

Test report No.

: 11358925H : 1 of 21

Page

Issued date

: August 18, 2016

FCC ID

: HYQ14CCG

RADIO TEST REPORT

Test Report No.: 11358925H

Applicant

DENSO CORPORATION

Type of Equipment

Smart Card Key

Model No.

14CCG

Test regulation

FCC Part 15 Subpart C: 2016

FCC ID

HYQ14CCG

Test Result

Complied

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

July 14, 2016

Representative test

engineer:

Satofumi Matsuyama

Engineer Consumer Technology Division

Approved by:

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone **Facsimile**

: +81 596 24 8999 : +81 596 24 8124

13-EM-F0429

Test report No. : 11358925H
Page : 2 of 21
Issued date : August 18, 2016

FCC ID : HYQ14CCG

REVISION HISTORY

Original Test Report No.: 11358925H

Revision	Test report No. 11358925H	Date	Page revised	Contents
-	11358925H	August 18, 2016	-	-
(Original)	11000,2011	2016		
(Oliginal)		2010		
	1	1		

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

: 3 of 21

Issued date FCC ID : August 18, 2016 : HYQ14CCG

: 11358925H

CONTENTS	PAGE
SECTION 1: Customer information ······	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results······	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious E	
SECTION 6: Automatically deactivate	
SECTION 7: -20dB and 99% Occupied Bandwidth ······	11
APPENDIX 1: Test data ······	12
Automatically deactivate	12
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)	
-20dB and 99% Occupied Bandwidth	
APPENDIX 2: Test Instruments ······	
APPENDIX 3: Photographs of test setup······	
Radiated emission	19
Worst case position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999

Test report No. : 11358925H
Page : 4 of 21

Issued date : August 18, 2016 FCC ID : HYQ14CCG

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

Telephone Number : +81-566-61-5242 Facsimile Number : +81-566-25-4837

Contact Person : MASAYUKI YAMAMOTO

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Smart Card Key

Model No. : 14CCG

Serial No. : Refer to Clause 4.2

Rating : DC 3.0 V Receipt Date of Sample : July 9, 2016 Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: 14CCG (referred to as the EUT in this report) is the Smart Card Key.

Radio Type : Transceiver

Frequency of Operation : 433.58 MHz / 434.42 MHz*

*These two different frequencies are not emitted simultaneously.

Clock frequency(ies) in the system : 8 MHz (IC Clock)

13.081 MHz (RF)

Modulation : FSK (F1D) Power Supply (radio part input) : DC 3.0 V

Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
Receiving frequency of Operation : 134.2 kHz *1)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of receiver part was performed separately from this test report, and the conformability is confirmed.

Test report No. : 11358925H
Page : 5 of 21
Issued date : August 18, 2016

FCC ID : HYQ14CCG

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC part 15 final revised on April 6, 2016.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207			
Conducted emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	N/A	N/A*1)	-
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(a)(1)	N/A	Complied	Radiated
,	IC: -	IC: RSS-210 A1.1.1		1	
Electric Field Strength	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(b)	6.6 dB Horizontal	Complied	Radiated
of Fundamental Emission	IC: RSS-Gen 6.12	IC: RSS-210 A1.1.2	PK with Duty factor (Tx 433.58 MHz)		
Electric Field Strength	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(b)	5.8 dB 4344.200 MHz Horizontal	Complied	Radiated
of Spurious Emission	IC: RSS-Gen 6.13	IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 8.9	PK with Duty factor (Tx 434.42 MHz)		
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(c)	N/A	Complied	Radiated
2002 Build Widil	IC: -	IC: Reference data		Compiled	radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H Page : 6 of 21

Issued date : August 18, 2016 FCC ID : HYQ14CCG

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> dB)		(10 m*)(<u>+</u> dB)			
1 olarity	30 – 200 MHz	200 – 1000MHz	30 – 200 MHz	200 – 1000MHz		
Horizontal	4.9 dB	5.2 dB	4.9 dB	5.0 dB		
Vertical	4.6 dB	5.9 dB	5.0 dB	5.0 dB		

Radiated emission					
$(3 \text{ m}^*)(\underline{+}\text{dB})$		(1 m	(10 m*)(<u>+</u> dB)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz	
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB	

^{*} Measurement distance

Radiated emission test (3m)

The data listed in this test report has enough margin, more than the site margin.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H Page : 7 of 21

Issued date : August 18, 2016 FCC ID : HYQ14CCG

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H
Page : 8 of 21

Issued date : August 18, 2016 FCC ID : HYQ14CCG

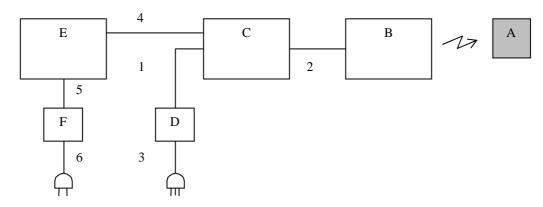
SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item	Mode
Automatically Deactivate	Normal use mode, 433.58 MHz *1)
Duty Cycle	Normal use mode, 434.42 MHz *1)
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx), 433.58 MHz *2)
Electric Field Strength of Spurious Emission	Transmitting mode (Tx), 434.42 MHz *2)
-20dB & 99% Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a customer would normally use it) for testing.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$


^{*1)} The EUT transmits only when it receives 134.2kHz radio signal. End users cannot change the settings of the output power of the product.

^{*2)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed. This button was attached just for testing.(for making continuous transmission)

Test report No. : 11358925H
Page : 9 of 21

Issued date : August 18, 2016 FCC ID : HYQ14CCG

4.2 Configuration and peripherals

AC 120 V / 60 Hz AC 120 V / 60 Hz

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Smart Card Key	14CCG	002 *1) 001 *2)	DENSO CORPORATION	EUT
В	Door handle unit	-	-	DENSO CORPORATION	*1)
C	Test bench	-	-	DENSO CORPORATION	*1)
D	AC Adapter	-	-	DENSO CORPORATION	*1)
Е	Laptop PC	PB453JNA125A A71	8E053638H	TOSHIBA	*1)
F	AC Adapter	PA3917U- 1ACA	T02141000156 99A	TOSHIBA	*1)

^{*1)} Used for Normal use mode only.

List of cables used

No.	Name	Length (m)	Shi	Remark	
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	*1)
2	DC and Signal Cable	0.8	Unshielded	Unshielded	*1)
3	AC Cable	2.0	Unshielded	Unshielded	*1)
4	USB Cable	1.8	Shielded	Shielded	*1)
5	DC Cable	1.7	Unshielded	Unshielded	*1)
6	AC Cable	0.9	Unshielded	Unshielded	*1)

^{*1)} Used for Normal use mode only.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Transmitting mode only.

Test report No. : 11358925H
Page : 10 of 21
Issued date : August 18, 2016
FCC ID : HYQ14CCG

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3 m.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9kHz to 90kHz and From 110kHz to 150kHz	From 90kHz to 110kHz	From 150kHz to 490kHz	From 490kHz to 30MHz	From 30MHz to 1GHz	Above 1GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200Hz	200Hz	9.1kHz	9.1kHz	120kHz	PK: S/A:RBW 1MHz, VBW 3MHz

⁻ The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore the test with mechanical key was performed only.

Measurement range : 9 kHz-4.4 GHz
Test data : APPENDIX
Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Test report No. : 11358925H Page : 11 of 21 **Issued date** : August 18, 2016

FCC ID : HYQ14CCG

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20dB and 99% Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
1	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

Test data : APPENDIX

Test result : Pass

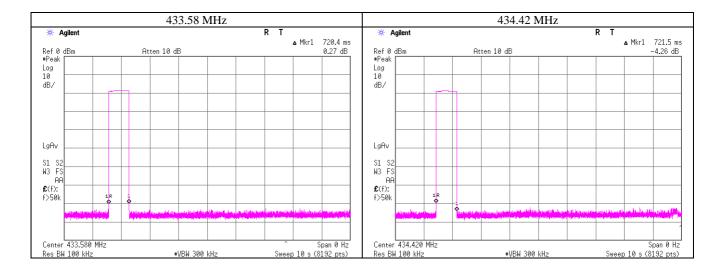
 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

