

Test report No. : 13523435H-A Page : 1 of 23 **Issued date** : October 15, 2020 FCC ID : HYQ14FLC

RADIO TEST REPORT

Test Report No.: 13523435H-A

Applicant DENSO CORPORATION

Type of EUT **Electronic Key** :

Model Number of EUT 14FLC

FCC ID HYQ14FLC

Test regulation FCC Part 15 Subpart C: 2020

Test Result Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.

Date of test: October 1, 2020 Representative test engineer: Shinya Watanabe Engineer Consumer Technology Division Approved by: Motoya Imura

Leader Consumer Technology Division

	The testing in which	"Non-accreditation"	is displayed is outside	the accreditation	scopes in	UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 2 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

REVISION HISTORY

Original Test Report No.: 13523435H-A

Revision	Test report No.	Date	Page revised	Contents
-	13523435H-A	October 15, 2020	-	-
(Original)				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 3 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

Reference: Abbreviations (Including words undescribed in this report)

MCS Modulation and Coding Scheme A2LA The American Association for Laboratory Accreditation AC Alternating Current MRA Mutual Recognition Arrangement AFH Adaptive Frequency Hopping N/A Not Applicable AM Amplitude Modulation NIST National Institute of Standards and Technology Amplifier Amp, AMP NS No signal detect. ANSI American National Standards Institute NSA Normalized Site Attenuation Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average **BPSK** Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer BTBluetooth PK Peak BT LE Bluetooth Low Energy PNPseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection Root Mean Square RMS DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Direct Sequence Spread Spectrum RxReceiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A Equivalent Isotropically Radiated Power EIRP, e.i.r.p. SG Signal Generator SVSWR Site-Voltage Standing Wave Ratio **EMC** ElectroMagnetic Compatibility **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm Tx Transmitting ERP, e.r.p. Effective Radiated Power VBW Video BandWidth EU European Union Vert. Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. FCC Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum Frequency Modulation Freq. Frequency Frequency Shift Keying **GFSK** Gaussian Frequency-Shift Keying **GNSS** Global Navigation Satellite System GPS Global Positioning System Hori. Horizontal ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers ΙF Intermediate Frequency ILAC International Laboratory Accreditation Conference ISED Innovation, Science and Economic Development Canada ISO International Organization for Standardization IAB Japan Accreditation Board

UL Japan, Inc. Ise EMC Lab.

LAN

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Local Area Network

Laboratory Information Management System

Test report No. Page Issued date FCC ID : 13523435H-A : 4 of 23 : October 15, 2020 : HYQ14FLC

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 5 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan

Telephone Number : +81-566-20-3955 Facsimile Number : +81-566-25-4837 Contact Person : TAKAYUKI HATTORI

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Electronic Key

Model Number : 14FLC

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V

Receipt Date : September 28, 2020

Country of Mass-production : Japan, United States of America, China

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: 14FLC (referred to as the EUT in this report) is a Electronic Key.

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 312.10 MHz / 314.35 MHz*

*These two different frequencies are not emitted simultaneously.

Modulation : FSK (F1D)

Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
Clock frequency (Maximum) : 32 MHz (Internal clock)

Radio Type : Receiver Frequency of Operation : 134.2 kHz *1)

The worst case was confirmed with Type A and Type B at pre check.

The test was performed with Type A as representative since there is no difference the worst result between those models.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of receiver part was performed separately from this test report, and the conformability is confirmed.

^{*} Original model: 14FLC has two types; Type A and Type B.

Test report No. : 13523435H-A
Page : 6 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8		N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	2.9 dB 312.10 MHz / 314.350 MHz Horizontal PK with Duty Factor	Complied#	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2 RSS-Gen 8.9	9.7 dB 2829.150 MHz Vertical PK with Duty Factor <314.35 MHz >	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Automatically deactivate)

b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))

c)Refer to APPENDIX 1 (data of -20 dB and 99 % Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13523435H-A
Page : 7 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated	
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Radiated emission								
Measurement distance	Frequency ran	Uncertainty (+/-)						
3 m	9 kHz to 30 MHz		3.3 dB					
10 m			3.2 dB					
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB					
		(Vertical)	5.0 dB					
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB					
		(Vertical)	6.3 dB					
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB					
		(Vertical)	4.8 dB					
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB					
		(Vertical)	5.0 dB					
3 m	1 GHz to 6 GH	Iz	4.9 dB					
	6 GHz to 18 GHz		5.2 dB					
1 m	10 GHz to 26.5	GHz	5.5 dB					
	26.5 GHz to 40 G	GHz	5.5 dB					
10 m	1 GHz to 18 G	Hz	5.2 dB					

Antenna Terminal test

Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 8 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 9 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Test Item*	Mode
Automatically Deactivate	Normal use mode
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1)
Electric Field Strength of Spurious Emission	
-20 dB & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

* EUT was set by the software as follows;

Software: Product program Version 00001103

(Date: *2020/08/07, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

A

Description of EUT

No.	Item Model number Serial number		Serial number	Manufacturer	Remarks	
A	Electronic Key	14FLC	No.1 *1)	DENSO	EUT	
	-		No.2 *2)	CORPORATION		

^{*1)} Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

^{*}This setting of software is the worst case.

