

Test report No. : 13594905H Page : 1 of 23 **Issued date** : January 12, 2021 FCC ID : HYQ12BGR

RADIO TEST REPORT

Test Report No.: 13594905H

Applicant DENSO CORPORATION

Type of EUT **Remote Keyless Entry System (Transmitter)**

Model Number of EUT 12BGR

FCC ID HYQ12BGR

Test regulation FCC Part 15 Subpart C: 2020

Test Result Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.

Date of test: December 17, 2020 Representative test engineer: Hiroyuki Furutaka Engineer

Consumer Technology Division

Approved by:

Motoya Imura Leader Consumer Technology Division

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 2 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

REVISION HISTORY

Original Test Report No.: 13594905H

Revision	Test report No.	Date	Page revised	Contents
-	13594905H	January 12, 2021	-	-
(Original)				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 3 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme ACAlternating Current MRA Mutual Recognition Arrangement AFH N/A Adaptive Frequency Hopping Not Applicable Amplitude Modulation NIST National Institute of Standards and Technology AMAmp, AMP Amplifier NS No signal detect. American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna **NVLAP** National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PΚ Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak CISPR QPSK Quadri-Phase Shift Keying Comite International Special des Perturbations Radioelectriques CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF Radio Frequency D-factor Distance factor Dynamic Frequency Selection DFS RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Rx Direct Sequence Spread Spectrum Receiving EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SG EIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator SVSWR **EMC** ElectroMagnetic Compatibility Site-Voltage Standing Wave Ratio **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm TxTransmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth European Union Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum

FM Frequency Modulation

Freq. Frequency

FSK Frequency Shift Keying
GFSK Gaussian Frequency-Shift Keying
GNSS Global Navigation Satellite System

GPS Global Positioning System

Hori. Horizontal

ICES Interference-Causing Equipment Standard
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

ILAC International Laboratory Accreditation Conference
ISED Innovation, Science and Economic Development Canada

ISO International Organization for Standardization

JAB Japan Accreditation Board LAN Local Area Network

LIMS Laboratory Information Management System

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13594905H Test report No. : 4 of 23 Page : January 12, 2021 : HYQ12BGR **Issued date** FCC ID

CONTENTS PAGE

SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurio	
SECTION 6: Automatically deactivate	
SECTION 7: -20 dB and 99 % Occupied Bandwidth	12
APPENDIX 1: Test data	
Automatically deactivate	13
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)	
-20 dB and 99% Occupied Bandwidth	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Radiated emission	
Worst case position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 5 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

 Telephone Number
 : +81-566-20-3953

 Facsimile Number
 : +81-566-25-4837

 Contact Person
 : MASASHI URABE

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Remote Keyless Entry System (Transmitter)

Model Number : 12BGF

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V

Receipt Date : December 16, 2020

Country of Mass-production : Japan, United States of America, China

Condition : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: 12BGR (referred to as the EUT in this report) is a Remote Keyless Entry System (Transmitter).

Radio Specification

Radio Type : Transmitter

Frequency of Operation : $312.10 \text{ MHz} / 314.35 \text{ MHz}^*$

Clock frequency : 27.6 MHz Crystal
Modulation : FSK (F1D)
Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
*These two different frequencies are not emitted simultaneously.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 6 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on October 13, 2020

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	·N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	8.9 dB 314.350 MHz Horizontal, PK with Duty factor	Complied b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2 RSS-Gen 8.9	8.8 dB 2829.150 MHz Horizontal PK with Duty factor <314.35 MHz>	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Automatically deactivate)
- b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))
- c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13594905H
Page : 7 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks		
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated		
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.							

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Kaulateu elilissio	<u>'</u>		
Measurement distance	Frequency ran	Uncertainty (+/-)	
3 m	9 kHz to 30 M	Hz	3.3 dB
10 m			3.2 dB
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	5.0 dB
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB
		(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB
		(Vertical)	4.8 dB
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB
		(Vertical)	5.0 dB
3 m	1 GHz to 6 GH	łz	4.9 dB
	6 GHz to 18 GHz		5.2 dB
1 m	10 GHz to 26.5 GHz		5.5 dB
26.5 GHz to 40 GHz		GHz	5.5 dB
10 m	1 GHz to 18 G	Hz	5.2 dB

Antenna Terminal test

Antenna Terminar test	
Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H Page : 8 of 23

Issued date : January 12, 2021 FCC ID : HYQ12BGR

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 9 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item*	Mode
Automatically Deactivate	Normal use mode
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1)
Electric Field Strength of Spurious Emission	
-20 dB & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

* EUT was set by the software as follows;

Software: 20201130_RKETX_RC_01220F01 Version 2514300010

(Date: 2020.11.30, Storage location: EUT memory)

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

A

*Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Remote Keyless Entry	12BGR	No.1 *1)	DENSO	EUT
	System (Transmitter)		No.2 *2)	CORPORATION	

^{*1)} Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} End users cannot change the settings of the output power of the product.

^{*}This setting of software is the worst case.

^{*2)} Used for Transmitting mode

Test report No. : 13594905H
Page : 10 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

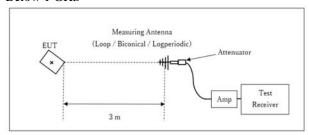
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

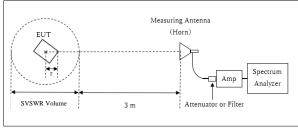
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector	Peak	Peak	Peak	Peak	Peak and	Peak and
Type					Peak with	Peak with Duty factor
					Duty factor	
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,
						VBW: 3 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 11 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

[Test Setup]


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor: $20 \times \log (4.00 \text{ m}^*/3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.00 m

SVSWR Volume: 2.0 m (SVSWR Volume has been calibrate)

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.00 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

- This EUT has two modes which mechanical key is folded in or out. The worst case was confirmed that mechanical key is folded in or out, as a result, the test which mechanical key was folded out was the worst case. Therefore the test was performed under the worst condition.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 12 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	200 kHz	2 kHz	6.2 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
¥1) Th	nt ryss manfammad ryith Dasla	1-44- M T	T = 1 -11444	1 10	0.0/		

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

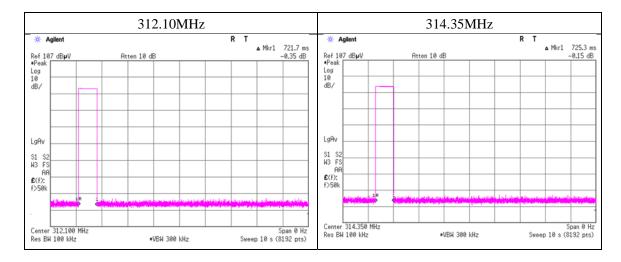
Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 13 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

APPENDIX 1: Test data


Automatically deactivate

Report No. 13594905H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka
Mode Normal use mode

Tx Frequency	Time of	Limit	Result
[MHz]	Transmitting [sec]	[sec]	
312.10	0.7217	5.00	Pass
314.35	0.7253	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 14 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13594905H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka

Mode Transmitting mode 312.10 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	PK	74.0	71.0	13.8	9.7	31.8	-	65.7	62.7	95.4	29.7	32.7	Carrier
624.200	PK	31.6	31.8	19.4	11.3	32.0	-	30.4	30.6	75.4	45.1	44.9	Outside
936.300	PK	28.6	27.9	21.9	12.5	30.9	-	32.1	31.4	75.4	43.3	44.0	Outside
1248.400	PK	43.6	44.4	25.2	6.1	33.8	-	41.0	41.8	75.4	34.4	33.6	Outside
1560.500	PK	43.3	42.2	25.0	5.5	33.1	-	40.7	39.6	73.9	33.2	34.3	Inside
1872.600	PK	42.2	42.3	25.4	5.5	32.3	-	40.8	40.9	75.4	34.6	34.5	Outside
2184.700	PK	42.2	42.5	28.2	5.5	31.9	-	44.0	44.3	75.4	31.4	31.1	Outside
2496.800	PK	41.2	41.8	27.6	5.7	31.8	-	42.7	43.3	73.9	31.2	30.6	Inside
2808.900	PK	42.2	41.5	28.5	5.8	31.7	-	44.8	44.1	73.9	29.1	29.8	Inside
3121.000	PK	42.0	42.2	28.9	5.9	31.6	-	45.1	45.3	75.4	30.3	30.1	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	ult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	74.0	71.0	13.8	9.7	31.8	0.0	65.7	62.7	75.4	9.7	12.7	Carrier
624.200	PK	31.6	31.8	19.4	11.3	32.0	0.0	30.4	30.6	55.4	25.1	24.9	Outside
936.300	PK	28.6	27.9	21.9	12.5	30.9	0.0	32.1	31.4	55.4	23.3	24.0	Outside
1248.400	PK	43.6	44.4	25.2	6.1	33.8	0.0	41.0	41.8	55.4	14.4	13.6	Outside
1560.500	PK	43.3	42.2	25.0	5.5	33.1	0.0	40.7	39.6	53.9	13.2	14.3	Inside
1872.600	PK	42.2	42.3	25.4	5.5	32.3	0.0	40.8	40.9	55.4	14.6	14.5	Outside
2184.700	PK	42.2	42.5	28.2	5.5	31.9	0.0	44.0	44.3	55.4	11.4	11.1	Outside
2496.800	PK	41.2	41.8	27.6	5.7	31.8	0.0	42.7	43.3	53.9	11.2	10.6	Inside
2808.900	PK	42.2	41.5	28.5	5.8	31.7	0.0	44.8	44.1	53.9	9.1	9.8	Inside
3121.000	PK	42.0	42.2	28.9	5.9	31.6	0.0	45.1	45.3	55.4	10.3	10.1	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m}/3.0 \text{ m}) = 2.50 \text{ dB}$

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13594905H
Page : 15 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13594905H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka

Mode Transmitting mode 314.35 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Mai	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	74.8	71.8	13.9	9.7	31.8	-	66.6	63.6	95.5	28.9	31.9	Carrier
628.700	PK	32.0	32.4	19.4	11.3	32.0	-	30.8	31.2	75.5	44.7	44.3	Outside
943.050	PK	27.8	27.9	21.8	12.6	30.9	-	31.3	31.4	75.5	44.2	44.1	Outside
1257.400	PK	43.7	44.0	25.2	6.1	33.8	-	41.2	41.5	75.5	34.3	34.0	Outside
1571.750	PK	44.3	42.9	25.0	5.5	33.0	-	41.8	40.4	73.9	32.2	33.6	Inside
1886.100	PK	43.1	42.6	25.4	5.5	32.3	-	41.8	41.3	75.5	33.7	34.2	Outside
2200.450	PK	42.3	42.4	28.2	5.6	31.9	-	44.2	44.3	73.9	29.7	29.6	Inside
2514.800	PK	41.6	41.8	27.7	5.7	31.8	-	43.2	43.4	75.5	32.4	32.2	Outside
2829.150	PK	42.5	41.6	28.5	5.8	31.7	-	45.1	44.2	73.9	28.8	29.7	Inside
3143.500	PK	42.0	41.0	28.8	5.9	31.6	_	45.1	44.1	75.5	30.4	31.4	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	74.8	71.8	13.9	9.7	31.8	0.0	66.6	63.6	75.5	8.9	11.9	Carrier
628.700	PK	32.0	32.4	19.4	11.3	32.0	0.0	30.8	31.2	55.5	24.7	24.3	Outside
943.050	PK	27.8	27.9	21.8	12.6	30.9	0.0	31.3	31.4	55.5	24.2	24.1	Outside
1257.400	PK	43.7	44.0	25.2	6.1	33.8	0.0	41.2	41.5	55.5	14.3	14.0	Outside
1571.750	PK	44.3	42.9	25.0	5.5	33.0	0.0	41.8	40.4	53.9	12.2	13.6	Inside
1886.100	PK	43.1	42.6	25.4	5.5	32.3	0.0	41.8	41.3	55.5	13.7	14.2	Outside
2200.450	PK	42.3	42.4	28.2	5.6	31.9	0.0	44.2	44.3	53.9	9.7	9.6	Inside
2514.800	PK	41.6	41.8	27.7	5.7	31.8	0.0	43.2	43.4	55.5	12.4	12.2	Outside
2829.150	PK	42.5	41.6	28.5	5.8	31.7	0.0	45.1	44.2	53.9	8.8	9.7	Inside
3143.500	PK	42.0	41.0	28.8	5.9	31.6	0.0	45.1	44.1	55.5	10.4	11.4	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss $\{Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)\}$ - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

Since the peak emission result satisfied the average limit, duty factor was omitted.

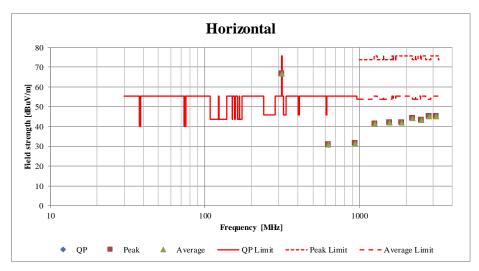
Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

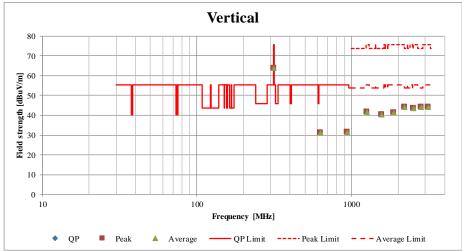
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13594905H
Page : 16 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR


Radiated Spurious Emission (Plot data, Worst case)


Report No. 13594905H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka

Mode Transmitting mode 314.35 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 17 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

-20 dB and 99% Occupied Bandwidth 312.10 MHz / 314.35 MHz

Report No. 13594905H Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka
Mode Transmitting mode (Tx)

Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25 kHz

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

312.10MHz

-20dB Bandwidth
[kHz]
60.772

314.35MHz

-20dB Bandwidth
[kHz]
60.750

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
121.522	780.25	Pass

Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25 kHz

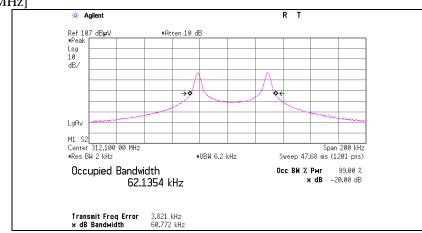
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
62.1354	780.25	Pass

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

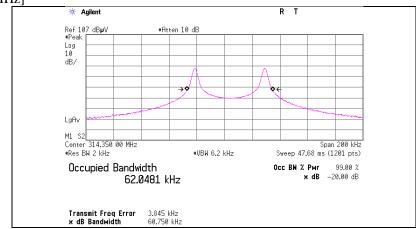
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
62.0481	785.88	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 18 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR


-20dB and 99% Occupied Bandwidth 312.10 MHz / 314.35 MHz

Report No. 13594905H Test place Ise EMC Lab.


Semi Anechoic Chamber No.4

Date December 17, 2020
Temperature / Humidity 21 deg. C / 35 % RH
Engineer Hiroyuki Furutaka
Mode Transmitting mode (Tx)

[312.10 MHz]

[314.35 MHz]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13594905H
Page : 19 of 23
Issued date : January 12, 2021
FCC ID : HYQ12BGR

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/09/2020	12
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/07/2020	12
RE	MMM-10	141545	DIGITAL HITESTER	Hioki	3805	51201148	01/06/2020	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/04/2019	24
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/05/2020	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	VHA 91031302	08/31/2020	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/06/2020	12
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	09/02/2020	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2020	12
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/10/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/19/2020	12
RE	MCC-141	141412	Microwave Cable	Junkosha	MWX221	1305S002R(1m) / 1405S146(5m)	-	-
RE	MRENT-1 30	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	11/18/2020	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN