

Test report No.

: 11170401H-R1

Page **Issued date** : 1 of 22 : March 15, 2016

Revised date

: March 30, 2016

FCC ID

: HYQ12BFB

RADIO TEST REPORT

Test Report No.: 11170401H-R1

Applicant

DENSO CORPORATION

Type of Equipment

Remote Keyless Entry System (Transmitter)

Model No.

12BFB

Test regulation

FCC Part 15 Subpart C: 2015

FCC ID

HYQ12BFB

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 11170401H. 11170401H is replaced with this report.

Date of test:

February 28, 2016

Representative test

engineer:

Engineer

Consumer Technology Division

Approved by:

Motoya Imura Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile

: +81 596 24 8124

13-EM-F0429

Test report No. : 11170401H-R1
Page : 2 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

REVISION HISTORY

Original Test Report No.: 11170401H

Revision	Test report No	Date	Page revised	Contents
-	Test report No. 11170401H	March 15, 2016	-	-
(Original)	1117040111	Water 13, 2010		
	11170401H-R1	March 30, 2016	P.5	Correction of Worst margin for Electric Field Strength of Spurious Emission in Clause 3.2.
				Clause 3.2.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date : 11170401H-R1 : 3 of 22 : March 15, 2016

Revised date : March 30, 2016 FCC ID : HYQ12BFB

PAGE CONTENTS SECTION 2: Equipment under test (E.U.T.) 4 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 9 SECTION 7: -20 dB and 99 % Occupied Bandwidth 10 APPENDIX 1: Test data 11 APPENDIX 2: Test Instruments ······ 18

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 4 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1 Showa-cho, Kariya-shi, Aichi-ken, 448-8661 Japan

Telephone Number : +81-566-61-7338
Facsimile Number : +81-566-25-4837
Contact Person : Masayuki Yamamoto

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Remote Keyless Entry System (Transmitter)

Model No. : 12BFB

Serial No. : Refer to Clause 4.2

Rating : DC 3.0 V

Receipt Date of Sample : February 17, 2016

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: 12BFB (referred to as the EUT in this report) is the Remote Keyless Entry System (Transmitter).

Radio Type : Transmitter

Frequency of Operation : 314.35 MHz / 312.10 MHz*

Clock frequency(ies) in the system : 33.6 MHz (Crystal)

Modulation : FSK (F1D) Power Supply (radio part input) : DC 3.0 V

Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
* These two different frequencies are not emitted simultaneously.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 5 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015.

The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	-N/A	N/A*1)	-
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(a)(1) IC: RSS-210 A1.1.1	N/A	Complied	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.12	FCC: Section 15.231(b) IC: RSS-210 A1.1.2	3.0 dB Horizontal, PK (PK with Duty factor) (Tx 314.35 MHz)	Complied	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods IC: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 8.9	8.8 dB 1560.500 MHz Vertical, PK (PK with Duty factor) (Tx 312.10 MHz)	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods IC: -	FCC: Section 15.231(c) IC: Reference data	N/A	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT does not have AC Mains.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1 Page : 6 of 22

Issued date : March 15, 2016 Revised date : March 30, 2016 FCC ID : HYQ12BFB

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

		sion (Below 1GHz)			
Polarity	(3 m*)((<u>+</u> dB)	(10 m*)(<u>+</u> dB)		
1 oral ity	30 – 300 MHz	300 – 1000MHz	30 – 300 MHz	300 – 1000MHz	
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB	
Vertical	4.5 dB	5.9 dB	4.8 dB	5.1 dB	

Radiated emission						
(3 m*)(<u>+</u> dB)		$(1 \text{ m*})(\underline{+}\text{dB})$	$(0.5 \text{ m*})(\underline{+}dB)$	$(10 \text{ m*})(\underline{+}dB)$		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB		

Radiated emission test (3 m)

[Electric Field Strength of Fundamental Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

[Electric Field Strength of Spurious Emission]

The data listed in this test report has enough margin, more than the site margin.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1 Page : 7 of 22

Issued date : March 15, 2016 Revised date : March 30, 2016 FCC ID : HYQ12BFB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 8 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item	Mode
Automatically Deactivate	Normal use mode, 314.35 MHz
	Normal use mode, 312.10 MHz
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx), 314.35 MHz *1)
Electric Field Strength of Spurious Emission	Transmitting mode (Tx), 312.10 MHz *1)
-20dB & 99% Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a customer would normally use it) for testing.

End users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

A

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Remote Keyless Entry	12BFB	001 *1)	DENSO	EUT
	System (Transmitter)		002 *2)	CORPORATION	

^{*1)} Used for Transmitting mode.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, the EUT transmits when it receives 134.2kHz radio signal and transmitter button is being pressed.)

^{*} Setup was taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Normal use mode

: 11170401H-R1 Test report No. Page **Issued date** Revised date FCC ID

: 9 of 22 : March 15, 2016 : March 30, 2016 : HYQ12BFB

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious **Emission**)

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 300 MHz	300 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9 kHz to 90 kHz and	From 90 kHz to	From 150 kHz	From 490 kHz	From 30 MHz	Above 1 GHz
	From 110 kHz to 150 kHz	110 kHz	to 490 kHz	to 30 MHz	to 1 GHz	
Detector	Peak	Peak	Peak	Peak	Peak and	Peak and
Type					Peak with	Peak with
					Duty factor	Duty factor
IF	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,
Bandwidth						VBW: 3 MHz

- The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

- This EUT has two modes which mechanical key is folded in or out. The worst case was confirmed that mechanical key is folded in or out, as a result, the test which mechanical key was folded in was the worst case. Therefore the test was performed under the worst condition.
- *The result is rounded off to the second decimal place, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 10 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

Measurement range : 9 kHz - 3.2 GHz
Test data : APPENDIX

Test result : Pass

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %.							

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 % Peak hold was applied as Worst-case measurement.

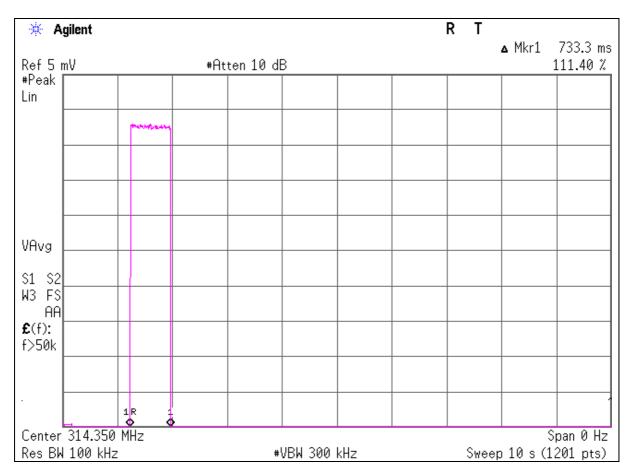
Test data : APPENDIX Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 11 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

APPENDIX 1: Test data


Automatically deactivate 314.35 MHz

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11170401H
Date 02/28/2016
Temperature/ Humidity 20 deg. C / 38% RH
Engineer Keisuke Kawamura

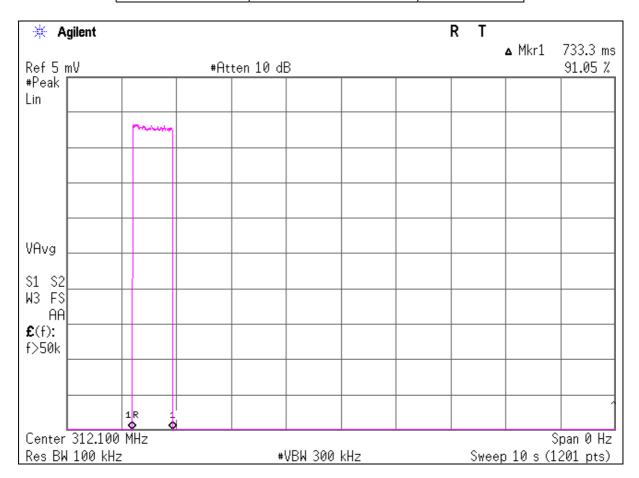
Mode Normal use mode 314.35 MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.7333	5.00	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 12 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB


Automatically deactivate 312.10 MHz

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11170401H
Date 02/28/2016
Temperature/ Humidity 20 deg. C / 38% RH
Engineer Keisuke Kawamura

Mode Normal use mode, 312.10 MHz

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.7333	5.00	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 13 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 314.35 MHz

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4
Report No. 11170401H
Date 02/28/2016

Temperature/ Humidity 20 deg. C / 38% RH Engineer Keisuke Kawamura

Mode Transmitting mode (Tx), 314.35 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	76.6	72.7	17.7	10.0	31.8	-	72.5	68.6	95.5	23.0	26.9	Carrier
628.700	PK	27.9	31.4	21.1	11.9	32.1	-	28.8	32.3	75.5	46.7	43.2	Outside
943.050	PK	36.3	33.4	25.4	13.5	31.0	-	44.2	41.3	75.5	31.3	34.2	Outside
1257.400	PK	48.1	44.0	24.9	5.5	34.2	-	44.3	40.2	75.5	31.2	35.3	Outside
1571.750	PK	46.7	43.0	25.7	5.8	33.3	-	44.9	41.2	73.9	29.0	32.7	Inside
1886.100	PK	42.0	42.5	27.0	5.9	32.5	-	42.4	42.9	75.5	33.1	32.6	Outside
2200.450	PK	42.2	42.2	27.7	6.1	32.2	-	43.8	43.8	73.9	30.1	30.1	Inside
2514.800	PK	42.3	42.0	28.1	6.3	32.1	-	44.6	44.3	75.5	30.9	31.2	Outside
2829.150	PK	42.3	42.1	28.2	6.5	32.0	-	45.0	44.8	73.9	28.9	29.1	Inside
3143.500	PK	41.2	42.0	28.4	6.6	31.8	-	44.4	45.2	75.5	31.1	30.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	76.6	72.7	17.7	10.0	31.8	0.0	72.5	68.6	75.5	3.0	6.9	Carrier
628.700	PK	27.9	31.4	21.1	11.9	32.1	0.0	28.8	32.3	55.5	26.7	23.2	Outside
943.050	PK	36.3	33.4	25.4	13.5	31.0	0.0	44.2	41.3	55.5	11.3	14.2	Outside
1257.400	PK	48.1	44.0	24.9	5.5	34.2	0.0	44.3	40.2	55.5	11.2	15.3	Outside
1571.750	PK	46.7	43.0	25.7	5.8	33.3	0.0	44.9	41.2	53.9	9.0	12.7	Inside
1886.100	PK	42.0	42.5	27.0	5.9	32.5	0.0	42.4	42.9	55.5	13.1	12.6	Outside
2200.450	PK	42.2	42.2	27.7	6.1	32.2	0.0	43.8	43.8	53.9	10.1	10.1	Inside
2514.800	PK	42.3	42.0	28.1	6.3	32.1	0.0	44.6	44.3	55.5	10.9	11.2	Outside
2829.150	PK	42.3	42.1	28.2	6.5	32.0	0.0	45.0	44.8	53.9	8.9	9.1	Inside
3143.500	PK	41.2	42.0	28.4	6.6	31.8	0.0	44.4	45.2	55.5	11.1	10.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor (Refer to Duty factor)

Since the peak emission result satisfied the average limit, duty factor was omitted. Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 11170401H-R1
Page : 14 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 312.10 MHz

Test place Ise EMC Lab.

Semi Anechoic Chamber
Report No.
11170401H
Date
02/28/2016
Temperature/ Humidity
Engineer
No.4
11170401H
02/28/2016
20 deg. C / 38% RH
Keisuke Kawamura

Mode Transmitting mode (Tx), 312.10 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	PK	76.1	72.3	17.7	10.0	31.8	-	72.0	68.2	95.4	23.4	27.2	Carrier
624.200	PK	27.9	31.8	21.0	11.9	32.1	-	28.7	32.6	75.4	46.7	42.8	Outside
936.300	PK	35.9	35.5	25.2	13.5	31.0	-	43.6	43.2	75.4	31.8	32.2	Outside
1248.400	PK	48.8	48.4	24.9	5.5	34.2	-	45.0	44.6	75.4	30.4	30.8	Outside
1560.500	PK	46.5	47.1	25.6	5.7	33.3	-	44.5	45.1	73.9	29.4	28.8	Inside
1872.600	PK	42.0	42.5	27.0	5.9	32.6	-	42.3	42.8	75.4	33.1	32.6	Outside
2184.700	PK	42.2	42.2	27.7	6.1	32.2	-	43.8	43.8	75.4	31.6	31.6	Outside
2496.800	PK	42.3	42.0	28.1	6.3	32.1	-	44.6	44.3	73.9	29.3	29.6	Inside
2808.900	PK	42.3	42.1	28.2	6.4	32.0	-	44.9	44.7	73.9	29.0	29.2	Inside
3121.000	PK	41.2	42.0	28.4	6.6	31.9	-	44.3	45.1	75.4	31.1	30.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	76.1	72.3	17.7	10.0	31.8	0.0	72.0	68.2	75.4	3.4	7.2	Carrier
624.200	PK	27.9	31.8	21.0	11.9	32.1	0.0	28.7	32.6	55.4	26.7	22.8	Outside
936.300	PK	35.9	35.5	25.2	13.5	31.0	0.0	43.6	43.2	55.4	11.8	12.2	Outside
1248.400	PK	48.8	48.4	24.9	5.5	34.2	0.0	45.0	44.6	55.4	10.4	10.8	Outside
1560.500	PK	46.5	47.1	25.6	5.7	33.3	0.0	44.5	45.1	53.9	9.4	8.8	Inside
1872.600	PK	42.0	42.5	27.0	5.9	32.6	0.0	42.3	42.8	55.4	13.1	12.6	Outside
2184.700	PK	42.2	42.2	27.7	6.1	32.2	0.0	43.8	43.8	55.4	11.6	11.6	Outside
2496.800	PK	42.3	42.0	28.1	6.3	32.1	0.0	44.6	44.3	53.9	9.3	9.6	Inside
2808.900	PK	42.3	42.1	28.2	6.4	32.0	0.0	44.9	44.7	53.9	9.0	9.2	Inside
3121.000	PK	41.2	42.0	28.4	6.6	31.9	0.0	44.3	45.1	55.4	11.1	10.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor (Refer to Duty factor)

Since the peak emission result satisfied the average limit, duty factor was omitted.

