

Test report No.

Page Issued date FCC ID : 11034478H-A : 1 of 21

: December 10, 2015 : HYQ14FBF

RADIO TEST REPORT

Test Report No.: 11034478H-A

Applicant

DENSO CORPORATION

Type of Equipment

Electronic Key

Model No.

14FBF

Test regulation

FCC Part 15 Subpart C: 2015

FCC ID

HYQ14FBF

Test Result

: Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

November 12 and 13, 2015

Representative test engineer:

Keisuke Kawamura

Engineer

Consumer Technology Division

Approved by:

Motoya Imura Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile

: +81 596 24 8124

Test report No. : 11034478H-A Page : 2 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

REVISION HISTORY

Original Test Report No.: 11034478H-A

Revision	Test report No.	Date	Page revised	Contents
-	Test report No. 11034478H-A	December 10, 2015	-	-
(Original)		2015		

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

Issued date

: 3 of 21 : December 10, 2015

: 11034478H-A

FCC ID : HYQ14FBF

CONTENTS PAGE SECTION 2: Equipment under test (E.U.T.) 4 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)9 SECTION 7: -20 dB and 99 % Occupied Bandwidth 10 APPENDIX 1: Test data 11 Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)...... 13 -20dB and 99% Occupied Bandwidth _________16

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 4 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

Telephone Number : +81-566-61-5242 Facsimile Number : +81-566-25-4837

Contact Person : MASAYUKI YAMAMOTO

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Electronic Key

Model No. : 14FBF

Serial No. : Refer to Clause 4.2

Rating : DC 3.0 V

Receipt Date of Sample : November 6, 2015

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: 14FBF (referred to as the EUT in this report) is the Electronic Key.

Radio Type : Transceiver

Frequency of Operation : 314.35 MHz / 312.10 MHz*

Clock frequency(ies) in the system : 8 MHz (IC Clock)

18.37 MHz crystal (RF)

Modulation : FSK (F1D) Power Supply (radio part input) : DC 3.0 V

Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
Receiving frequency of Operation : 134.2 kHz *1)
* These two different frequencies are not emitted simultaneously.

Also, it has 4 buttons.

Variation models have 3 buttons and 2 buttons.

They are completely identical in RF characteristics.

The worst case was confirmed with pre-check for both type, as a result, test was performed with Type A as representative.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of receiver part was performed separately from this test report, and the conformability is confirmed.

^{*} Original model: 14FBF has Type A and Type B in the shape of keyhole.

Test report No. : 11034478H-A Page : 5 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015.

The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.4:2009 7. AC powerline conducted emission measurements	FCC: Section 15.207	N/A	N/A*1)	-
	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8			
Automatically Deactivate	FCC: ANSI C63.4:2009 13. Measurement of intentional radiators	FCC: Section 15.231(a)(1)	N/A	Complied	Radiated
·	IC: -	IC: RSS-210 A1.1.1			
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.4:2009 13. Measurement of intentional radiators	FCC: Section 15.231(b)	3.3 dB Horizontal, PK (PK with Duty	Complied	Radiated
of Fundamental Emission	IC: RSS-Gen 6.12	IC: RSS-210 A1.1.2	factor) (Tx 314.35 MHz)		
Electric Field Strength	FCC: ANSI C63.4:2009 13. Measurement of intentional radiators	FCC: Section 15.205 Section 15.209 Section 15.231(b)	10.7 dB 2829.150 MHz Vertical		
of Spurious Emission	IC: RSS-Gen 6.13	IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 8.9	PK (PK with Duty factor) (Tx 314.35 MHz)	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.4:2009 13. Measurement of intentional radiators	FCC: Section 15.231(c)	N/A	Complied	Radiated
	IC: -	IC: Reference data			

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 6 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Test room	Radiated emission						
(semi-		(3 m*)	(<u>+</u> dB)		(1 m ³	*)(<u>+</u> dB)	$(0.5 \text{ m}^*)(\underline{+}dB)$
anechoic chamber)	9 kHz	30 MHz	300 MHz	1 GHz	10 GHz	18 GHz	26.5 GHz
	- 30 MHz	- 300 MHz	- 1 GHz	- 10 GHz	- 18 GHz	- 26.5 GHz	- 40 GHz
No.1	4.3 dB	5.1 dB	6.2 dB	5.5 dB	5.8 dB	5.8 dB	4.3 dB
No.2	4.2 dB	5.1 dB	6.2 dB	5.4 dB	5.7 dB	5.9 dB	5.6 dB
No.3	4.4 dB	5.1 dB	6.3 dB	5.2 dB	5.5 dB	5.8 dB	5.5 dB
No.4	4.7 dB	5.3 dB	6.3 dB	5.3 dB	5.7 dB	5.9 dB	5.5 dB

^{*3} m / 1 m / 0.5 m = Measurement distance

Radiated emission test (3 m)

[Electric Field Strength of Fundamental Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

[Electric Field Strength of Spurious Emission]

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 7 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

Telephone: 101 370 2	IC Registration	Width x Depth x	Size of	Other
	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 8 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item	Mode
Automatically Deactivate	Normal use mode, 314.35 MHz
	Normal use mode, 312.10 MHz
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx), 314.35 MHz *1)
Electric Field Strength of Spurious Emission	Transmitting mode (Tx), 312.10 MHz *1)
-20dB & 99% Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a customer would normally use it) for testing.

End users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

A

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Electronic Key	14FBF	001 *1)	DENSO CORPORATION	EUT
			002 *2)		

^{*1)} Used for Normal use mode.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, the EUT transmits when it receives 134.2kHz radio signal and transmitter button is being pressed.)

^{*} Setup was taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Transmitting mode.

: 11034478H-A Test report No. Page : 9 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious **Emission**)

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 300 MHz	300 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

⁻ The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore the test with mechanical key was performed only.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Test report No. : 11034478H-A Page : 10 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak *1)	Max Hold	Spectrum Analyzer
Bandwidth	emission skirts	of OBW	of RBW			*1)	
±1\ m1	*1) TI						

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

Test data : APPENDIX
Test result : Pass

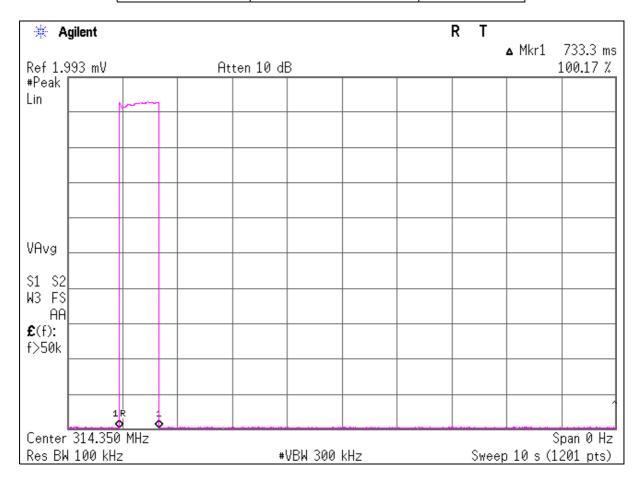
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A
Page : 11 of 21
Issued date : December 10, 2015
FCC ID : HYQ14FBF

APPENDIX 1: Test data

Automatically deactivate 314.35 MHz


Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11034478H Date 11/13/2015

Temperature/ Humidity 23 deg. C / 51% RH Engineer Takafumi Noguchi

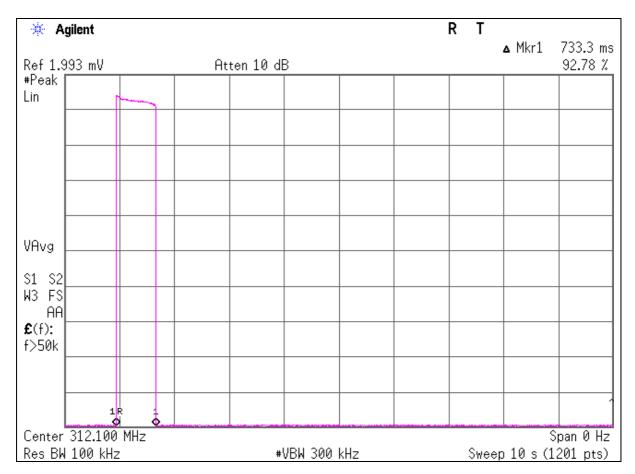
Mode Normal use mode 314.35 MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.7333	5.00	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A
Page : 12 of 21
Issued date : December 10, 2015
FCC ID : HYQ14FBF


Automatically deactivate 312.10 MHz

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Report No. 11034478H
Date 11/13/2015
Temperature/ Humidity 23 deg. C / 51% RH
Engineer Takafumi Noguchi

Mode Normal use mode, 312.10 MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.7333	5.00	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 13 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 314.35 MHz

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.4

Report No. 11034478H

Date 11/12/2015 11/13/2015

Temperature/ Humidity 21 deg. C / 42% RH 23 deg. C / 45% RH Engineer Keisuke Kawamura Koji Yamamoto

(Below 1GHz) (Above 1GHz)

Mode Transmitting mode (Tx), 314.35 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	79.2	75.3	15.0	10.0	32.0	-	72.2	68.3	95.5	23.3	27.2	Carrier
628.700	PK	31.7	30.0	19.7	11.9	32.1	-	31.2	29.5	75.5	44.3	46.0	Outside
943.050	PK	30.8	29.0	22.8	13.5	30.8	-	36.3	34.5	75.5	39.2	41.0	Outside
1257.400	PK	45.4	45.8	24.9	2.0	34.2	-	38.1	38.5	75.5	37.4	37.0	Outside
1571.750	PK	44.5	44.7	25.7	2.2	33.3	-	39.1	39.3	73.9	34.8	34.6	Inside
1886.100	PK	43.9	44.3	27.0	2.4	32.5	-	40.8	41.2	75.5	34.7	34.3	Outside
2200.450	PK	44.7	43.6	27.7	2.5	32.2	-	42.7	41.6	73.9	31.2	32.3	Inside
2514.800	PK	44.2	43.7	28.1	2.7	32.1	-	42.9	42.4	75.5	32.6	33.1	Outside
2829.150	PK	44.0	44.1	28.2	2.9	32.0	-	43.1	43.2	73.9	30.8	30.7	Inside
3143.500	PK	44.1	44.1	28.4	3.1	31.8	-	43.8	43.8	75.5	31.7	31.7	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier)$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	79.2	75.3	15.0	10.0	32.0	0.0	72.2	68.3	75.5	3.3	7.2	Carrier
628.700	PK	31.7	30.0	19.7	11.9	32.1	0.0	31.2	29.5	55.5	24.3	26.0	Outside
943.050	PK	30.8	29.0	22.8	13.5	30.8	0.0	36.3	34.5	55.5	19.2	21.0	Outside
1257.400	PK	45.4	45.8	24.9	2.0	34.2	0.0	38.1	38.5	55.5	17.4	17.0	Outside
1571.750	PK	44.5	44.7	25.7	2.2	33.3	0.0	39.1	39.3	53.9	14.8	14.6	Inside
1886.100	PK	43.9	44.3	27.0	2.4	32.5	0.0	40.8	41.2	55.5	14.7	14.3	Outside
2200.450	PK	44.7	43.6	27.7	2.5	32.2	0.0	42.7	41.6	53.9	11.2	12.3	Inside
2514.800	PK	44.2	43.7	28.1	2.7	32.1	0.0	42.9	42.4	55.5	12.6	13.1	Outside
2829.150	PK	44.0	44.1	28.2	2.9	32.0	0.0	43.1	43.2	53.9	10.8	10.7	Inside
3143.500	PK	44.1	44.1	28.4	3.1	31.8	0.0	43.8	43.8	55.5	11.7	11.7	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier) + Duty\ factor.$

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 11034478H-A Page : 14 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 312.10 MHz

Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.4

Report No. 11034478H

Date11/12/201511/13/2015Temperature/ Humidity21 deg. C / 42% RH23 deg. C / 45% RHEngineerKeisuke KawamuraKoji Yamamoto

(Below 1GHz) (Above 1GHz)

Mode Transmitting mode (Tx), 312.10 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	PK	78.1	74.3	14.9	10.0	32.0	-	71.0	67.2	95.4	24.4	28.2	Carrier
624.200	PK	30.5	30.6	19.6	11.9	32.1	-	29.9	30.0	75.4	45.5	45.4	Outside
936.300	PK	30.7	29.1	22.7	13.5	30.8	-	36.1	34.5	75.4	39.3	40.9	Outside
1248.400	PK	45.7	45.5	24.9	2.0	34.2	-	38.4	38.2	75.4	37.0	37.2	Outside
1560.500	PK	44.3	44.5	25.6	2.2	33.3	-	38.8	39.0	73.9	35.1	34.9	Inside
1872.600	PK	43.6	44.6	27.0	2.4	32.6	-	40.4	41.4	75.4	35.0	34.0	Outside
2184.700	PK	44.1	44.1	27.7	2.5	32.2	-	42.1	42.1	75.4	33.3	33.3	Outside
2496.800	PK	43.8	43.7	28.1	2.7	32.1	-	42.5	42.4	73.9	31.4	31.5	Inside
2808.900	PK	43.8	43.6	28.2	2.9	32.0	-	42.9	42.7	73.9	31.0	31.2	Inside
3121.000	PK	43.7	43.9	28.4	3.0	31.9	-	43.2	43.4	75.4	32.2	32.0	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	78.1	74.3	14.9	10.0	32.0	0.0	71.0	67.2	75.4	4.4	8.2	Carrier
624.200	PK	30.5	30.6	19.6	11.9	32.1	0.0	29.9	30.0	55.4	25.5	25.4	Outside
936.300	PK	30.7	29.1	22.7	13.5	30.8	0.0	36.1	34.5	55.4	19.3	20.9	Outside
1248.400	PK	45.7	45.5	24.9	2.0	34.2	0.0	38.4	38.2	55.4	17.0	17.2	Outside
1560.500	PK	44.3	44.5	25.6	2.2	33.3	0.0	38.8	39.0	53.9	15.1	14.9	Inside
1872.600	PK	43.6	44.6	27.0	2.4	32.6	0.0	40.4	41.4	55.4	15.0	14.0	Outside
2184.700	PK	44.1	44.1	27.7	2.5	32.2	0.0	42.1	42.1	55.4	13.3	13.3	Outside
2496.800	PK	43.8	43.7	28.1	2.7	32.1	0.0	42.5	42.4	53.9	11.4	11.5	Inside
2808.900	PK	43.8	43.6	28.2	2.9	32.0	0.0	42.9	42.7	53.9	11.0	11.2	Inside
3121.000	PK	43.7	43.9	28.4	3.0	31.9	0.0	43.2	43.4	55.4	12.2	12.0	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier) + Duty\ factor.$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

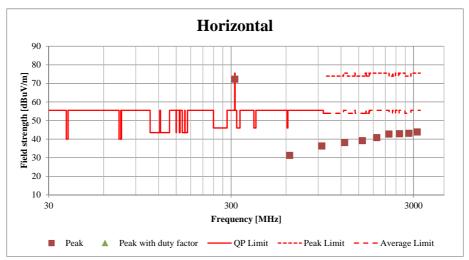
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

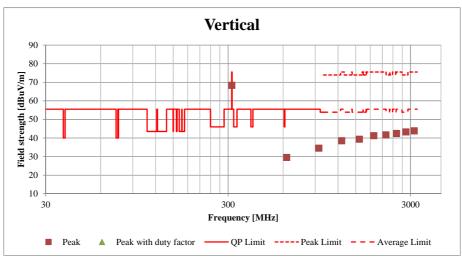
Since the peak emission result satisfied the average limit, duty factor was omitted.

Test report No. : 11034478H-A Page : 15 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

Radiated Spurious Emission (Plot data, Worst case)


Test place Ise EMC Lab.


Semi Anechoic Chamber No.3 No.4 Report No. 11034478H

Report No. 11034478H Date 11/12/2015 11/13/2015

Temperature/ Humidity 21 deg. C / 42% RH 23 deg. C / 45% RH Engineer Keisuke Kawamura Koji Yamamoto (Below 1GHz) (Above 1GHz)

Mode Transmitting mode (Tx), 314.35 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 16 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

-20dB and 99% Occupied Bandwidth 314.35 MHz / 312.10 MHz

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11034478H Date 11/12/2015

Temperature/ Humidity
Engineer
Mode

21 deg. C / 42% RH
Keisuke Kawamura
Transmitting mode (Tx)

Bandwidth Limit: Fundamental Frequency

312.10 MHz x 0.25% = 780.25 kHz

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

314.35MHz

-20dB Bandwidth
[kHz]
37.12

312.10MHz

-20dB Bandwidth	
[kHz]	
37.14	

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
37.12+37.14=74.26	780.25	Pass

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
36.28	785.88	Pass

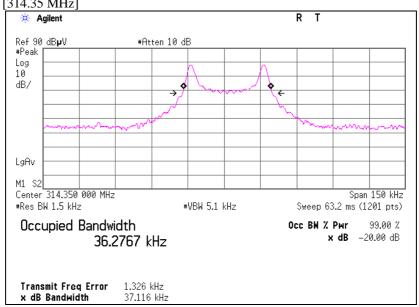
Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
36.25	780.25	Pass

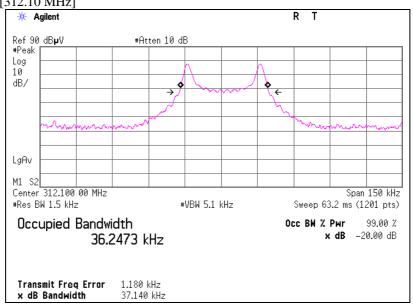
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11034478H-A Test report No. Page : 17 of 21


: December 10, 2015 Issued date FCC ID : HYQ14FBF

-20dB and 99% Occupied Bandwidth 314.35 MHz / 312.10 MHz


Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11034478H 11/12/2015 Date Temperature/ Humidity 21 deg. C / 42% RH Engineer Keisuke Kawamura Mode Transmitting mode (Tx)

[312.10 MHz]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11034478H-A Page : 18 of 21

Issued date : December 10, 2015 FCC ID : HYQ14FBF

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/01 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2015/01/13 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2015/05/18 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2015/09/02 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2015/10/11 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2015/10/11 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2015/07/13 * 12
MAT-70	Attenuator(6dB)	Agilent	8491A-006	MY52460153	RE	2015/04/08 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2015/03/10 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2015/01/13 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2015/02/26 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2015/08/10 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2015/05/21 * 12
MPA-12	MicroWave System Amplifier	Agilent	83017A	00650	RE	2015/10/01 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2015/07/01 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2015/01/13 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	RE	2015/02/16 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	RE	2015/08/19 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, Automatically deactivate and Duty cycle tests

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN