

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 INDUSTRY CANADA RSS-GEN ISSUE 2

CERTIFICATION TEST REPORT

FOR

SMART CARD KEY

MODEL NUMBER: 14AEF

FCC ID: HYQ14AEF

IC: 1551A-14AEF

REPORT NUMBER: 08J11701-1

ISSUE DATE: APRIL 2, 2008

Prepared for

DENSO CORP. 1-1 SHOWA-CHO, KARIYA AICHI 448-8661, JAPAN

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

LAB CODE:200065-0

Revision History

Issue		
Date	Revisions	Revised By
04/02/08	Initial Issue	F. Ibrahim
	Date	Date Revisions

Page 2 of 30

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	
2. TEST METHODOLOGY	
3. FACILITIES AND ACCREDITATION	
4. CALIBRATION AND UNCERTAINTY	5
4.1. MEASURING INSTRUMENT CALIBRATION	5
4.2. MEASUREMENT UNCERTAINTY	5
5. EQUIPMENT UNDER TEST	6
5.1. DESCRIPTION OF EUT	
5.2. DESCRIPTION OF AVAILABLE ANTENNAS	6
5.3. SOFTWARE AND FIRMWARE	6
5.4. WORST-CASE CONFIGURATION AND MODE	6
5.5. DETAILS OF TESTED SYSTEM	7
6. TEST AND MEASUREMENT EQUIPMENT	
7. ANTENNA PORT TEST RESULTS	0
7.1. 20 dB AND 99% BANDWIDTH1	0
7.2. DUTY CYCLE	3
7.3. TRANSMISSION TIME	8
8. RADIATED EMISSION RESULTS	
8.1. TRANSMITTER RADIATED SPURIOUS EMISSION 1	9
8.2. RECEIVER RADIATED SPURIOUS EMISSION	4
9. SETUP PHOTOS	

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	DENSO CORP.
	1-1 SHOWA-CHO
	KARIYA, AICHI 448-8661, JAPAN

EUT DESCRIPTION: SMART CARD KEY

MODEL: 14AEF

SERIAL NUMBER: CS02133

DATE TESTED: MARCH 31 – APRIL 1, 2008

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED			
INDUSTRY CANADA RSS-210 ISSUE 7	NO NON-COMPLIANCE NOTED			
INDUSTRY CANADA RSS-GEN ISSUE 2	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

FRANK IBRAHIM ENGINEERING SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Tested By:

TOM CHEN TEST ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 30

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 30

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is mainly used for locking or unlocking the door of the vehicle. The product sends signals using radio frequency when it receives the WAKE signal emitted from the smart entry system in the vehicle.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The device uses an integrated loop antenna for transmitting.

5.3. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host support equipment during testing was Smart05. The test utility software used during testing was BU9870FV-W.

5.4. WORST-CASE CONFIGURATION AND MODE

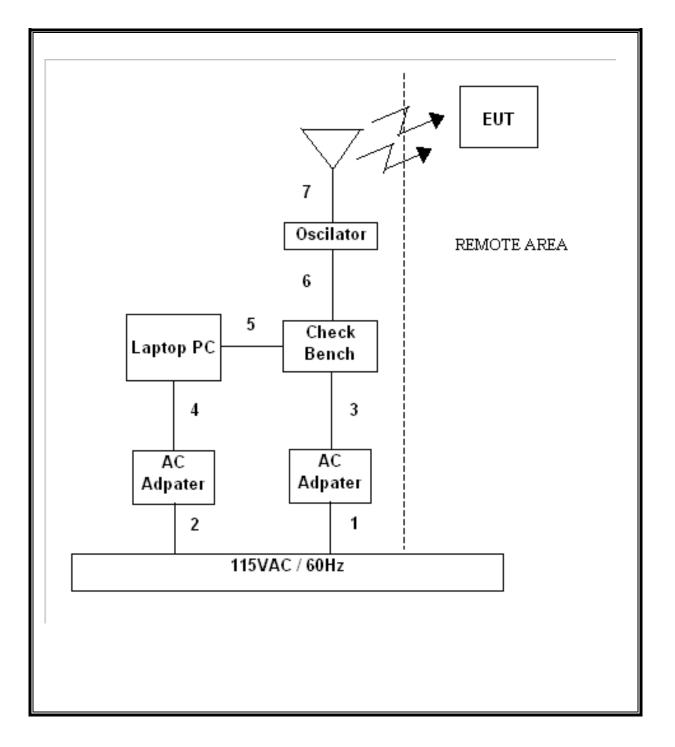
Three orthogonal orientations were investigated, X, Y and Z; the highest measured output power was in the X orientation.

Page 6 of 30

5.5. DETAILS OF TESTED SYSTEM

SUPPORT EQUIPMENT & PERIPHERALS

TEST PERIPHERALS					
Device Type	Manufacturer	Model Number	Serial Number	FCC ID	
Laptop PC	Dell	PP04S	CN-0P5792-36521-541-207F	DoC	
AC Adapter	Dell	PA1650-05D2	CN-0F7970-71615-34BC	DoC	
Check Bench	Denso	NA	NA	NA	
Oscillator	Toyota	89991-68050	4L09	NA	
Antenna (Door Handle)	NA	NA	NA	NA	
AC Adapter	FUTABA	RC45-12	7206	NA	


I/O CABLES

TEST I/O CABLES						
Cable No	I/O Port	# of I/O Port	Connector Type	Type of Cable	Cable Length	Remark
1	AC	1	AC	Un-shielded	1m	N/A
2	AC	1	AC	Un-shielded	1m	N/A
3	DC	1	DC	Un-shielded	1.5m	N/A
4	DC	1	DC	Un-shielded	0.5m	N/A
5	USB	1	USB	Un-shielded	1m	N/A
6	Oscilator	3	Jack	Un-shielded	0.5m	N/A
7	Antenna	1	Door Handle	Un-shielded	0.5m	N/A

TEST SETUP

The EUT is a stand-alone unit and powered by 3 VDC batteries, for the purpose of the testing an oscillator, antenna check-bench and laptop PC are used to control the EUT.

SETUP DIAGRAM FOR TESTS

Page 8 of 30

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	09/28/07	09/28/08
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	10/03/06	09/27/08
Antenna, Horn, 18 GHz	EMCO	3115	C00872	04/15/07	04/15/08
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/14/06	03/18/08

Page 9 of 30

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB AND 99% BANDWIDTH

LIMIT

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST PROCEDURE

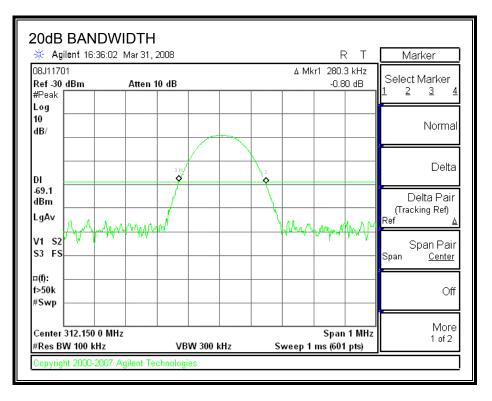
The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 300 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

<u>RESULTS</u>

No non-compliance noted:


20dB Bandwidth

Frequency	20dB Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
312.15	280.3	780.375	-500.075

99% Bandwidth


Frequency	99% Bandwidth	Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
312.15	37.7868	780.375	-742.5882

20dB BANDWIDTH

Page 11 of 30

99% BANDWIDTH

Page 12 of 30

7.2. DUTY CYCLE

<u>LIMIT</u>

FCC §15.35 (c)

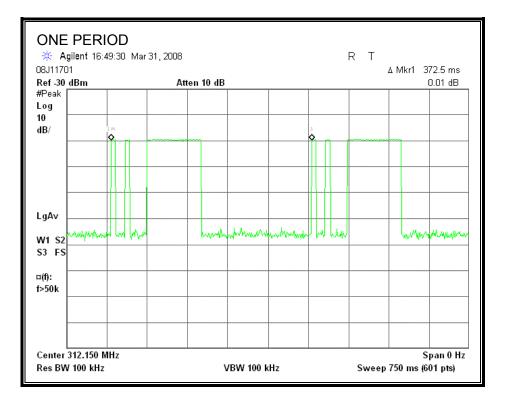
The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

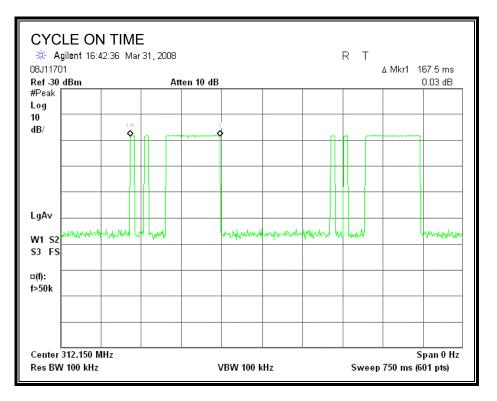
CALCULATION:

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

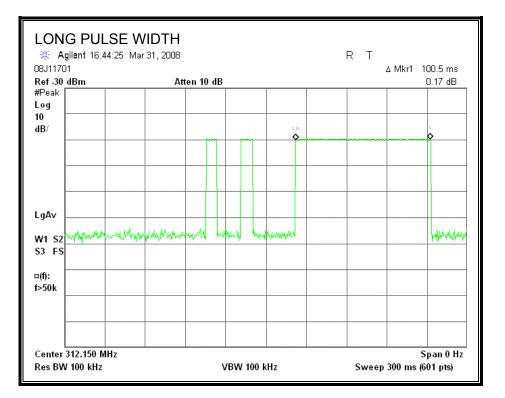

RESULTS

No non-compliance noted:

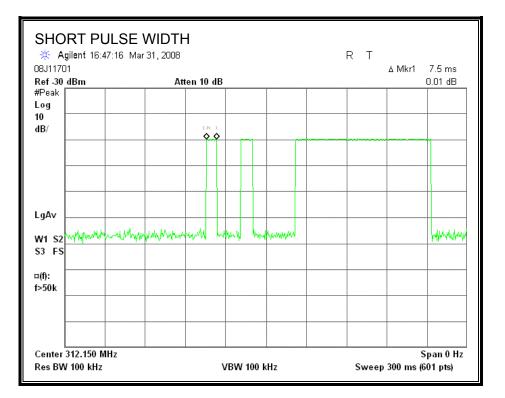
One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)
· · ·	· · /		· · ·			· · /


Page 13 of 30

ONE PERIOD


Page 14 of 30

CYCLE ON TIME


Page 15 of 30

LONG PULSE WIDTH

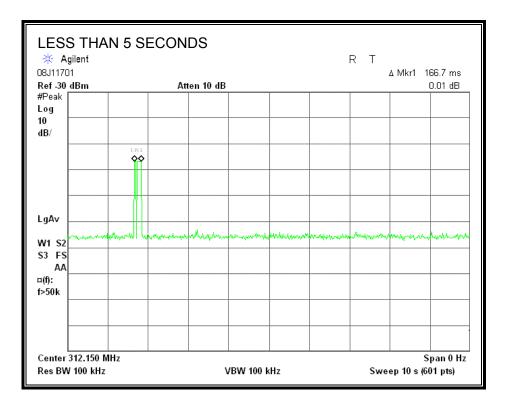
Page 16 of 30

SHORT PULSE WIDTH

Page 17 of 30

7.3. TRANSMISSION TIME

<u>LIMIT</u>


FCC §15.231 (a) (2) IC A1.1.1 (b) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

Page 18 of 30

8. RADIATED EMISSION RESULTS

8.1. TRANSMITTER RADIATED SPURIOUS EMISSION

<u>LIMITS</u>

FCC §15.231 (b)

IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundamental Frequency	Spurious Emissions
(MHz)	(microvolts/meter)	(microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 ¹	125 to 375 ¹
174 - 260	3,750	375
260 - 470	3,750 to 12,500 ¹	375 to 1,250 ¹
Above 470	12,500	1,250

¹Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12		
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)		
13.36 – 13.41	322 - 335.4		. ,		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 20 of 30

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 21 of 30

FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSIONS 30 - 1000 MHz

	CO	MPL	IAN	CE					Proj	iect #:	08J11701			
Certification Services										ort #:	08J11701-1			
FCC, VCCI, CISPR, CE, AUSTEL, NZ									Date &	Time: Engr:	03/31/08 Tom Chen		-	
		A, TUV, BSI			04				rest	engr:				
561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0886														
				tpany:	DENSO Smart Card Key									
			T Descri onfigur			ard Key Ind Alone							-	
			Type of	Test:	FCC	15.231b								
		Mode	of Oper	ation:	Transmi	tting							-	
M% = ((t1	+t2+t3+)			100.00%	Av Reading = Pk Reading + 20*log(M%)]		
	,	.,						20 * log (N		0.00	3()			
		1 0 D./	0.5	01	0		0	DL Lin 1	01	DL Mar 1	0	D-L	0	11-1-1-1-1
Freq. (MHz)	Pk Rdg (dBuV)	Av Rdg (dBuV)	AF (dB)	Closs (dB)	Pre-amp (dB)	Pk Level (dBuV/m)		Pk Limit FCC B	Av Limit FCC B	Pk Margin (dB)	Avg Margin (dB)	Pol (H/V)	Az (Deg)	Height (Meter)
	(EUT Laγ		(00)	(30)	(30)	(aba will)	(abowini)	100_0		(60)	(30)	(14.4)	(009)	(morol)
312.15	35.69	35.69	17.00	1.82	0.00	54.51	54.51	95.45	75.45	-40.94	-20.94	3mV	0.00	1.50
312.15	44.78	44.78	17.00	1.82	0.00	63.60	63.60	95.45	75.45	-31.85	-11.85	3mH	0.00	1.00
	(EUT Star	• • • •	47.00	1.00	0.00	50.00	50.02	05.45	75 45	25.52	45.50	2	0.00	2.00
312.15 312.15	41.11 38.22	41.11 38.22	17.00 17.00	1.82 1.82	0.00	59.93 57.04	59.93 57.04	95.45 95.45	75.45 75.45	-35.52 -38.41	-15.52 -18.41	3m∨ 3mH	0.00	2.00
	L EUT Side			1.02	0.00	5r.04	- Jr.04	55.45	10.40	-30.41	-10.41	JULI	0.00	1.00
312.15	41.60	41.60	17.00	1.82	0.00	60.42	60.42	95.45	75.45	-35.03	-15.03	3mV	0.00	2.00
312.15	40.95	40.95	17.00	1.82	0.00	59.77	59.77	95.45	75.45	-35.68	-15.68	ЗmН	0.00	1.20
Worst Pos														
624.30 624.30	27.00 28.00	27.00	22.65	2.83	0.00	52.48 53.48	52.48 53.48	75.45	55.45 55.45	-22.97	-2.97	3mV 3mH	0.00	1.60
624.30	28.00	28.00	22.65	2.83	0.00	53.48	53.48	75.45	55.45	-21.97	-1.97	3mH	0.00	1.20

Page 22 of 30

HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

Company Project # Date: Test Eng Configur Mode: <u>Test Equ</u> Ho T120;	nce Ĉe y: #: ation: nipmen orn 1- S/N: 29:	Tific ation S Denso 08J11701 3/31/2008 Tom Chen EUT With St TX On t: 18 GHz 310 @3m	Pre-ar	emont 5	1-260	ЭНz	Pre-am	plifer	26-40GH	z	Н	orn > 18	GHz	•	Limit FCC 15.209 ~	
Hi Frequency Cables 2 foot cable 3 foot cable					•	12 foot cable C-5m Chamber				HPF Reject Filter			RB	Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz; VBW=10Hz		
f GHz 1.247 1.556 1.247 1.556	Dist (m) 3.0 3.0 3.0 3.0	Read Pk dBuV 58.3 39.0 60.5 48.3	Read Avg. dBuV 58.3 39.0 60.5 48.3	AF dB/m 26.7 27.8 26.7 27.8	CL dB 30 00 00 00	Amp dB -39.1 -38.7 -39.1 -38.7	D Corr dB 0.0 0.0 0.0 0.0	Fltr dB 0.0 0.0 0.0 0.0	Peak dBuV/m 48.8 28.1 48.0 37.4	Avg dBuV/m 48.8 28.1 48.0 37.4	Pk Lim dBuV/m 75.45 75.45 75.45 75.45	Avg Lim dBuV/m 55.45 55.45 55.45 55.45	Pk Mar dB -26.6 -47.4 -27.4 -38.1	Avg Mar dB -6.6 -27.4 -7.4 -18.1	Notes (V/H) V V H H	
	fMeasurement FrequencyAmpPreamp GainAvg LimAverage Field Strength LimitDistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak LimitCLCable LossHPFHigh Pass FilterFilterFilter															

Page 23 of 30

8.2. RECEIVER RADIATED SPURIOUS EMISSION

<u>LIMITS</u>

IC RSS-Gen Issue 2, section 7.2.3.2

All spurious emissions shall comply with the limits shown below:

Limits for radiated disturbance of Class B ITE at measuring distance of 3 m						
Frequency range	Quasi-peak limits					
(MHz)	(dBµV/m)					
30 to 88 40						
88 to 216	43.5					
216 to 960 46						
Above 960 MHz 54						
Note: The lower limit shall apply at the transition frequency.						

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

<u>RESULTS</u>

No non-compliance noted:

Page 24 of 30

RECEIVER SPURIOUS EMISSIONS 30MHz - 1GHz

No RX spurious was detected above the system noise floor level.

Page 25 of 30

HARMONICS AND SPURIOUS EMISSIONS ABOVE 1GHz

No RX spurious was detected above the system noise floor level.

Page 26 of 30