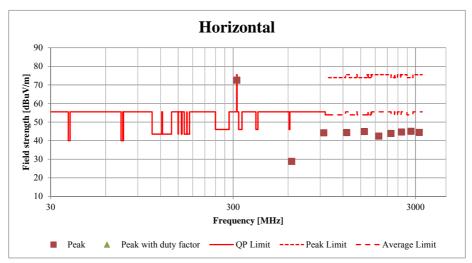
Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

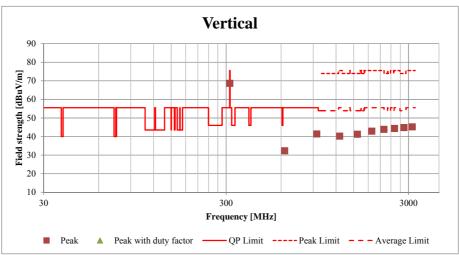
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 11170401H-R1
Page : 15 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB


Radiated Spurious Emission (Plot data, Worst case)


Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Report No. 11170401H
Date 02/28/2016
Temperature/ Humidity 20 deg. C / 38% RH

Engineer

Mode Transmitting mode (Tx), 314.35 MHz

Keisuke Kawamura

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 16 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

-20dB and 99% Occupied Bandwidth 314.35 MHz / 312.10 MHz

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11170401H
Date 02/28/2016
Temperature/ Humidity 20 deg. C / 38% RH
Engineer Vaisuke Vayagnura

Engineer Keisuke Kawamura

Mode Transmitting mode (Tx)

Bandwidth Limit: Fundamental Frequency

312.10 MHz x 0.25% = 780.25 kHz

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

314.35MHz

-20dB Bandwidth
[kHz]
61.18

312.10MHz

-20dB Bandwidth	
[kHz]	
59.51	

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
61.18+59.51=120.69	780.25	Pass

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

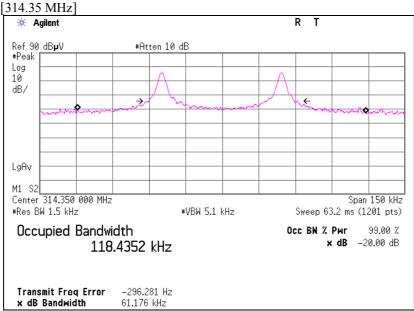
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
118.44	785.88	Pass

Bandwidth Limit: Fundamental Frequency 312.10 MHz x 0.25% = 780.25 kHz

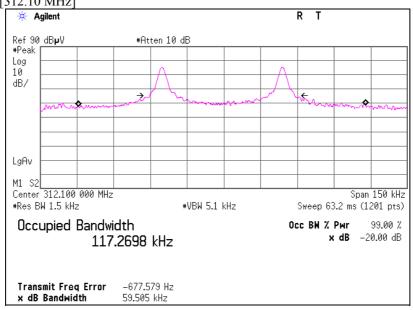
99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
117.27	780.25	Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


: 11170401H-R1 Test report No. Page : 17 of 22 Issued date : March 15, 2016 : March 30, 2016 Revised date FCC ID : HYQ12BFB

-20dB and 99% Occupied Bandwidth 314.35 MHz / 312.10 MHz


Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Report No. 11170401H Date 02/28/2016 20 deg. C / 38% RH Temperature/ Humidity Keisuke Kawamura Engineer Mode Transmitting mode (Tx)

[312.10 MHz]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11170401H-R1
Page : 18 of 22
Issued date : March 15, 2016
Revised date : March 30, 2016
FCC ID : HYQ12BFB

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/02 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	1501	RE	2016/01/21 * 12
MJM-26	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2015/09/02 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2015/11/02 * 12
MLA-08	Logperiodic Antenna	Schwarzbeck	UKLP9140-A	N/A	RE	2015/11/03 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2015/06/19 * 12
MAT-68	Attenuator	Anritsu	MP721B	6200961025	RE	2015/11/12 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2015/03/09 * 12
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2016/02/24 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2015/08/10 * 12
MCC-141	Microwave Cable	Junkosha	MWX221	1305S002R(1m) / 1405S146(5m)	RE	2015/06/22 * 12
MPA-12	MicroWave System Amplifier	Agilent	83017A	00650	RE	2015/10/01 * 12
MLPA-07	Loop Antenna	UL Japan	-		RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, Automatically deactivate and Duty cycle tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN