8	33.1	-	58.9	49.8	73.9	53.9	15.0	4.1	
Hori.	12400.0	46.3	37.3	38.9	-1.7	32.8	-	50.7	41.6	73.9	53.9	23.2	12.3	
Vert.	2483.5	44.2	35.8	27.5	5.4	32.4	-	44.8	36.4	73.9	53.9	29.1	17.5	
Vert.	4960.0	44.7	35.0	31.6	6.8	31.4	-	51.8	42.1	73.9	53.9	22.1	11.8	
Vert.	7440.0	42.0	34.1	36.2	8.1	32.4	-	53.9	46.0	73.9	53.9	20.0	7.9	
Vert.	9920.0	44.3	35.0	39.1	8.8	33.1	-	59.2	49.8	73.9	53.9	14.7	4.1	
Vert.	12400.0	46.0	37.2	38.9	-1.7	32.8	-	50.4	41.6	73.9	53.9	23.5	12.3	

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

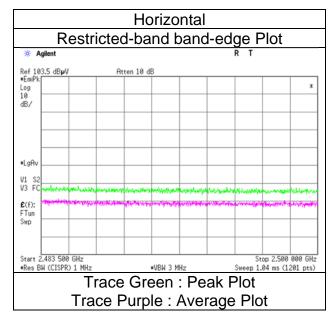
Distance factor: 1 GHz - 10 GHz $20\log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$

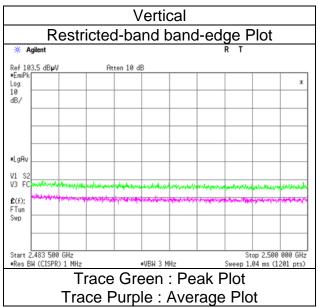
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14795980H-A-R3 Page 23 of 40

Radiated Spurious Emission (Reference Plot for band-edge)


Loop Antenna


Test place Semi Anechoic Chamber Date Temperature / Humidity

Engineer

Mode

Ise EMC Lab. No.3 May 15, 2023 24 deg. C / 37 % RH Ken Fujita (1 GHz to 10 GHz) Tx BT LE 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14795980H-A-R3 Page 24 of 40

Radiated Spurious Emission Inverted F Antenna

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date May 16, 2023 Temperature / Humidity 24 deg. C / 37 % RH

Takafumi Noguchi Engineer (Above 1 GHz) Mode Tx BT LE 2402 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	43.3	33.0	27.7	5.4	32.4	-	43.9	33.7	73.9	53.9	30.0	20.3	
Hori.	4804.0	44.5	37.1	31.5	7.5	31.4	-	52.1	44.7	73.9	53.9	21.8	9.2	
Hori.	7206.0	44.9	35.5	35.8	8.8	32.3	-	57.3	47.8	73.9	53.9	16.6	6.1	
Hori.	9608.0	44.9	35.4	38.8	9.3	32.9	-	60.1	50.6	73.9	53.9	13.8	3.3	
Hori.	12010.0	45.9	37.0	39.3	-1.8	32.9	-	50.4	41.5	73.9	53.9	23.5	12.4	
Vert.	2390.0	42.8	33.9	27.7	5.4	32.4	-	43.4	34.5	73.9	53.9	30.5	19.4	
Vert.	4804.0	43.7	35.6	31.5	7.5	31.4	-	51.3	43.2	73.9	53.9	22.6	10.7	
Vert.	7206.0	43.8	34.7	35.8	8.8	32.3	-	56.2	47.1	73.9	53.9	17.7	6.8	
Vert.	9608.0	44.7	36.0	38.8	9.3	32.9	-	59.9	51.2	73.9	53.9	14.0	2.7	
Vert.	12010.0	43.3	35.2	39.3	-1.8	32.9	-	47.8	39.7	73.9	53.9	26.1	14.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	93.0	27.6	5.4	32.4	93.6	-	-	Carrier
Hori.	2400.0	46.4	27.6	5.4	32.4	47.0	73.6	26.6	
Vert.	2402.0	92.3	27.6	5.4	32.4	92.9	-	-	Carrier
Vert.	2400.0	46.2	27.6	5.4	32.4	46.8	72.9	26.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

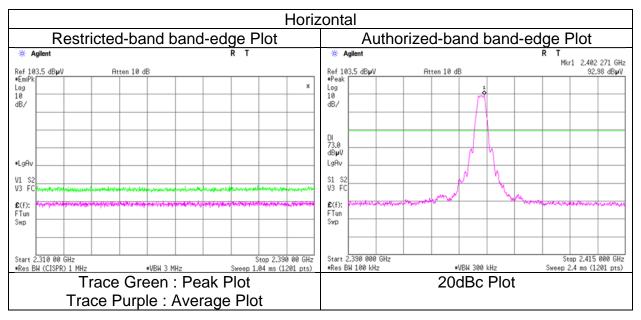
Distance factor: 1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

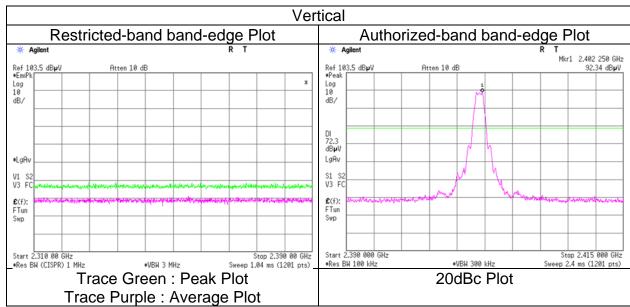
10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14795980H-A-R3 Page 25 of 40

Radiated Spurious Emission (Reference Plot for band-edge)


Inverted F Antenna


Test place Semi Anechoic Chamber

Semi Anechoic Chamber
Date
Temperature / Humidity
Engineer

Ise EMC Lab. No.3 May 16, 2023 24 deg. C / 37 % RH Takafumi Noguchi

(1 GHz to 10 GHz)
Mode Tx BT LE 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14795980H-A-R3 Page 26 of 40

Radiated Spurious Emission Inverted F Antenna

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date May 16, 2023 Temperature / Humidity 24 deg. C / 37 % RH Engineer Takafumi Noguchi

(Below 1 GHz) (Above 1 GHz)

Tx BT LE 2440 MHz Mode

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	(AV) [dB]	
Hori.	38.5	22.3	-	15.5	7.2	32.2	-	12.8	-	40.0	-	27.2	-	Floor noise
Hori.	43.3	22.4	-	13.8	7.3	32.2	-	11.3	-	40.0	-	28.7	-	Floor noise
Hori.	117.4	22.3	-	12.7	8.3	32.1	-	11.2	-	43.5	-	32.3	-	Floor noise
Hori.	350.5	22.0	-	15.2	10.4	32.0	-	15.6	-	46.0	-	30.4	-	Floor noise
Hori.	480.0	21.9	-	17.3	11.3	32.0	-	18.5	-	46.0	-	27.5	-	Floor noise
Hori.	515.3	21.8	-	17.8	11.5	32.0	-	19.1	-	46.0	-	26.9	-	Floor noise
Hori.	4880.0	44.7	38.5	31.5	7.5	31.4	-	52.4	46.2	73.9	53.9	21.5	7.7	
Hori.	7320.0	43.3	33.6	36.0	8.8	32.3	-	55.8	46.1	73.9	53.9	18.1	7.8	
Hori.	9760.0	44.9	35.4	39.1	9.4	33.0	-	60.4	50.9	73.9	53.9	13.5	3.0	
Hori.	12200.0	46.8	38.2	39.1	-1.7	32.9	-	51.3	42.7	73.9	53.9	22.6	11.2	
Vert.	38.5	22.3	-	15.5	7.2	32.2	-	12.8	-	40.0	-	27.2	-	Floor noise
Vert.	43.3	22.4	-	13.8	7.3	32.2	-	11.3	-	40.0	-	28.7	-	Floor noise
Vert.	117.4	22.3	-	12.7	8.3	32.1	-	11.2	-	43.5	-	32.3	-	Floor noise
Vert.	350.5	22.0	-	15.2	10.4	32.0	-	15.6	-	46.0	-	30.4	-	Floor noise
Vert.	480.0	21.9	-	17.3	11.3	32.0	-	18.5	-	46.0	-	27.5	-	Floor noise
Vert.	515.3	21.8	-	17.8	11.5	32.0	-	19.1	-	46.0	-	26.9	-	Floor noise
Vert.	4880.0	44.3	37.0	31.5	7.5	31.4	-	51.9	44.7	73.9	53.9	22.0	9.3	
Vert.	7320.0	43.4	33.8	36.0	8.8	32.3	-	55.9	46.3	73.9	53.9	18.1	7.6	
Vert.	9760.0	44.8	35.7	39.1	9.4	33.0	-	60.3	51.2	73.9	53.9	13.6	2.7	
Vert.	12200.0	43.8	35.4	39.1	-1.7	32.9	-	48.3	39.8	73.9	53.9	25.6	14.1	Floor noise

veri. 1 12200.0 43.6 35.4 39.1 -1.7 32.9 - 48.3 39.8 7

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

1 GHz - 10 GHz 20log (3.95 m / 3.0 m) = 2.39 dB Distance factor:

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Test Report No. 14795980H-A-R3 Page 27 of 40

Radiated Spurious Emission Inverted F Antenna

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date May 16, 2023 Temperature / Humidity 24 deg. C / 37 % RH

Takafumi Noguchi Engineer (Above 1 GHz) Mode Tx BT LE 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	43.8	35.1	27.5	5.4	32.4	-	44.3	35.7	73.9	53.9	29.6	18.2	
Hori.	4960.0	43.9	37.3	31.6	7.6	31.4	-	51.7	45.1	73.9	53.9	22.2	8.8	
Hori.	7440.0	43.3	34.3	36.2	8.8	32.4	-	55.9	46.9	73.9	53.9	18.0	7.0	
Hori.	9920.0	43.6	35.8	39.1	9.4	33.1	-	59.0	51.3	73.9	53.9	14.9	2.6	
Hori.	12400.0	46.5	37.7	38.9	-1.7	32.8	-	50.9	42.1	73.9	53.9	23.1	11.8	
Vert.	2483.5	44.3	34.0	27.5	5.4	32.4	-	44.9	34.6	73.9	53.9	29.0	19.3	
Vert.	4960.0	43.6	35.9	31.6	7.6	31.4	-	51.4	43.7	73.9	53.9	22.5	10.2	
Vert.	7440.0	43.2	34.8	36.2	8.8	32.4	-	55.9	47.4	73.9	53.9	18.0	6.5	
Vert.	9920.0	44.0	35.8	39.1	9.4	33.1	-	59.5	51.2	73.9	53.9	14.4	2.7	
Vert.	12400.0	47.9	40.5	38.9	-1.7	32.8	-	52.3	44.9	73.9	53.9	21.6	9.0	

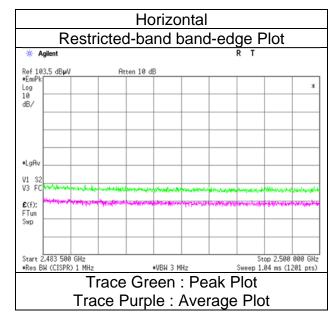
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

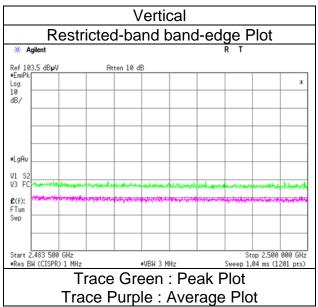
1 GHz - 10 GHz Distance factor: 20log (3.95 m / 3.0 m) = 2.39 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

Test Report No. 14795980H-A-R3 Page 28 of 40


Radiated Spurious Emission (Reference Plot for band-edge)


Inverted F Antenna

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

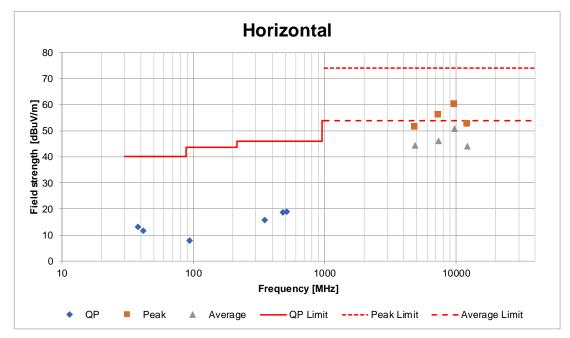
Ise EMC Lab. No.3 May 16, 2023 24 deg. C / 37 % RH Takafumi Noguchi (1 GHz to 10 GHz) Tx BT LE 2480 MHz

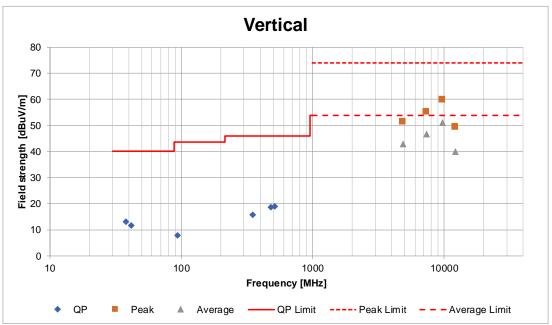
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 14795980H-A-R3 Page 29 of 40

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power) Loop Antenna


Test place Ise EMC Lab.


Semi Anechoic Chamber No.3 No.3

Date May 15, 2023 May 16, 2023
Temperature / Humidity 24 deg. C / 37 % RH
Engineer Ken Fujita Takafumi Noguchi
(1 GHz to 10 GHz)

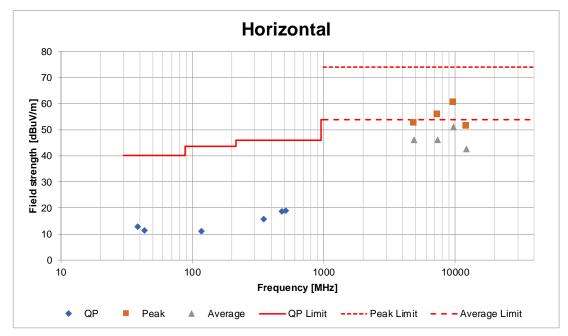
(1 GHz to 10 GHz) (Above 10 GHz) (Below 1 GHz)

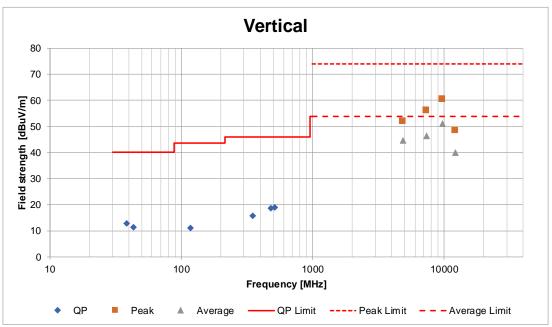
Mode Tx BT LE 2440 MHz

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 14795980H-A-R3 Page 30 of 40

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power) Inverted F Antenna


Test place Ise EMC Lab.

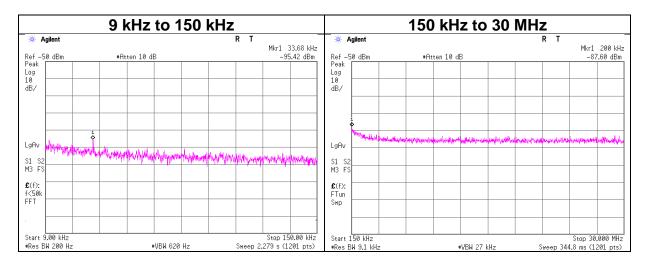

Semi Anechoic Chamber No.3

Date May 16, 2023
Temperature / Humidity 24 deg. C / 37 % RH
Engineer Takafumi Noguchi
(Below 1 GHz)

(Above 1 GHz)

Mode Tx BT LE 2440 MHz

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.


Test Report No. 14795980H-A-R3 Page 31 of 40

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Shielded Room

Date May 16, 2023 Temperature / Humidity 23 deg. C / 39 % RH

Engineer Ken Fujita Mode Tx BT LE

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
33.68	-95.42	0.04	9.85	2.09	1	-83.44	300.00	6.00	-22.18	37.00	59.18	
200.00	-87.60	0.12	9.89	2.09	1	-75.50	300.00	6.00	-14.24	21.50	35.74	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

Test Report No. 14795980H-A-R3 Page 32 of 40

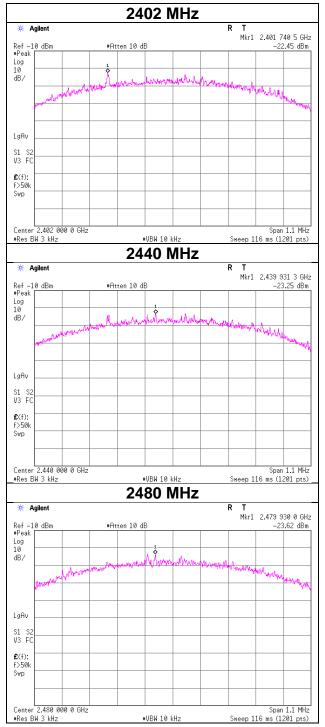
Power Density

Test place Ise EMC Lab. No.6 Shielded Room Date May 16, 2023

Date May 16, 2023 Temperature / Humidity 23 deg. C / 39 % RH

Engineer Ken Fujita Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-22.45	0.45	10.07	-11.93	8.00	19.93
2440	-23.25	0.45	10.07	-12.73	8.00	20.73
2480	-23.62	0.46	10.07	-13.09	8.00	21.09


Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

BTLE

Test Report No. 14795980H-A-R3 Page 34 of 40

APPENDIX 2: Test Instruments

Test Fauinment

	Equipme		_	-				
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)		Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2023	24
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/13/2022	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+ BBA9106	08031	07/30/2022	12
RE	MCC-265	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/ 11PC35/1000M,50 00M	537063/126E / 537074/126E	03/16/2023	-
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	09/27/2022	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/14/2022	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/26/2022	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2022	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	07/29/2022	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-90	141223	Attenuator	Weinschel Associates	WA56-10	56100306	05/12/2022	12
AT	MCC-243	196430	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/1000mm	537059/126EA	02/02/2023	
AT	MCC-245	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/08/2023	12
AT	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
AT	MMM-12	141547	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	60500120	02/02/2023	12
ΑT	MOS-24	90289	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0005	01/13/2023	12
AT	MOS-29	141568	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	2901	01/13/2023	12
AT	MPM-08	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	07/04/2022	12
AT	MPSE-11	141840	Power sensor	Anritsu Corporation	MA2411B	11737	07/04/2022	12
AT	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2022	12
AT	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	01/16/2023	12

Test Report No. 14795980H-A-R3 Page 35 of 40

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission

AT: Antenna Terminal Conducted test