: +81 596 24 8999 Telephone Facsimile : +81 596 24 8124

Test report No. : 11358925H
Page : 12 of 21
Issued date : August 18, 2016
FCC ID : HYQ14CCG

APPENDIX 1: Test data

Automatically deactivate


Test place Ise EMC Lab. No.4 Measurement Room

Report No. 11358925H Date 07/14/2016

Temperature/ Humidity
Engineer
Mode

24 deg. C / 55% RH
Satofumi Matsuyama
Normal use mode

Tx Freq	Time of	Limit	Result
	Transmitting		
	[sec]	[sec]	
433.58 MHz	0.7204	5.00	Pass
434.42 MHz	0.7215	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H Page : 13 of 21 Issued date : August 18, 2016

FCC ID : HYQ14CCG

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 433.58 MHz

Ise EMC Lab. No.4 Semi Anechoic Chamber Test place

Report No. 11358925H

07/14/2016 Date 07/14/2016

25 deg. C / 60% RH Temperature/ Humidity 24 deg. C / 55% RH Engineer Keisuke Kawamura Satofumi Matsuyama

(Above 1GHz) (Below 1GHz)

Mode Transmitting mode 433.58MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
433.580	PK	79.3	78.9	16.3	10.7	32.1	-	74.2	73.8	100.8	26.6	27.0	Carrier
867.160	PK	33.3	33.1	21.5	12.9	31.3	-	36.4	36.2	80.8	44.4	44.6	Outside
1300.740	PK	46.6	47.8	25.0	5.4	34.1	-	42.9	44.1	73.9	31.0	29.8	Inside
1734.320	PK	43.5	43.6	26.4	5.7	32.9	-	42.7	42.8	80.8	38.1	38.0	Outside
2167.900	PK	43.0	43.3	27.7	6.0	32.2	-	44.5	44.8	80.8	36.3	36.0	Outside
2601.480	PK	42.1	41.8	28.1	6.2	32.0	-	44.4	44.1	80.8	36.4	36.7	Outside
3035.060	PK	42.8	42.6	28.3	6.4	31.9	-	45.6	45.4	80.8	35.2	35.4	Outside
3468.640	PK	42.4	42.5	28.7	6.6	31.7	-	46.0	46.1	80.8	34.8	34.7	Outside
3902.220	PK	41.9	42.0	29.9	6.8	31.5	-	47.1	47.2	73.9	26.8	26.7	Inside
4335.800	PK	41.2	41.1	31.2	7.0	31.4	-	48.0	47.9	73.9	25.9	26.0	Inside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier)$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
433.580	PK	79.3	78.9	16.3	10.7	32.1	0.0	74.2	73.8	80.8	6.6	7.0	Carrier
867.160	PK	33.3	33.1	21.5	12.9	31.3	0.0	36.4	36.2	60.8	24.4	24.6	Outside
1300.740	PK	46.6	47.8	25.0	5.4	34.1	0.0	42.9	44.1	53.9	11.0	9.8	Inside
1734.320	PK	43.5	43.6	26.4	5.7	32.9	0.0	42.7	42.8	60.8	18.1	18.0	Outside
2167.900	PK	43.0	43.3	27.7	6.0	32.2	0.0	44.5	44.8	60.8	16.3	16.0	Outside
2601.480	PK	42.1	41.8	28.1	6.2	32.0	0.0	44.4	44.1	60.8	16.4	16.7	Outside
3035.060	PK	42.8	42.6	28.3	6.4	31.9	0.0	45.6	45.4	60.8	15.2	15.4	Outside
3468.640	PK	42.4	42.5	28.7	6.6	31.7	0.0	46.0	46.1	60.8	14.8	14.7	Outside
3902.220	PK	41.9	42.0	29.9	6.8	31.5	0.0	47.1	47.2	53.9	6.8	6.7	Inside
4335.800	PK	41.2	41.1	31.2	7.0	31.4	0.0	48.0	47.9	53.9	5.9	6.0	Inside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier) + duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.45 \text{ m/}3.0 \text{ m}) = 3.42 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H
Page : 14 of 21
Issued date : August 18, 2016
FCC ID : HYQ14CCG

07/14/2016

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 434.42 MHz

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11358925H Date 07/14/2016

Temperature/ Humidity 25 deg. C / 60% RH 24 deg. C / 55% RH Engineer Keisuke Kawamura (Above 1GHz) 25 deg. C / 60% RH Satofumi Matsuyama (Below 1GHz)

Mode Transmitting mode 434.42MHz

PK

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
434.420	PK	79.1	78.4	16.3	10.7	32.1	-	74.0	73.3	100.8	26.8	27.5	Carrier
868.840	PK	35.1	34.9	21.5	12.9	31.3	-	38.2	38.0	80.8	42.6	42.8	Outside
1303.260	PK	46.7	46.3	25.0	5.4	34.1	-	43.0	42.6	73.9	30.9	31.3	Inside
1737.680	PK	43.5	43.6	26.4	5.7	32.9	-	42.7	42.8	80.8	38.1	38.0	Outside
2172.100	PK	43.0	43.3	27.7	6.0	32.2	-	44.5	44.8	80.8	36.3	36.0	Outside
2606.520	PK	42.1	41.8	28.1	6.2	32.0	-	44.4	44.1	80.8	36.4	36.7	Outside
3040.940	PK	42.8	42.6	28.3	6.4	31.9	-	45.6	45.4	80.8	35.2	35.4	Outside
3475.360	PK	42.4	42.5	28.7	6.6	31.7	-	46.0	46.1	80.8	34.8	34.7	Outside
3909.780	PK	41.9	42.0	29.9	6.8	31.5	-	47.1	47.2	73.9	26.8	26.7	Inside
4344.200	PK	41.2	41.1	31.3	7.0	31.4	-	48.1	48.0	73.9	25.8	25.9	Inside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
434.420	PK	79.1	78.4	16.3	10.7	32.1	0.0	74.0	73.3	80.8	6.8	7.5	Carrier
868.840	PK	35.1	34.9	21.5	12.9	31.3	0.0	38.2	38.0	60.8	22.6	22.8	Outside
1303.260	PK	46.7	46.3	25.0	5.4	34.1	0.0	43.0	42.6	53.9	10.9	11.3	Inside
1737.680	PK	43.5	43.6	26.4	5.7	32.9	0.0	42.7	42.8	60.8	18.1	18.0	Outside
2172.100	PK	43.0	43.3	27.7	6.0	32.2	0.0	44.5	44.8	60.8	16.3	16.0	Outside
2606.520	PK	42.1	41.8	28.1	6.2	32.0	0.0	44.4	44.1	60.8	16.4	16.7	Outside
3040.940	PK	42.8	42.6	28.3	6.4	31.9	0.0	45.6	45.4	60.8	15.2	15.4	Outside
3475.360	PK	42.4	42.5	28.7	6.6	31.7	0.0	46.0	46.1	60.8	14.8	14.7	Outside
3909.780	PK	41.9	42.0	29.9	6.8	31.5	0.0	47.1	47.2	53.9	6.8	6.7	Inside
4344.200	PK	41.2	41.1	31.3	7.0	31.4	0.0	48.1	48.0	53.9	5.8	5.9	Inside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Distance factor) - Gain (Amplifier) + duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.45 \text{ m}/3.0 \text{ m}) = 3.42 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

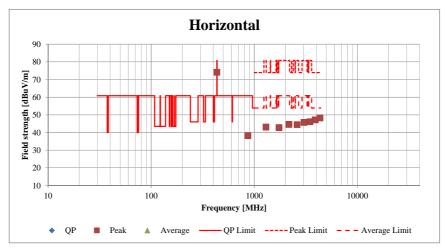
Test report No. : 11358925H
Page : 15 of 21
Issued date : August 18, 2016

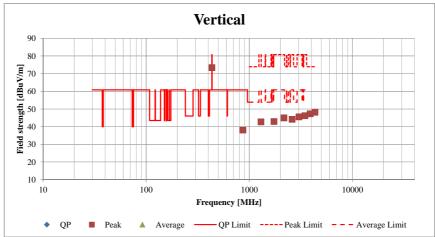
FCC ID : HYQ14CCG

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

11358925H


Report No.


Date 07/14/2016 07/14/2016 Temperature / Humidity 25 deg. C / 60% RH 24 deg. C / 55% RH

Engineer Keisuke Kawamura Satofumi Matsuyama

(Above 1GHz) (Below 1GHz)

Mode Transmitting mode 433.58 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H
Page : 16 of 21
Issued date : August 18, 2016
FCC ID : HYQ14CCG

-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.4 measurement room

Report No. 11358925H
Date 07/14/2016
Temperature/ Humidity 24 deg. C / 55% RH
Engineer Satofumi Matsuyama

Mode Transmitting mode 433.58 MHz / 434.42 MHz

Bandwidth Limit: Fundamental Frequency 433.58 MHz x 0.25% = 1083.95 kHz

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

433.58 MHz

433.30 WIII
-20dB Bandwidth
[kHz]
37.18

434.42MHz

-20dB Bandwidth
[kHz]
37.23

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
37.18 + 37.23 = 74.41	1083.95	Pass

Bandwidth Limit: Fundamental Frequency 433.58 MHz x 0.25% = 1083.95 kHz

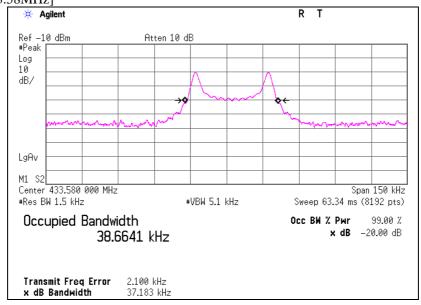
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
38.66	1083.95	Pass

Bandwidth Limit: Fundamental Frequency 434.42 MHz x 0.25% = 1086.05 kHz

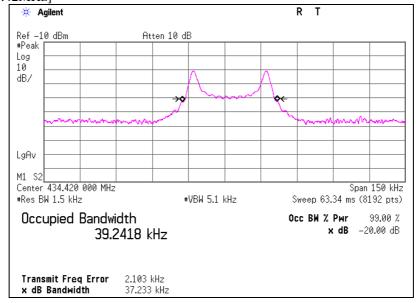
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
39.24	1086.05	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11358925H
Page : 17 of 21
Issued date : August 18, 2016
FCC ID : HYQ14CCG


-20dB and 99% Occupied Bandwidth

Test place Ise EMC Lab. No.4 measurement room


Report No. 11358925H
Date 07/14/2016
Temperature/ Humidity 24 deg. C / 55% RH
Engineer Satofumi Matsuyama

Mode Transmitting mode 433.58 MHz / 434.42 MHz

[433.58MHz]

[434.42MHz]

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Test report No. : 11358925H
Page : 18 of 21
Issued date : August 18, 2016

FCC ID : HYQ14CCG

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2016/01/21 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2015/11/06 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2015/08/10 * 12
MCC-141	Microwave Cable	Junkosha	MWX221	1305S002R(1m) / 1405S146(5m)	RE	2016/06/21 * 12
MPA-12	MicroWave System Amplifier	Agilent	83017A	00650	RE	2015/10/01 * 12
MTR-01	Test Receiver	Rohde & Schwarz	ESI40	100084	RE	2015/11/28 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2015/11/02 * 12
MLA-23	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	RE	2016/01/30 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2016/06/20 * 12
MAT-68	Attenuator	Anritsu	MP721B	6200961025	RE	2015/11/12 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2016/03/18 * 12
MMM-10	DIGITAL HITESTER	Hioki	3805	051201148	RE	2016/01/18 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, and Automatically deactivate tests

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$