^{*} Setup was taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Transmitting mode

Test report No. : 13523435H-A
Page : 10 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

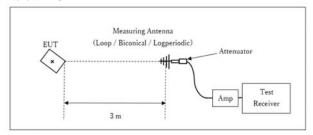
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

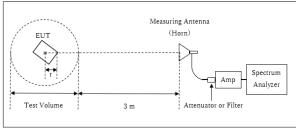
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 11 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

[Test Setup]


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) $r=0.0\;m$

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore, the test with mechanical key was performed only.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 13523435H-A

 Page
 : 12 of 23

 Issued date
 : October 15, 2020

 FCC ID
 : HYQ14FLC

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Peak hold was applied as Worst-case measurement.							

Test data : APPENDIX
Test result : Pass

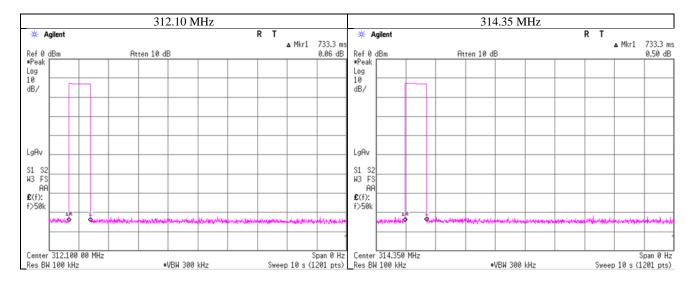
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 13 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

APPENDIX 1: Test data

Automatically deactivate


Report No. 13523435H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 01, 2020
Temperature / Humidity 23 deg. C / 62 % RH
Engineer Shinya Watanabe

Mode Normal use mode 312.10 MHz / 314.35 MHz

Tx Frequency	Time of	Limit	Result
	Transmitting		
[MHz]	[sec]	[sec]	
312.10	0.733	5.00	Pass
314.35	0.733	5.00	Pass

^{*} The EUT transmits UHF when LF signal is received from a car or a button on the EUT is pressed. In both cases, the UHF transmission is stopped within 5 seconds. So the test was performed by a button-pressed operation as the worst case. Please refer to the "Theory of Operation" for details.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 14 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13523435H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 01, 2020
Temperature / Humidity 23 deg. C / 62 % RH
Engineer Shinya Watanabe

Mode Transmitting mode 312.10 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	PK	80.7	76.4	13.7	10.1	32.0	-	72.5	68.3	95.4	22.9	27.1	Carrier
624.200	PK	NS	NS	-	-	-	-	-	-	75.4	-	-	Outside
936.300	PK	NS	NS	-	-	-	-	-	-	75.4	-	-	Outside
1248.400	PK	NS	NS	-	-	-	-	-	-	75.4	-	-	Outside
1560.500	PK	47.5	47.9	25.0	4.5	34.0	-	43.0	43.3	73.9	30.9	30.6	Inside
1872.600	PK	NS	NS	-	-	-	-	-	-	75.4	-	-	Outside
2184.700	PK	NS	NS	-	-	-	-	-	-	75.4	-	-	Outside
2496.800	PK	NS	NS	-	-	-	-	-	-	73.9	-	-	Inside
2808.900	PK	42.7	42.4	28.5	5.2	32.6	-	43.9	43.5	73.9	30.0	30.4	Inside
3121.000	PK	43.4	43.6	28.9	5.4	32.4	-	45.2	45.5	75.4	30.2	30.0	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	80.7	76.4	13.7	10.1	32.0	0.0	72.5	68.3	75.4	2.9	7.1	Carrier
624.200	PK	NS	NS	-	-	-	0.0	-	-	55.4	-	1	Outside
936.300	PK	NS	NS	-	-	-	0.0	-	-	55.4	-	-	Outside
1248.400	PK	NS	NS	-	-	-	0.0	-	-	55.4	-	-	Outside
1560.500	PK	47.5	47.9	25.0	4.5	34.0	0.0	43.0	43.3	53.9	10.9	10.6	Inside
1872.600	PK	NS	NS	-	-	-	0.0	-	-	55.4	-	-	Outside
2184.700	PK	NS	NS	-	-	-	0.0	-	-	55.4	-	-	Outside
2496.800	PK	NS	NS	-	-	-	0.0	-	-	53.9	-	-	Inside
2808.900	PK	42.7	42.4	28.5	5.2	32.6	0.0	43.9	43.5	53.9	10.0	10.4	Inside
3121.000	PK	43.4	43.6	28.9	5.4	32.4	0.0	45.2	45.5	55.4	10.2	10.0	Outside

NS: No signal detected

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 15 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13523435H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 01, 2020
Temperature / Humidity 23 deg. C / 62 % RH
Engineer Shinya Watanabe

Mode Transmitting mode 314.35 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	80.7	76.5	13.8	10.2	32.0	-	72.7	68.5	95.5	22.9	27.0	Carrier
628.700	PK	NS	NS	-	-	-	-	-	-	75.5	-	-	Outside
943.050	PK	NS	NS	-	-	1	1	1	-	75.5	1	-	Outside
1257.400	PK	NS	NS	-	-	-	-	-	-	75.5	-	-	Outside
1571.750	PK	42.3	42.6	25.0	5.5	33.2	1	39.6	39.9	73.9	34.3	34.0	Inside
1886.100	PK	NS	NS	-	-	1	1	1	-	75.5	-	-	Outside
2200.450	PK	NS	NS	-	-	-	-	-	-	73.9	-	-	Inside
2514.800	PK	NS	NS	-	-	-	-	-	-	75.5	-	-	Outside
2829.150	PK	41.1	41.6	28.5	5.8	31.7	-	43.7	44.2	73.9	30.2	29.7	Inside
3143.500	PK	42.3	42.4	28.8	5.9	31.6	-	45.4	45.5	75.5	30.1	30.0	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	80.7	76.5	13.8	10.2	32.0	0.0	72.7	68.5	75.5	2.9	7.0	Carrier
628.700	PK	NS	NS	-	-	-	0.0	-	-	55.5	-	-	Outside
943.050	PK	NS	NS	-	-	-	0.0	-	-	55.5	-	-	Outside
1257.400	PK	NS	NS	-	-	1	0.0	-	-	55.5	-	-	Outside
1571.750	PK	42.3	42.6	25.0	5.5	33.2	0.0	39.6	39.9	53.9	14.3	14.0	Inside
1886.100	PK	NS	NS	-	-	-	0.0	-	-	55.5	-	-	Outside
2200.450	PK	NS	NS	-	-	1	0.0	-	-	53.9	-	-	Inside
2514.800	PK	NS	NS	-	-	-	0.0	-	-	55.5	-	-	Outside
2829.150	PK	41.1	41.6	28.5	5.8	31.7	0.0	43.7	44.2	53.9	10.2	9.7	Inside
3143.500	PK	42.3	42.4	28.8	5.9	31.6	0.0	45.4	45.5	55.5	10.1	10.0	Outside

NS: No signal detected

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

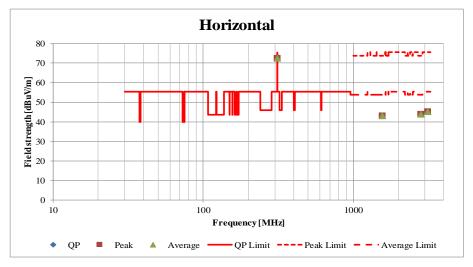
Since the peak emission result satisfied the average limit, duty factor was omitted.

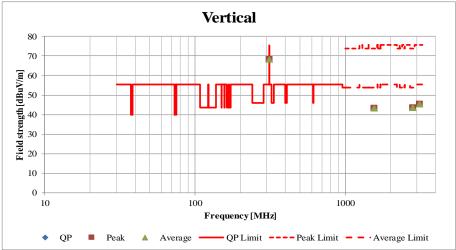
Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A Page : 16 of 23 **Issued date** : October 15, 2020 FCC ID : HYQ14FLC


Radiated Spurious Emission (Plot data, Worst case)


Report No. 13523435H Ise EMC Lab. Test place

Semi Anechoic Chamber No.3

October 01, 2020 Temperature / Humidity 23 deg. C / 62 % RH Engineer Shinya Watanabe

Mode Transmitting mode 312.10 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 17 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

kHz

-20 dB and 99 % Occupied Bandwidth

Report No. 13523435H
Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date October 01, 2020
Temperature / Humidity 23 deg. C / 62 % RH
Engineer Shinya Watanabe

Mode Transmitting mode 312.10 MHz / 314.35 MHz

Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

312.10MHz

-20dB Bandwidth	
[kHz]	
38.280	

314.35MHz

-20dB Bandwidth
[kHz]
38.249

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
76.529	780.25	Pass

Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
38.6402	780.25	Pass

Bandwidth Limit : Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
38.5732	785.88	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

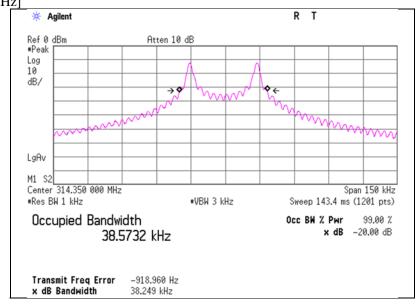
Test report No. : 13523435H-A
Page : 18 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

-20 dB and 99 % Occupied Bandwidth

Report No. 13523435H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.3


Date No.3
October 01, 2020

Temperature / Humidity
Engineer


23 deg. C / 62 % RH
Shinya Watanabe

Mode Transmitting mode 312.10 MHz / 314.35 MHz

[312.10 MHz]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13523435H-A
Page : 19 of 23
Issued date : October 15, 2020
FCC ID : HYQ14FLC

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/08/2019	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1915	08/13/2020	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/10/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/02/2020	12
RE	MPA-11	141580	1	Keysight Technologies Inc	83017A	MY39500779	03/24/2020	12
RE	MSA-03	141884	1 *	Keysight Technologies Inc	E4448A	MY44020357	03/04/2020	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/18/2020	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	_

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN