

Test report No.

Page

: 1 of 23

Issued date Revised date : October 27, 2011 : November 4, 2011

: 32BE0279-HO-01-A-R1

FCC ID

: HYQ14AGX

RADIO TEST REPORT

Test Report No.: 32BE0279-HO-01-A-R1

Applicant

DENSO CORPORATION

Type of Equipment

Electronic Key

Model No.

14AGX

Test regulation

FCC Part 15 Subpart C: 2011

FCC ID

HYQ14AGX

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 32BE0279-HO-01-A. 32BE0279-HO-01-A is replaced with this report.

Date of test:

October 18 to 21, 2011

Representative test engineer:

> Kazuya Yoshioka Engineer of WiSE Japan, UL Verification Service

Approved by:

Shinya Watanabe Leader of WiSE Japan, **UL Verification Service**

NVLAP LAB CODE: 200572-0

200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma

This laboratory is accredited by the NVLAP LAB CODE

rk1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8116

Facsimile

: +81 596 24 8124

Test report No. : 32BE0279-HO-01-A-R1 Page : 2 of 23

Page Issued date Revised date FCC ID

: October 27, 2011 : November 4, 2011 : HYQ14AGX

CONTENTS	PAGE
SECTION 1: Customer information ······	3
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results······	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious En	
SECTION 6: Automatically deactivate	
SECTION 7: -20dB and 99% Occupied Bandwidth ······	
APPENDIX 1: Data of EMI test	11
Automatically deactivate	11
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)	
-20dB Occupied Bandwidth	
99% Occupied Bandwidth	
Duty Cycle	
APPENDIX 2:Test Instruments·····	19
APPENDIX 3: Photographs of test setup······	21
Radiated emission	
Worst case position	22

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 23
Issued date : October 27, 2011
Revised date : November 4, 2011
FCC ID : HYQ14AGX

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-city, Aichi-ken, 448-8661 Japan

Telephone Number : +81-566-20-3957 Facsimile Number : +81-566-25-4837 Contact Person : TAKAYUKI AONO

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Electronic Key Model No. : 14AGX

Serial No. : Refer to Clause 4.2

Rating : DC 3.0V

Receipt Date of Sample : October 6, 2011

Country of Mass-production : Japan / United States of America

Condition of EUT : Engineer prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

General Specification

Clock frequency in the system : 8MHz

Radio Specification

Frequency of Operation : 314.35MHz Reciving frequency : 134.2kHz

Oscillator frequency : 314.35MHz SAW resonator

 $Modulation \hspace{1.5cm} : \hspace{.5cm} FSK \, / \, F1D$

Power Supply (radio part input) : Norminal supply voltage: DC 3.0V (One lithium battery)

Antenna type : Built-in type (Fixed)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page

: 4 of 23 **Issued date** : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

SECTION 3: Test specification, procedures & results

3.1 **Test Specification**

Test Specification FCC Part 15 Subpart C: 2011, final revised on July 8, 2011 and effective August 8, 2011

Title FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted amining	FCC: ANSI C63.4:2003 7. AC power line conducted emission measurements	FCC: Section 15.207	-DT/A	NI/A ±1)	
Conducted emission	IC: RSS-Gen 7.2.4	IC: RSS-Gen 7.2.4	¬N/A	N/A*1)	-
Automatically Deactivate	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: -	FCC: Section 15.231(a)(1) IC: RSS-210 A1.1.1	N/A	Complied	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: RSS-Gen 4.8	FCC: Section 15.231(b) IC: RSS-210 A1.1.2	9.4 dB 314.35MHz Horizontal PK with Duty factor	Complied	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: RSS-Gen 4.9	FCC: Section 15.205 Section 15.209 Section 15.231(b) IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 7.2.5	15.3dB 2514.800MHz Horizontal PK with Duty factor	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: -	FCC: Section 15.231(c) IC: Reference data	_ N/A	Complied	Radiated
Receiver Spurious Emissions	FCC: ANSI C63.4:2003 12. Measurement of unintentional radiators other than ITE IC: RSS-Gen 4.10	FCC: Section 15.109(a) Section 15.209 IC: RSS-Gen 6 RSS-210 2.3	34.6dB 80.000MHz Horizontal, QP Vertical,QP	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 23

Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Bandwidth	IC: RSS-Gen 4.6.1	IC: RSS-Gen 4.6.1	N/A	N/A	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room		Radiated emission						
(semi-		(3m*)	(<u>+</u> dB)	_	(1m*)	(<u>+</u> dB)	$(0.5\text{m*})(\pm dB)$	
anechoic chamber)	9kHz -30MHz	30MHz -300MHz	300MHz -1GHz	1GHz -10GHz	10GHz -18GHz	18GHz -26.5GHz	26.5GHz -40GHz	
No.1	4.2dB	5.0dB	5.1dB	5.6dB	5.9dB	4.4dB	4.3dB	
No.2	4.1dB	5.2dB	5.1dB	5.7dB	5.8dB	4.3dB	4.2dB	
No.3	4.5dB	5.0dB	5.2dB	5.7dB	5.8dB	4.5dB	4.2dB	
No.4	4.7dB	5.2dB	5.2dB	5.7dB	5.8dB	5.1dB	4.2dB	

^{*3}m/1m/0.5m = Measurement distance

 $\frac{Radiated\ emission\ test(3m)}{The\ data\ listed\ in\ this\ test\ report\ has\ enough\ margin,\ more\ than\ the\ site\ margin.}$

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page

: 6 of 23 **Issued date** : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

3.5 **Test Location**

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

1 cicphone . +61 370 2-		Taesinine . +61 37		T	
	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration	Number	Height (m)	reference ground plane (m) /	rooms
	Number			horizontal conducting plane	
No.1 semi-anechoic	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power
chamber					source room
No.2 semi-anechoic	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
chamber					
No.3 semi-anechoic	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3
chamber	1.0700	2,,,,,,	1210 11 010 11 015 11	0.0 1.2.7.2.11	Preparation
chamber					room
No.3 shielded room	_	_	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4
chamber	154570	27/36 4	12.0 x 0.3 x 3.7m	0.0 X 3.73III	Preparation
Chamber					room
No.4 shielded room		_	4.0 x 6.0 x 2.7m	N/A	100111
No.5 semi-anechoic	-	-	4.0 X 0.0 X 2.7111	IN/A	-
	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
chamber			40 45 27	175 5 4	
No.6 shielded	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
room					
No.6 measurement	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
room					
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement	-	-	3.1 x 5.0 x 2.7m	N/A	-
room					
No.9 measurement	_	_	8.0 x 4.5 x 2.8m	2.0 x 2.0m	_
room			0.0 11 1.0 11 2.0111	210 11 210111	
No.10 measurement	<u> </u>	_	2.6 x 2.8 x 2.5m	2.4 x 2.4m	_
room			2.5 A 2.6 A 2.5III	2.1 / 2.7111	
No.11 measurement	_	_	3.1 x 3.4 x 3.0m	2.4 x 3.4m	_
	_	-	J.1 A J.4 A J.UIII	2.7 A 3.4III	1 -
room					

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, Test instruments.

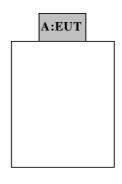
Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page

: 7 of 23 **Issued date** : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

SECTION 4: Operation of E.U.T. during testing


4.1 **Operating Modes**

4.1 Operating wodes	
Test Item*	Mode
Automatically Deactivate	Normal use mode
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1)
Electric Field Strength of Spurious Emission	
-20dB & 99% Occupied Bandwidth	
Duty Cycle	
Spurious Emissition	Transmitting mode (Tx) *1)
	Receiving mode(Rx) *2)

^{*}The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transmitter button is being pressed.)

End users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

^{*} Test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Electronic Key	14AGX	001	DENSO	EUT
				CORPORATION	

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} This mode was performed with a switch pushed by a nonconductive Jig

^{*2)} Before the test, EUT was confirmed to be set to 134.2kHz receiving mode and it functioned normally. (Even if EUT was set to receiving mode, it did not receive the signal during the test because there was no counter device.)

Test report No. : 32BE0279-HO-01-A-R1 Page : 8 of 23

Page Issued date

: October 27, 2011 : November 4, 2011 : HYQ14AGX

Revised date FCC ID

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 1.

[Transmitting mode]

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency: From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0deg., and 90deg.).

Frequency: From 30MHz to 3.2GHz at distance 3m

The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver/spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9kHz to 90kHz	From 90kHz to 110kHz	From 150kHz to 490kHz	From 490kHz to 30MHz	Below or equal to	Above 1GHz *1)
	and				1GHz	
	From 110kHz to 150kHz					
Detector Type	PK/AV	QP	PK/AV	QP	Peak and	Peak and
					Peak with	Peak with
					Duty factor	Duty factor
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz	PK:
						S/A:RBW
						1MHz,
						VBW:3MHz

^{*1)} When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore the test with mechanical key was performed only.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Refer to Figure 1 about Direction of the Loop Antenna.

Page : 9 of 23

Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

[Receiving mode]

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency: From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0deg., and 90deg.).

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30MHz to 1GHz at distance 3m

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

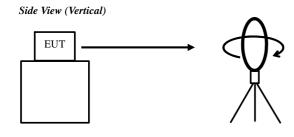
The measurements were performed for both vertical and horizontal antenna polarization.

Measurements were performed with a QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver below 1GHz...

	From 9kHz to 90kHz and From 110kHz to 150kHz	From 90kHz to 110kHz	From 150kHz to 490kHz	From 490kHz to 30MHz	From 30MHz to 1GHz
Detector Type	PK/AV	QP	PK/AV	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.


Measurement range : 9kHz-3.2GHz (Transmitting)

9kHz-1GHz (Receiving)

Test data : APPENDIX

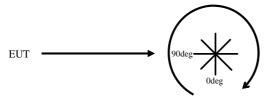

Test result : Pass

Figure 1: Direction of the Loop Antenna

.....

Front side: 0 deg. Forward direction: clockwise

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 23 Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20dB and 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20dB Bandwidth	200kHz	10kHz	30kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 % of Span	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measurement was performed with Peak detector. Max Hold since the duty cycle was not 100%.							

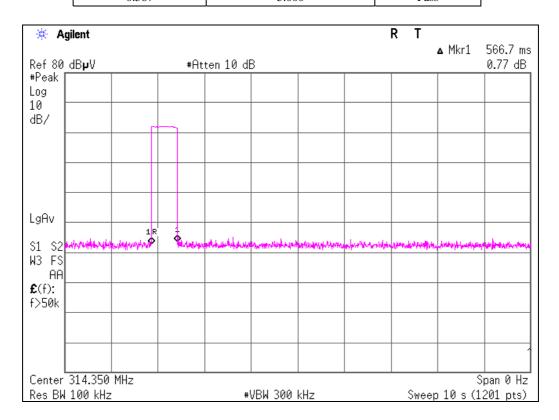
Test data : APPENDIX

Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 23
Issued date : October 27, 2011
Revised date : November 4, 2011
FCC ID : HYQ14AGX


APPENDIX 1: Data of EMI test

Automatically deactivate

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32BE0279-HO-01
Date 10/20/2011
Temperature/ Humidity 25 deg.C / 43% RH
Engineer Kazuya Yoshioka
Mode Normal use mode

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.567	5.000	Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 23 Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.3 and No.4 Semi Anechoic Chamber

Report No. 32BE0279-HO-01

Date 10/18/2011 10/20/2011
Temperature/ Humidity 26 deg. C / 47% RH 25 deg. C / 43% RH
Engineer Satofumi Matsuyama Kazuya Yoshioka
Below 1MHz Above 1GHz

Mode Transmitting mode

PK

111													
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	77.7	73.6	15.6	10.1	32.0	-	71.4	67.3	95.5	24.1	28.2	Carrier
628.700	PK	32.3	33.4	19.7	12.0	31.9	-	32.1	33.2	75.5	43.4	42.3	Outside
943.050	PK	30.3	30.7	22.7	13.6	30.9	-	35.7	36.1	75.5	39.8	39.4	Outside
1257.400	PK	44.3	43.9	24.6	1.8	34.0	-	36.7	36.3	75.5	38.8	39.2	Outside
1571.750	PK	43.9	44.7	25.4	2.0	33.2	-	38.1	38.9	73.9	35.8	35.0	Inside
1886.100	PK	41.7	42.6	26.0	2.2	32.6	-	37.3	38.2	75.5	38.2	37.3	Outside
2200.450	PK	42.7	42.9	27.2	2.4	32.3	-	40.0	40.2	73.9	33.9	33.7	Inside
2514.800	PK	46.5	45.7	28.6	2.6	32.2	-	45.5	44.7	75.5	30.0	30.8	Outside
2829.150	PK	42.9	42.8	28.6	2.7	32.0	-	42.2	42.1	73.9	31.7	31.8	Inside
3143.500	PK	42.2	42.2	28.7	2.9	31.9	-	41.9	41.9	75.5	33.6	33.6	Outside

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier)$

PK with Duty factor

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	77.7	73.6	15.6	10.1	32.0	-5.3	66.1	62.0	75.5	9.4	13.5	Carrier
628.700	PK	32.3	33.4	19.7	12.0	31.9	-5.3	26.8	27.9	55.5	28.7	27.6	Outside
943.050	PK	30.3	30.7	22.7	13.6	30.9	-5.3	30.4	30.8	55.5	25.1	24.7	Outside
1257.400	PK	44.3	43.9	24.6	1.8	34.0	-5.3	31.4	31.0	55.5	24.1	24.5	Outside
1571.750	PK	43.9	44.7	25.4	2.0	33.2	-5.3	32.8	33.6	53.9	21.1	20.3	Inside
1886.100	PK	41.7	42.6	26.0	2.2	32.6	-5.3	32.0	32.9	55.5	23.5	22.6	Outside
2200.450	PK	42.7	42.9	27.2	2.4	32.3	-5.3	34.7	34.9	53.9	19.2	19.0	Inside
2514.800	PK	46.5	45.7	28.6	2.6	32.2	-5.3	40.2	39.4	55.5	15.3	16.1	Outside
2829.150	PK	42.9	42.8	28.6	2.7	32.0	-5.3	36.9	36.8	53.9	17.0	17.1	Inside
3143.500	PK	42.2	42.2	28.7	2.9	31.9	-5.3	36.6	36.6	55.5	18.9	18.9	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

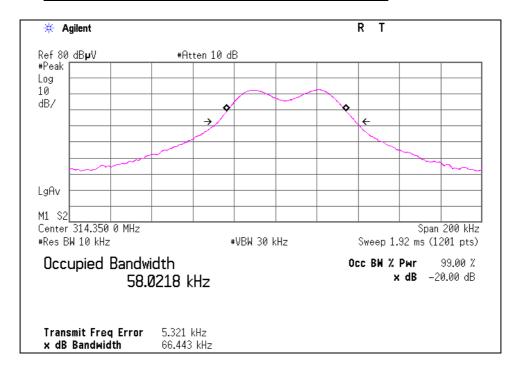
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*} The test above 1GHz was performed with PK detect. Average emission measurements were calculated with PK detect and Duty cycle factor.

^{*} Duty Factor was calculated with the assumption of the worst condition in 100msec.

^{*} The noise measured with PK detect was pulse emission. * No signal detected at 9kHz-30MHz.

Page : 13 of 23 Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX


-20dB Bandwidth

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32BE0279-HO-01
Date 10/20/2011
Temperature/ Humidity 25 deg.C / 43% RH
Engineer Kazuya Yoshioka
Mode Transmitting mode

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
66.44	785.88	Pass

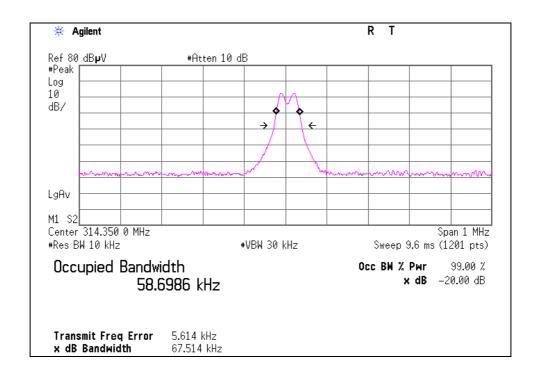
*RBW was set at 1 to 5% of Bandwidth Limit (785.88kHz) (RBW=10kHz). Span was set at 2 to 3.5 times Occupied Bandwidth (Span=200kHz), because this equipment is a narrowband equipment.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 23 Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

99% Occupied Bandwidth


Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32BE0279-HO-01
Date 10/20/2011
Temperature/ Humidity 25 deg.C / 43% RH
Engineer Kazuwa Yoshioka

Engineer Kazuya Yoshioka
Mode Transmitting mode

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
58.70	785.88	Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 15 of 23
Issued date : October 27, 2011

Revised date : November 4, 2011 FCC ID : HYQ14AGX

Duty Cycle

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32BE0279-HO-01 Date 10/18/2011

Temperature/ Humidity 26 deg.C / 47% RH
Engineer Satofumi Matsuyama
Mode Transmitting mode

		ON time(One pulse)	ON time(in 100ms)
Type	Times	[ms]	[ms]
A	14	1.467	20.54
В	44	0.775	34.10

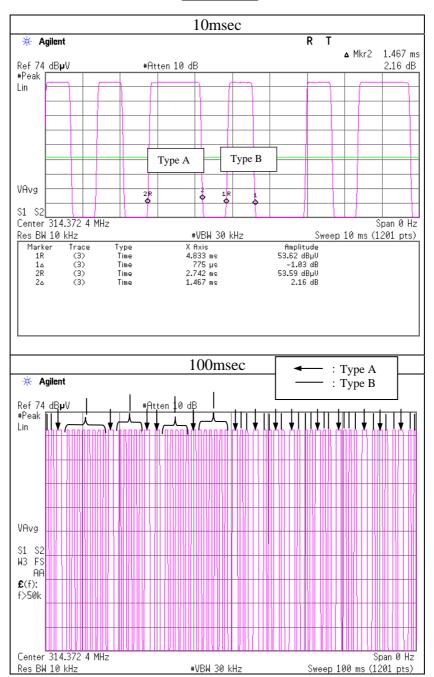
^{*1)}ON time(in 100ms) = Times * ON time(One pulse)

(Total)

ON time	Cycle	Duty	Duty
[ms]	[ms]	(On time/Cycle)	[dB]
54.64	100.00	0.55	-5.3

^{*3)}ON time = Type A's ON time (in 100ms) + Type B's ON time (in 100ms)

Head Office EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)}The train of pulses was exceeding 100msec, and that sampled 100msec was the worst case against the pulse ti

^{*4)}Duty = 20log10(ON time/Cycle)

Page : 16 of 23
Issued date : October 27, 2011
Revised date : November 4, 2011
FCC ID : HYQ14AGX

Duty Cycle

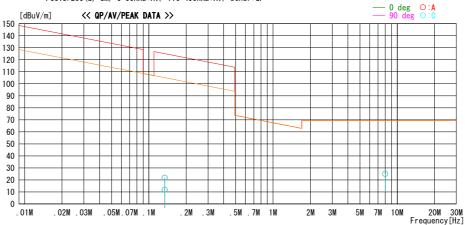
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 23

Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

Radiated Emission

DATA OF RADIATED EMISSION TEST


UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date: 2011/10/21

Report No. : 32BE0279-H0-01

: 22deg. C / 51% RH : Hiroshi Kukita Temp./ Humi. Engineer

Mode / Remarks : Receiving mode(134.2kHz), With Mechanical Key , X-axis

LIMIT : FCC15.209(a) 3m, 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a) 3m, 9-90kHz:AV, 110-490kHz:AV, other:QP

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
0. 13420	27. 0	PEAK	20. 8	6. 1	32. 2	21.7				С	327	
0. 13420	27. 2	PEAK	20. 8	6. 1	32. 2	21.9				Α	344	
0. 13420	17. 1	AV	20. 8	6. 1	32. 2	11.8				Α	344	
0. 13420	17. 2	AV	20. 8	6. 1	32. 2	11.9				C	327	
8. 00000	28. 1	QP	22. 4	6. 7	32. 2	25.0	69. 5	44. 5	0	Α	344	
8. 00000	28. 1	QP	22. 4	6. 7	32. 2	25.0	69. 5	44. 5	90	C	327	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

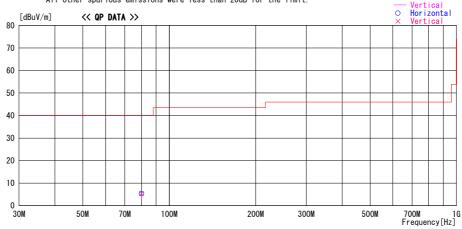
Page : 18 of 23

Issued date : October 27, 2011
Revised date : November 4, 2011
FCC ID : HYQ14AGX

Radiated Emission

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.4 Semi Anechoic Chamber Date: 2011/10/21


Report No. : 32BE0279-H0-01

Temp./Humi. : 25deg. C / 43% RH
Engineer : Kazuya Yoshioka

Mode / Remarks : Receiving mode(134.2kHz)

LIMIT : FCC15.209 3m, below 1GHz:OP, above 1GHz:PK
All other spurious emissions were less than 20dB for the limit.

— Horizontal
— Vertical

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	İ	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
80.000	23. 2	QP	6.6	-24. 4	5. 4	359		Hori.	40.0		
80.000			6.6	-24. 4		359			40.0		
	1	1									
	1	İ	i i								
	i	İ					1				
	İ										
	i I	İ					1				
		İ									
		l									
		l									
		l									
	1	ł					1				
		l									
	1	ł								1	
		ŀ									
		1								1	
		ŀ								1	
		ŀ									
	1									1	
										1	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS (CABLE+ATTEN.) - GAIN (AMP) NS: No signal detected

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 19 of 23 Issued date : October 27, 2011 Revised date : November 4, 2011 FCC ID : HYQ14AGX

APPENDIX 2:Test Instruments

MI test equi Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	* Interval(month
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2011/02/22 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	-	RE	2011/02/23 * 12
MJM-06	Measure	PROMART	SEN1955	-	RE	
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2011/02/15 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2011/08/11 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2010/10/11 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2010/10/11 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2011/07/15 * 12
MAT-09	Attenuator(6dB)	Weinschel Corp	2	BK7973	RE	2010/11/05 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2011/03/04 * 12
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2011/06/21 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2011/02/23 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE / CE	2011/04/15 * 12
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2011/04/08 * 12
LP-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	829425/014	RE	2010/12/08 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D-2W(1m)	-	RE	2011/02/18 * 12
MCC-30	Coaxial cable	UL Japan	-	-	RE	2011/07/28 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2010/11/05 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2011/03/01 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	RE	2011/02/23 * 12
MJM-07	Measure	PROMART	SEN1955	-	RE	-
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2010/11/30 * 12
MTR-07	Test Receiver	Rohde & Schwarz	ESCI	100635	RE	2010/10/27 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2011/08/17 * 12
MLA-08	Logperiodic Antenna	Schwarzbeck	UKLP9140-A	N/A	RE	2011/08/17 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2011/03/25 * 12
MAT-51	Attenuator(6dB)	Weinschel	2	AS3557	RE	2011/01/14 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2011/03/04 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2011/08/11 * 12
MCC-56	Microwave Cable	Suhner	SUCOFLEX104	270875/4(1m) / 284655(5m)	RE	2011/03/02 * 12
MPA-12	MicroWave System Amplifier	Agilent	83017A	MY39500780	RE	2011/03/10 * 12
		•				•

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 23
Issued date : October 27, 2011
Revised date : November 4, 2011
FCC ID : HYQ14AGX

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, Automatically deactivate and Duty cycle tests

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN