

FCC Test Report

Product Name	:	Wireless Handy Scanner
--------------	---	------------------------

Model No. : H410W

- FCC ID. : HWFH410W
- Applicant : Mustek Systems Inc.
- : No.25, R&D Road II, Science-Based Industrial Address Park, Hsin-Chu, Taiwan, R.O.C.

Date of Report	: 2013/05/10
Report No.	:134421R-RFUSP42V0
Report Version	: V1.0
lac-m	Taff Testing Laboratory 1313

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

	Date of Report : 2013/05/10 Report No : 1344218-REUSP42
	GUIEIEK
Product Name	: Wireless Handy Scanner
Applicant	: Mustek Systems Inc.
Address	: No.25, R&D Road II, Science-Based Industrial Park,
	Hsin-Chu, Taiwan, R.O.C.
Manufacturer	: (1) Mustek Systems Inc.
	(2) MUSTEK ELECTRONICS CO., LTD.
Model No.	: H410W
FCC ID.	: HWFH410W
EUT Test Voltage	: DC 6V (Power by Battery)
Trade Name	: Mustek
Applicable Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2012
	ANSI C63.4: 2009
Test Result	: Complied
test results relate only to t	e samples tested.
test report shall not be rep	duced except in full without the written approval of QuieTek Corporation
Documented By	: Conol /s.
	(Carol Tsai / Engineering Adm. Specialist)
	O I Trind
Reviewed By	Gaale Tang
	(Quale Tang / Engineer)
	Roy Wang
Approved By	8 J
Approved By	

Laboratory Information

We, **QuieTek Corporation**, are an independent RF consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted (audited or listed) by the following related bodies in compliance with ISO 17025 specified testing scopes:

Taiwan R.O.C.	:	TAF, Accreditation Number: 1313
USA	:	FCC, Registration Number: 365520
Canada	:	IC, Submission No: 150981

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site:<u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

TABLE OF CONTENTS

Description		Page
1.	General Information	6
1.1.	EUT Description	6
1.2.	Operational Description	10
1.3.	Test Mode	11
1.4.	Tested System Details	12
1.5.	Configuration of tested System	12
1.6.	EUT Exercise Software	12
1.7.	Test Facility	13
2.	Peak Power Output	14
2.1.	Test Equipment	14
2.2.	Test Setup	14
2.3.	Test procedures	14
2.4.	Limits	14
2.5.	Test Specification	14
2.6.	Uncertainty	14
2.7.	Test Result	15
3.	Radiated Emission	23
3.1.	Test Equipment	23
3.2.	Test Setup	23
3.3.	Limits	24
3.4.	Test Procedure	24
3.5.	Test Specification	24
3.6.	Uncertainty	24
3.7.	Test Result	25
3.8.	Test Photo	41
4.	RF antenna conducted test	43
4.1.	Test Equipment	43
4.2.	Test Setup	43
4.3.	Limits	44
4.4.	Test Procedure	44
4.5.	Test Specification	44
4.6.	Uncertainty	44
4.7.	Test Result	45
5.	Radiated Emission Band Edge	53

Test Equipment	. 53
Test Setup	. 53
Limits	. 54
Test Procedure	. 54
Test Specification	. 54
Uncertainty	. 54
Test Result	. 55
Occupied Bandwidth	71
Test Equipment	. 71
Test Setup	71
Test Procedures	71
Limits	. 71
Test Specification	71
Uncertainty	71
Test Result	72
Power Density	. 78
Test Equipment	. 78
Test Setup	. 78
Limits	. 78
Test Procedures	. 78
Test Specification	. 78
Uncertainty	. 78
Test Result	79
	. 85
EUT Photograph	. 85
	Test Equipment Test Setup

1. General Information

1.1. EUT Description

Product Name	Wireless Handy Scanner		
Product Type	WLAN (1TX, 1RX)		
Trade Name	Mustek		
Model No.	H410W		
Frequency Range / Channel Number	2412~2462MHz / 11 Channels		
Type of Modulation	Orthogonal Frequency Division Multiplexing (OFDM)		
Data Speed (IEEE 802.11g)	6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps		
Data Speed (IEEE 802.11n)	Support a subset of the combination of GI, MCS 0~MCS 7 and		
	bandwidth defined in 802.11n		
Antenna Gain	3.8dBi		
Antenna Type	PCB Antenna		

Component	
USB Cable	Shielded, 0.4m

ANT-TX / Rx & Bandwidth

ANT-TX / Rx	Т	х	Rx	
Mode/ Channel Bandwidth	20MHz	40MHz	20MHz	40MHz
IEEE802.11g	\checkmark			
IEEE802.11n	\checkmark		~	

IEEE802.11n Spec.

	MOO			N _{CBPS}	N _{DBPS}	Data Rate(Mb/s)		
MCS Index Modulation	Modulation	R	N _{BPSCS}	20MHz	20MHz	800ns GI	400ns GI (Note1)	
						20MHz	20MHz	
0	BPSK	1/2	1	52	26	6.5	7.2	
1	QPSK	1/2	2	104	52	13.0	14.4	
2	QPSK	3/4	2	104	78	19.5	21.7	
3	16-QAM	1/2	4	208	104	26.0	28.9	
4	16-QAM	3/4	4	208	156	39.0	43.3	
5	64-QAM	2/3	6	312	208	52.0	57.8	
6	64-QAM	3/4	6	312	234	58.5	65.0	
7	64-QAM	5/6	6	312	260	65.0	72.2	

Table 1 – MCS parameters for TX Antenna number = 1

Symbol	Explanation
R	Code rate
N _{BPSC}	Number of coded bits per single carrier
N _{CBPS}	Number of coded bits per symbol
N _{DBPS}	Number of data bits per symbol
GI	guard interval

Working Frequency of Each Channel									
Channel	hannel Frequency Channel Frequency Channel Frequency Channel Frequency								
001	2412 MHz	002	2417 MHz	003	2422 MHz	004	2427 MHz		
005	2432 MHz	006	2437 MHz	007	2442 MHz	008	2447 MHz		
009	2452 MHz	010	2457 MHz	011	2462 MHz				

- 1. This device is a Wireless Handy Scanner including 2.4GHz g/n transmitting and receiving function
- 2. These test results on a sample of the device are for the purpose of demonstrating Compliance with Part 15 Subpart C Paragraph 15.247.
- 3. Regards to the frequency band operation; the lowest
 imiddle and highest frequency of channel were selected to perform the test, and then shown on this report.
- This device is a composite device in accordance with Part 15 regulations. The receiving function receiving was tested and its test report number is 134421R-RFUSP37V02 under Declaration of Conformity.

1.3. Test Mode

QuieTek has verified the construction and function in typical operation. The preliminary tests were performed in different data rate, and to find the worst condition, which was shown in this test report. The following table is the final test mode.

ТХ	Mode 1: Transmit		
Test Items	Mode	Channel	Result
Conducted Emission	11n(20MHz)	6	Complies
Peak Power Output	g	1/ 6/ 11	Complies
	11n(20MHz)	1/ 6/ 11	Complies
Radiated Emission	g	1/ 6/ 11	Complies
	11n(20MHz)	1/ 6/ 11	Complies
RF antenna conducted test	g	1/ 11	Complies
	11n(20MHz)	1/ 11	Complies
Radiated Emission Band Edge	g	1/ 11	Complies
	11n(20MHz)	1/ 11	Complies
Occupied Bandwidth	g	1/ 6/ 11	Complies
	11n(20MHz)	1/ 6/ 11	Complies
Power Density	g	1/ 6/ 11	Complies
	11n(20MHz)	1/ 6/ 11	Complies

Conducted Emission: Owing to the DC operation of EUT, this test item is not performed.

1.4. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Notebook PC	HP Compaq	NX6320FF	CNU7020BXT	DoC	Non-Shielded, 1.8m

1.5. Configuration of tested System

1.6. EUT Exercise Software

1	Setup the EUT as shown in Section 1.5.
2	Execute the test program "UnitTest V7.2.1.5" on the notebook.
3	Configure the test mode, the test channel, and the data rate.
4	Press "Start TX" to start the continuous transmitting.
5	Verify that the EUT works properly.

1.7. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual
Temperature (°C)		15 - 35	25
Humidity (%RH)	PCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)	FCC PART 15 C 15.247	15 - 35	25
Humidity (%RH)	RF antenna conducted test	25 - 75	45
Barometric pressure (mbar)	(ODFM)	860 - 1060	950-1000
Temperature (°C)		15 - 35	20
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	50
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)		15 - 35	25
Humidity (%RH)	Power Density (ODEN)	25 - 75	45
Barometric pressure (mbar)		860 - 1060	950-1000

2. Peak Power Output

2.1. Test Equipment

The following test equipments are used during the test:

	Peak	Power	1	SR7
--	------	-------	---	-----

Man	ulacturer into		Serial No	Next Cal. Date
EXA Signal Analyzer Agile	ent N90	010A-EXA l	US47140172	2013/07/31

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

2.2. Test Setup

2.3. Test procedures

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074, Section 5.2.1.2 Measurement Procedure PK2 for compliance to FCC 47CFR 15.247 requirements.

2.4. Limits

The maximum peak power shall be less 1 Watt.

2.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

2.6. Uncertainty

The measurement uncertainty is defined as \pm 1.27 dB.

2.7. Test Result

Product	Wireless Handy Scanner		
Test Item	Peak Power Output		
Test Mode	Mode 1: Transmit		
Date of Test	2013/04/27	Test Site	SR7

IEEE 802.11g					
Channel No.	Frequency	Frequency Measure Level Lin (MHz) (dBm)		Result	
Channel No.	(MHz)				
1	2412	14.03	30	Pass	
6	2437	14.50	30	Pass	
11	2462	14.62	30	Pass	

The worst emission of data rate is 6Mbps.

Peak Power Output Value(dBm)									
	Frequency			Data Rate (Mbps)				Required Limit	
Channel No.	(MHz)	6	12	18	24	36	48	54	
1	2412	14.04			-			-	30 dBm
6	2437	14.50	14.49	14.48	14.46	14.45	14.44	14.43	30 dBm
11	2462	14.62		-	-	-	-	-	30 dBm

Note: Measure Level =Reading value + cable loss

	Channe	<u> 1</u>		
D Agilent Spectrum Analyzer - Channel Power				
10 dB/div Ref 30 dBm	AC SENSE:INT Center Freq: 2.4120000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold:>10/10 Ext Gain: -1.00 dB	02:42:53 PM Apr 27, 2013 Radio Std: None Radio Device: BTS	Trace/Detector
20 20 10				Clear Write
-10 -20 Histher there			March Marker Marker Marker	Average
-30				Max Hold
-60 Center 2.412 GHz #Res BW 1 MHz	#VBW 3 MHz		Span 25.89 MHz Sweep 1 ms	Min Hold
Channel Power 14.03 dBm/ 20.:	Detector Peak▶ Auto <u>Man</u>			
MSG		STATUS		

			<u>Chanr</u>	<u>nel 6</u>			
💴 Agilent Spectru	ım Analyzer - Chann	el Power					
Center Fred	© Ω q 2.43700000 Input: Ri Ref 30 dBm	ADO GHz #IFGain:Low	c sense:INT Center Freq: 2.4370 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 00000 GHz Avg Hold:>10/10 Ext Gain: -1.00 dB	02:45:01 PMApr 27, 2013 Radio Std: None Radio Device: BTS	Freq / Channel	
20 10 0 -10 -20 -20 -30	All and a second				Martin Martin Martin	Center Freq 2.437000000 GHz	
-40 -50 -60 Center 2.43 #Res BW 1	7 GHz MHz		#VBW 3 MI	Hz	Span 26 MHz Sweep 1 ms	CF Step 2.600000 MHz <u>Auto</u> Man	
Channe	Channel Power Power Spectral Density 14.50 dBm/ 20.09 MHz -58.53 dBm/Hz						
MSG				STATU	S		

				<u>Chann</u>	<u>el 11</u>				
💴 Agilent Spec	trum Analyzer - Ch	annel Power							
<mark>w</mark> Span 26.	50 Ω 000 MHz		AC S Center I	ENSE:INT Freq: 2.4620	00000 GHz		02:48:15 Radio Std	PM Apr 27, 2013 : None	Span
	Inpu	t: RF #IFGain:Lo	W #Atten:	30 dB	Ext Gain:	-1.00 dB	Radio De	vice: BTS	Span
10 dB/div	Ref 30 dE	3m							26.000 MHz
20									
10				₫ <u>₩₩₽</u> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	-d	- tota - leasen a	Andrew .		
-10	Markenwa						North New York		Full Span
-20 million	¹							Writh hat by	, an opan
-30									
-50							3		
-60									
Center 2.4 #Res BW	l62 GHz 1 MHz		#V	BW 3MH	łz		Spa Swe	un 26 MHz eep 1 ms	Last Span
Chann	el Power			Powe	r Specti	ral Dens	sity		
	14.62	dBm/ 20.4	43 MHz		-58.	48 dB	m/Hz		
мsg 📣 File <	802.11g_2462.p	ong> saved				STATU	S	1	

Product	Wireless Handy Scanner				
Test Item	Peak Power Output				
Test Mode	Mode 1: Transmit				
Date of Test	2013/04/27	Test Site	SR7		

IEEE 802.11n 20MHz

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	14.40	30	Pass
6	2437	14.05	30	Pass
11	2462	14.35	30	Pass

The worst emission of data rate is 6.5 Mbps.

	Peak Power Output (dBm)									
MCS	S Index	0	1	2	3	4	5	6	7	Deswined
Channel	Frequency				Data	Rate				Required
No	(MHz)	6.5	13.0	19.5	26.0	39.0	52.0	58.5	65.0	LIMIL
1	2412	14.40			-			-		30dBm
6	2437	14.05	14.04	14.03	14.02	14.01	14.00	13.39	13.38	30dBm
11	2462	14.35			-			-		30dBm

				<u>Chan</u>	<u>nel 1</u>		
D Agile	ent Spectrum Analyz	er - Channel	Power				
⊯ Spar	50 Ω 1 26.000 MHz	2	A	C SENSE:INT Center Freq: 2.4120	ALIGN AUTO	02:57:30 PM Apr 27, 2013 Radio Std: None	Span
		Input: RF	#IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	Radio Device: BTS	Span
10 dB	/div Ref 3	0 dBm					26.000 MHz
Log 20 -							
10-			we and the second	wenter an genter of the other o	all strange from the market state on the	-	
-10	and the second s					- When we want	
-20	hay hot and a second						Full Span
-30 -							
-40 -							
-60 -		_					
L Cent	er 2.412 GHz					Span 26 MHz	Last Span
#Res	BW 1 MHz			#VBW 3 M	Hz	Sweep 1 ms	
Cł	nannel Pow	er		Powe	er Spectral Den	sity	
	14.	40 de	3m/ 20 82 M	1H7	-58.79 di	Sm/Hz	
		u.				2	
MSG 🤳	File <802.11n20	_2412.png	j> saved		STAT	us	

						<u>Channe</u>	el 6				
	gilent Spect	rum Analyze	r - Channel	Power							
⊯ Sp	an 26.0	50 Ω)00 MHz		AC	Center Fre	e:INT q: 2.437000	000 GHz		02:54:36 Radio Std	M Apr 27, 2013 None	Span
			Input: RF	#IFGain:Low	#Atten: 30 d	dB	Ext Gain:	-1.00 dB	Radio Dev	vice: BTS	Span
10	dB/div	Ref 3	0 dBm								26.000 MHz
Log 2											
1	0	- Marina - San Araba - San Ara			and a source of the second	No. and the state of the state		-#			
	0								- WWW MAN		
-1 -2		A Company and the second secon								Munu Attan	Full Span
-3	יייזיאייז ו ארע ס	.2								. 1040 14 Mar A	·
-4		- <u></u>									
-5]										
-0		07 011-									Last Span
Ce #R	nter 2.4 es BW 1	37 GHZ I MHZ			#VBV	V 3 MHz			Spa Swe	ep 1 ms	
	Channe	el Pow	er		a i	Power	Spectr	al Dens	sity		
		14.0	05 dE	3m/ 20.74 N	1Hz		-59.	12 dв	m/Hz		
MSG								STATUS	5		

Dellent Spectrum Analyzer Channel Power Span 26.000 MHz Input: RF Center Freq: 2.46200000 GHz Radio Std: None MifGaint.ow #Affective Od B/div Ref 30 Action of the second			onann			
Social AC Sensent ALC NUMD Disclosed Product Span Span 26.000 MHz Imput: RF Trig: Free Run Avg Hold>/0/10 Radio Device: BTS Span 10 dB/div Ref 30 dBm #Atten: 30 dB Ext Gain: -1.00 dB Radio Device: BTS Span 20 Imput: RF #IFGain:Low #Atten: 30 dB Ext Gain: -1.00 dB Radio Device: BTS Span 10 dB/div Ref 30 dBm Imput: RF Full Span Full Span 20 Imput: RF With an intervent set of the set	🎩 Agilent Spectrum Analyze	r - Channel Power				
Input: RP Ing. Tree Null Arright Production Radio Device: BTS Spar 10 dB/div Ref 30 dBm Image: Tree Null Image: Tree Null Radio Device: BTS Spar 20 Image: Tree Null Spar 20 Image: Tree Null 20 Image: Tree Null	Span 26.000 MHz		AC SENSE:INT Center Freq: 2.46200	ALIGNAUTO	02:52:03 PM Apr 27, 2013 Radio Std: None	Span
10 dB/div Ref 30 dBm		Input: RF 4 #IFGain:Low	#Atten: 30 dB	Ext Gain: -1.00 dB	Radio Device: BTS	Span 26.000 MHz
20 10 <	10 dB/div Ref 30 Log) dBm			, , , , , , , , , , , , , , , , , , , 	20.000 11112
Image: state of the state o	20	المعدمة معالم المعالية معالية م	In press Margaria laster and	altomer water - man have used in a		
Full Spar Full Spar Center 2.462 GHz #Res BW 1 MHz Span 26 MHz Sweep 1 ms Channel Power 14.35 dBm/ 21.88 MHz Full Spar Full	0			1973 - 2074 Elimente 1924 - 2027 - 20	- Marken	
30 40 <	-20 Anta AWATA				www.www.hat	Full Span
-50	-30					
-60 Span 26 MHz Center 2.462 GHz Span 26 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 1 ms Channel Power Power Spectral Density 14.35 dBm/ 21.88 MHz -59.05 dBm/Hz	-50					
#Res BW 1 MHz #VBW 3 MHz Sweep 1 ms Channel Power Power Spectral Density 14.35 dBm/ 21.88 MHz -59.05 dBm/Hz	-60 Center 2462 GHz				Spap 26 MHz	Last Spar
Channel Power Power Spectral Density 14.35 dBm/ 21.88 MHz -59.05 dBm/Hz	#Res BW 1 MHz		#VBW 3 MH	z	Sweep 1 ms	
14.35 dBm/ 21.88 MHz -59.05 dBm/Hz	Channel Powe	er	Power	r Spectral Den	sity	
	14.3	35 dBm/ 21.88	MHz	- 59.05 dB	m/Hz	
SIAIUS	MSG			STATU	s	

3. Radiated Emission

3.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission / CB3

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Bilog Antenna	SCHAFFNER	CBL6112B	2895	2013/08/14
Double Ridged				
Guide Horn Antenna	Schwarzback	BBHA 9120	D743	2014/02/17
Pre-Amplifier	MITEQ	AMF-4D-005180-24-10P	888003	2013/12/02
Pre-Amplifier	QuieTek	AP-025C	CHM-0706049	2014/02/19
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

3.2. Test Setup

Under 1GHz Test Setup:

QuieTer

3.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency	dDu <i>l Un</i> a	dDu\//m				
MHz	aBuv/m	ubuv/m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength (dBuV/m) = 20 log E field strength (uV/m)

3.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. The bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

3.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

3.6. Uncertainty

The measurement uncertainty $30MHz \sim 1GHz$ as $\pm 3.43dB$ $1GHz \sim 26.5Ghz$ as $\pm 3.65dB$

3.7. Test Result

30MHz-1GHz Spurious

Site : CB3	Time : 2013/04/30 - 08:55
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB3_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2437MHz

1		159.980	-13.560	42.025	29.065	-14.435	43.500	QUASIPEAK
2		240.490	-11.569	40.935	29.365	-16.635	46.000	QUASIPEAK
3		334.580	-9.099	42.129	33.031	-12.969	46.000	QUASIPEAK
4	*	465.530	-5.927	39.336	33.408	-12.592	46.000	QUASIPEAK
5		531.490	-4.848	36.800	31.952	-14.048	46.000	QUASIPEAK
6		600.360	-4.122	33.358	29.236	-16.764	46.000	QUASIPEAK

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB3	Time : 2013/04/30 - 08:54
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB3_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2437MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB3	Time : 2013/04/30 - 08:58
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB3_FCC_EFS_30-1G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2437MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Site : CB3	Time : 2013/04/30 - 09:01
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB3_FCC_EFS_30-1G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2437MHz

- 1. All Reading Levels are Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor.

Above 1GHz Spurious

Site : CB3	Time : 2013/04/28 - 10:16
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4817.250	-0.821	42.400	41.579	-32.421	54.000	74.000	PEAK
2		7257.250	5.549	40.100	45.648	-28.352	54.000	74.000	PEAK
3		9644.500	9.206	39.220	48.425	-25.575	54.000	74.000	PEAK
4	*	12038.920	11.533	38.630	50.163	-23.837	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 10:26
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4819.080	-0.816	46.410	45.594	-28.406	54.000	74.000	PEAK
2		7212.000	5.439	39.670	45.109	-28.891	54.000	74.000	PEAK
3		9634.420	9.133	38.810	47.942	-26.058	54.000	74.000	PEAK
4	*	12054.000	11.527	38.520	50.047	-23.953	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 10:34
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2437MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4862.830	-0.701	39.840	39.139	-34.861	54.000	74.000	PEAK
2		7294.330	5.637	39.380	45.017	-28.983	54.000	74.000	PEAK
3		9724.080	9.782	38.910	48.692	-25.308	54.000	74.000	PEAK
4	*	12170.830	11.487	38.900	50.386	-23.614	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 10:40
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2437MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4875.170	-0.669	45.230	44.561	-29.439	54.000	74.000	PEAK
2		7311.750	5.679	40.820	46.499	-27.501	54.000	74.000	PEAK
3		9757.000	10.021	39.540	49.561	-24.439	54.000	74.000	PEAK
4	*	12206.720	11.474	38.590	50.063	-23.937	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 10:49
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4919.580	-0.552	39.760	39.208	-34.792	54.000	74.000	PEAK
2		7366.750	5.813	39.130	44.942	-29.058	54.000	74.000	PEAK
3		9824.330	10.509	38.850	49.359	-24.641	54.000	74.000	PEAK
4	*	12314.920	11.435	38.520	49.955	-24.045	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 10:54
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4929.000	-0.528	45.800	45.272	-28.728	54.000	74.000	PEAK
2		7372.250	5.826	39.450	45.275	-28.725	54.000	74.000	PEAK
3		9823.500	10.502	39.530	50.033	-23.967	54.000	74.000	PEAK
4	*	12306.830	11.437	38.720	50.158	-23.842	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 11:04
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4821.330	-0.811	42.190	41.380	-32.620	54.000	74.000	PEAK
2		7222.920	5.465	39.390	44.855	-29.145	54.000	74.000	PEAK
3		9664.830	9.353	39.020	48.373	-25.627	54.000	74.000	PEAK
4	*	12058.000	11.526	38.300	49.826	-24.174	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 11:10
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4819.920	-0.814	47.890	47.076	-26.924	54.000	74.000	PEAK
2		7224.500	5.469	39.160	44.629	-29.371	54.000	74.000	PEAK
3		9646.830	9.222	38.870	48.092	-25.908	54.000	74.000	PEAK
4	*	12061.670	11.525	38.940	50.465	-23.535	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 11:19
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2437MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4868.830	-0.685	40.600	39.914	-34.086	54.000	74.000	PEAK
2		7329.250	5.721	39.690	45.411	-28.589	54.000	74.000	PEAK
3		9728.080	9.810	39.520	49.331	-24.669	54.000	74.000	PEAK
4	*	12180.080	11.483	38.800	50.283	-23.717	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.
| Site : CB3 | Time : 2013/04/28 - 11:25 |
|---|----------------------------------|
| Limit : FCC_SpartC_15.247_H_03M_PK | Margin : 6 |
| Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL | Power : DC 6V (Power by Battery) |
| EUT : Wireless Handy Scanner | Note : 802.11n20MHz_2437MHz |

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4863.500	-0.699	44.970	44.271	-29.729	54.000	74.000	PEAK
2		7300.580	5.652	39.930	45.582	-28.418	54.000	74.000	PEAK
3		9737.080	9.876	39.140	49.016	-24.984	54.000	74.000	PEAK
4	*	12182.920	11.482	39.420	50.902	-23.098	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 11:31
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4933.750	-0.515	39.730	39.215	-34.785	54.000	74.000	PEAK
2		7386.920	5.861	39.320	45.181	-28.819	54.000	74.000	PEAK
3		9835.170	10.587	39.330	49.917	-24.083	54.000	74.000	PEAK
4	*	12295.750	11.443	38.590	50.032	-23.968	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

Site : CB3	Time : 2013/04/28 - 11:37
Limit : FCC_SpartC_15.247_H_03M_PK	Margin : 6
Probe : CB3_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

		Frequency	Correct	Reading	Measure	Margin	Average	Peak	Detector
		(MHz)	Factor (dB)	Level	Level	(dB)	Limit	Limit	Туре
				(dBuV)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
1		4925.080	-0.538	45.370	44.832	-29.168	54.000	74.000	PEAK
2		7366.580	5.812	39.960	45.771	-28.229	54.000	74.000	PEAK
3		9838.580	10.611	39.050	49.662	-24.338	54.000	74.000	PEAK
4	*	12301.080	11.440	39.070	50.510	-23.490	54.000	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 18GHz were not included is because their levels are too low.

4. RF antenna conducted test

4.1. Test Equipment

The following test equipments are used during the test:

RF antenna conducted test / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
EXA Signal Analyzer	Agilent	N9010A-EXA	US47140172	2013/07/31

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

4.2. Test Setup

RF Antenna Conducted Measurement:

4.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on an RF conducted or radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

4.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

4.6. Uncertainty

Conducted is defined as ± 1.27dB

4.7. Test Result

Product	Wireless Handy Scanner								
Test Item	RF antenna conducted test								
Test Mode	Mode 1: Transmit								
Date of Test	2013/04/27	Test Site	SR7						

IEEE 802.11g, Antenna Gain: 3.8dBi Duty Cycle: 1												
Channel No	Frequency	Limit	Pecult									
Channel No.	(MHz)	(dBc)	(dBc)	result								
1	2412	37.324	≥20	Pass								
11	2462	46.978	≥20	Pass								

Channel 01 (2412MHz)

	gilent S	Spect	rum	Analyzer -	Swept S	A											
ыл Ма	rker	14	50 s 1	2 3.2300	00000	0 MI	Hz	,			1T	Avg T AvgIH	ALI ype: L	IGN AUTO	03:04:26 TRA	PM Apr 27, 2013 CE 1 2 3 4 5 6	Peak Search
10 (B/div		Rei	f 20.00	dBm	PN IFG	lO: Fast ain:Lov	v v	#Atten: 3	0 dB		Ext Ga	in: -1.0		r1 13.2 37	230 MHz 2324 dB	Next Peak
Log 10. 0.0								1	Junitari	nobro	างให้งารให	w June 1	1∆2 ·	- Invelive	monta		Next Right
-20.1 -30.1 -40.1		ፈብሎቲ	-11/1	каку «Іла Пі	<u>הורייאייריא</u> ון	url))();	יייייטאר אין איזאיק 2	کر کم							\	North Contraction	Next Left
-50.) -60.) -70.)																	Marker Delta
Sta #R MKF	rt 2.: es Bl MODE A2	390 W 1	00 00	GHz kHz	×	13.230	#V	'BW	300 kHz Y 37.324	dB	FUNC	CTION	S' Funct	weep (Stop 2.4 3.40 ms	2500 GHz (1001 pts)	Mkr→CF
234567	F	1	f		2.40	00 010) GHz		-36.540 d	Bm							Mkr→RefLvl
8 9 10 11 12																	More 1 of 2
MSG														STATUS			

Channel 11 (2462MHz)

D Ag	ilent S	Spect	trum	Analyzei	r - Sw	ept SA																	
ыл Mai	rker	14	50 s 1 -	2 20.24	000	000	0 1	IHz	1		SEN	ISE:IN	IT	Avg	Type	ALIGN A	AUTO Pwr	03:0	19 F TRAC	MApri E 1 2	27,2013 3456	-	Peak Search
10 d	B/div	,	Rei	f 20.01	Input	sm	PN IFG	IO: Fas iain:Lo	kt⊊ w	#Atte	n: 30	dB		Ext G	ain:	-1.00 d	в Mk	r1 -2	0.2 46	40 978	MHz B dB		Next Peak
10.0 0.00				المم	المرالم	┣ _┅ ┲ [╋] ┺┉┙	herten	1 עריין אייני	∆2 - ∿∽∿~	m. harlen													Next Right
-20.0 -30.0 -40.0)) Josephan	hun win	nilala	North Contraction of the second secon				- -				nuunq	lprogrammed and the second	Marthur	mul	//							Next Left
-50.0 -60.0 -70.0															//	1 ame	multe	ubreal Offe	1		h-nn-shi		Marker Delta
Sta #Re MKR	rt 2.4 es Bl MODE A2	445 W 1	00 00	GHz kHz (Δ)		× -20	0.240	#\ D MHz	/BW	300 k	(Hz .978 (dB	FUN	CTION		Swe	ер : ///DTH	Stop 5.27 r	2.5(ms (0000 100 <i>1</i>	I GHz I pts)		Mkr→CF
2 3 4 5 6 7	F	1	f			2.48	3 500) GHz		-46.64	<u>I3 dB</u>	§m											Mkr→RefLvl
8 9 10 11 12																							More 1 of 2
MSG																s	TATUS						

Product	Wireless Handy Scanner									
Test Item	RF antenna conducted test	RF antenna conducted test								
Test Mode	Mode 1: Transmit	Mode 1: Transmit								
Date of Test	2013/04/27	Test Site	SR7							

IEEE 802.11n (20MHz), Antenna Gain: 2dBi Duty Cycle: 1						
Channel No.	Frequency	Measure Level	Limit	Result		
	(MHz)	(dBc)	(dBc)			
1	2412	34.136	≥20	Pass		
11	2462	44.206	≥20	Pass		

Channel 1 (2412MHz)

鱦 Agilent Spectrum Analyzer - Swept SA				
λα 50 Ω Marker 1 Δ 13.230000000 MHz		ALIGNAUTO 03:02: Avg Type: Log-Pwr T Avg Hold:>100/100	15 PM Apr 27, 2013 RACE 1 2 3 4 5 6	Peak Search
Input: RF PNO: F IFGain: 10 dB/div Ref 20.00 dBm	ow #Atten: 30 dB	Ext Gain: -1.00 dB ΔMkr1 13	.230 MHz 4.136 dB	Next Peak
10.0 0.00 -10.0	multimetinenterent	122	7	Next Right
-20.0 -30.0 -40.0	луудин на		When the the	Next Left
-50.0				Marker Delta
Start 2.39000 GHz #Res BW 100 kHz :: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	¢VBW 300 kHz	Stop 2 Sweep 3.40 ms	.42500 GHz s (1001 pts)	Mkr→CF
Δ2 1 f (Δ) 13.230 MF 2 F 1 f 2.400 010 GF 3 - - - 4 - - - 5 - - - 6 - - - 7 - - -	z (Δ) 34.136 dB z -33.122 dBm			Mkr→RefLvl
8 9 9 10 11 11 12 12				More 1 of 2
MSG		STATUS		

Channel 11 (2462MHz)

DAgilent Spectrum Analyz	zer - Swept SA				
Marker 1 Δ -20.2	240000000 MHz	AC SENSE:	INT ALIGN Avg Type: Log	AUTO 03:09:28 PM Apr 27, 2013 -Pwr TRACE 1 2 3 4 5 6	Peak Search
	Input: RF PNO: Fas IFGain:Lo	t 😱 Trig: Free Ru w #Atten: 30 dE	Ext Gain: -1.00	Mkr1 -20.240 MHz	Next Peak
10 dB/div Ref 20.	00 dBm	A2		44.206 UB	Next Right
-20.0 -30.0 -40.0		- h	nhumuu menerhinan ang	Mender and a line line line line line line line line	Next Left
-60.0					Marker Delta
Start 2.44500 GHz #Res BW 100 kHz ΜKR MODE TRO SCL 1 Δ2 1 f (Δ)	#\ × -20.240 MHz	/BW 300 kHz (Δ) 44.206 dB	SW6	Stop 2.50000 GHz eep 5.27 ms (1001 pts) width FUNCTION VALUE	Mkr→CF
2 F 1 f 3	2.483 500 GHz	-43.434 dBm			Mkr→RefLvl
is is 9					More 1 of 2
MSG				STATUS	

Product	Dual Band 3x3 802.11ac PCI-E Adapter				
Test Item	RF antenna conducted test				
Test Mode	Mode 1: Transmit				
Date of Test	2013/04/27 Test Site SR7				

2412MHz (30MHz-25GHz)-802.11g

D Agilent	t Spectrum	n Analyzer -	Swept SA								
w Marke	r 1 Δ	Ω 724.130	000000	MHz	AC SE		Avg Typ	ALIGNAUTO e: Log-Pwr	03:19:10 F	M Apr 27, 2013	Marker
		In	put: RF PI IF(NO: Fast Ģ Gain:Low	#Atten: 3	0 dB	Ext Gain:	-1.00 dB	DE		Select Marker
10 dB/d	liv Re	ef 20.00 (dBm					Δ	-49.	24 MHZ 641 dB	1
10.0											Normal
0.00		2									Normai
-20.0 —						1				6	
-30.0		140								<u></u>	Delta
-50.0	. Landard	τ. 1Δ2 -	www.wateralitya	Malan an In	- and a second from	Ang And States	por manufactor	n vin hefysteret fra t	and the second and	Altra Paderson Nierson	
-60.0		` 1.464									Fixed⊳
Ctort 2					26	20		a=	Oton 0	5 00 CH-	
#Res E	3W 100	kHz		#VBV	V 300 kHz			Sweep	2.39 s (1001 pts)	Off
	e tro so 1 f	L (Δ)	× 72	4 MHz (Δ)	Y -49.641	dB	NCTION FL	INCTION WIDTH	FUNCTIO	ON VALUE	200
2 F 3	1 f		2.40	2 GHz	0.308 d	Bm					
4 5 6											Properties►
7											-
9 10 11											More 1 of 2
12								CTATUS			
MSG								STATUS			

2462MHz (30MHz-25GHz) -802.11g

D Agi	ilent S	ipect	rum	Analyzer -	Swept SA													
₩ Mar	ker	14	50 s 1	9.4016	690000	0000) GH	م Z		ENSE:IN	IT	Avg T	¢ ype:	LIGNAUTO	03:17:46 TR/	PM Apr 2	7,2013	Marker
10 dE	B/div	,	Ref	In 20.00	d Bm	PN IFG	O: Fast ain:Lov	v V	#Atten: 3	io dB		Ext Ga	in: -	1.00 dΒ ΔΜΙ	ر 19. در 44	402 C	Hz dB	Select Marker
Log 10.0 0.00 -10.0			*	2														Normal
-20.0 -30.0 -40.0															•	1Δ2	Jung and	Delta
-50.0 -60.0 -70.0	n ^{ylenge} ngeb	hanak Maria		and a contract	an provine and set of you	Uner y	امدر مار الدر	نې ^{يار} نړو	then a grant of the history	~ * *	~~~~	tereret.nime ^{rt r}	₩	***************	and the second			Fixed⊳
Star #Res MKB	t 30 s B\ MODE A2	MI N 1	Hz^ 00	kHz (Δ)	×	9.402	#V	BW (Δ)	300 kHz	z dB	FUNC	CTION	FUN	Sweep	Stop 2.39 s	25.00 (1001	GHz pts)	Off
2 3 4 5 6	F	1	f		:	2.477	' GHz		-0.967 c	IBm								Properties►
8 9 10 11 12																		More 1 of 2
MSG														STATUS				

D Agile	ent Spe	ectrum	Analyzer	- Swept S	5A												
₩ Mark	er 1	50 Δ	Ω 19.176	96000	00000) GH	AC Z	S	ENSE:IN	IT	Avg T	ype:	Log-Pwr	03:20:31 TR/	PM Apr 27, 2013 ACE 1 2 3 4 5 6	Marker	
				Input: RF	PN IFG	0: Fast ain:Lov	v v	Trig: Fre #Atten: 3	e Rur 30 dB	Ĩ	Avg H Ext Ga	old: ain: -	15/100 1.00 dB	T		Select Mark	(er
10 dB.	/div	Re	f 20.00) dBm									ΔMł	(r1 19. -46	177 GHz 5.421 dB		1
10.0																	2
0.00 -			2												-	Nor	mal
-10.0 -																	_
-20.0 -																D	elta
-40.0											-			● 1	∆ ['] 2		
-50.0	j	mont	Kurrel Ander	and the second line	netro and		and	www.gride.agerstally.	and the second second	નુ <i>ન્દ્રમ</i> ીઓસ્ક્રુટ અ	and Instant	***	bbs to give plan of	mandm			
-60.0 -			980 - 0.5				8									Fixe	ed⊳
	<u> </u>					-	20.							04	25.00.011-		
start #Res	BW		kHz			#V	'BW 3	300 kH:	z				Sweep	2.39 s	(1001 pts)		Off
	ODE T	RC SC		X	40 477	CHE	(0)	Y 46.42/		FUN	CTION	FUN	CTION WIDTH	FUNCT	ION VALUE		011
2 1	F /	1 f			2.402	2 GHz		-0.095 c	IBm			-					
4	-	-							-							Properti	es►
6 7			8									_					
8 9																м	lore
10							-									1	of 2
MSG		di .					<u></u>						STATUS				

2412MHz (30MHz-25GHz)-802.11n(20MHz)

SENSE:INT ALIGN AUTO 03:16:02 PM Apr 27, 2013 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 AuglHald: 100/100 Type Mutatatata	Marker
ten: 30 dB Ext Gain: -1.00 dB DET P NNNN N	Select Marker
Δ١٧١K٢1 14.632 GHz -47.462 dB	1
	Norma
	Norma
142	Delta
142	
	Fixed
Stop 25.00 GHz kHz Sweep 2.39 s (1001 pts)	Of
462 dB	0
28 dBm	
	Properties
	More
	1 012
STATUS	

2462MHz (30MHz-25GHz) -802.11n(20MHz)

5. Radiated Emission Band Edge

5.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2014/02/17
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

5.2. Test Setup

5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

5.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

5.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

5.6. Uncertainty

The measurement uncertainty ± 3.9 dB above 1GHz

5.7. Test Result

Radiated is defined as

Site : CB1	Time : 2013/04/27 - 10:10
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

Note:

3

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

27.429

58.007

-15.993

74.000

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.578

6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:14
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:18
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:20
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:28
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:29
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:25
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:26
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:42
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:44
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:39
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:41
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:32
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:33
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:35
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/04/27 - 10:36
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : DC 6V (Power by Battery)
EUT : Wireless Handy Scanner	Note : 802.11n20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

6. Occupied Bandwidth

6.1. Test Equipment

The following test equipments are used during the test:

Occupied Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
EXA Signal Analyzer	Agilent	N9010A-EXA	US47140172	2013/07/31

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

6.3. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1% of EBW, Span greater than RBW.

6.4. Limits

The 6 dB bandwidth must be greater than 500 kHz.

6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

6.6. Uncertainty

The measurement uncertainty is defined as ±150Hz

6.7. Test Result

Product	Wireless Handy Scanner		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/04/27	Test Site	SR7

IEEE 802.11g										
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result						
1	2412	20.28	<u>≥</u> 0.5	Pass						
6	2437	20.09	≧0.5	Pass						
11	2462	20.43	≧0.5	Pass						

<u>Channel 1</u>

💴 Agilent S	Spectrum Analyzer -	Occupied BW									
Center	50 Ω Freq 2.4120	000000 G	A Hz Gain:Low	Center Fr Center Fr Trig: Free #Atten: 30	NSE:INT req: 2.41200 ≱ Run) dB	0000 GHz Avg Hold: Ext Gain:	ALIGN AUTO > 10/10 -1.00 dB	02:42:16 Radio Std Radio Dev	PM Apr 27, 2013 : None /ice: BTS	Trac	e/Detector
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Clear Write
-10			prover -			- h	han ale				Average
-40 Junit	and the second						ั้งสามาง "ไฟป้าไป 	^Ա սվարտում չ՝ լույլինը	สารุท _{ี่} สารประเทศ		Max Hold
Center #Res B	2.412 GHz W 300 kHz			#VE	SW 910 k	Hz		Spa Swe	n 50 MHz eep 1 ms		Min Hold
Occi	Occupied Bandwidth 16.747 MHz				Total P	ower	18.66	ð dBm		Auto	Detector Peak► <u>Man</u>
Tran x dB	Transmit Freq Error -3719 H x dB Bandwidth 20.28 MH			Hz 1Hz	OBW P x dB	ower	99 -26.	9.00 % 00 dB			
MSG							STATUS				

### Channel 6

💴 Agilent S	Spectrum Analy	zer - Occupied BW	/		1.2					
Center	50 Ω Freq 2.43	37000000 G Input: RF #IF	iHz Gain:Low	AC Senter Center Trig: Fr #Atten:	ENSE:INT Freq: 2.4370 ee Run 30 dB	00000 GHz Avg Hold Ext Gain	ALIGN AUTO :>10/10 : -1.00 dB	02:44:03 Radio Std Radio Dev	PM Apr 27, 2013 I: None vice: BTS	Freq / Channel
10 dB/div Log 20 10 -10 -20 -30 -40	Ref	30 dBm						And the work of the line	United and	Center Freq 2.437000000 GHz
-50 -60 Center #Res B\	2.437 GHz W 300 kHz			#V	/BW 910	kHz		Spa Swe	an 50 MHz eep 1 ms	CF Step 5.000000 MHz <u>Auto</u> Man
Occi	upied Ba	ndwidth 16.7	lHz	Total I	Power	18.77	7 dBm			
Trans x dB	smit Freq Bandwidt	Error h	-660 20.09	0 Hz MHz	OBW   x dB	Power	99 -26.	9.00 % .00 dB		

### Channel 11

D Agilent S	pectrum Analy	zer - Occupied BW	/								
XI Center	50 Ω Freq 2.4	62000000 G Input: RF #IF	iHz Gain:Low	AC Center Trig: Fr #Atten:	SENSE:INT Freq: 2.4620 ree Run 30 dB	00000 GHz Avg Hold Ext Gain:	ALIGN AUTO :>10/10 :-1.00 dB	02:46:46 Radio Std Radio Dev	PM Apr 27, 2013 : None vice: BTS	Freq / C	hannel
10 dB/div 20 10 -10 -20 -30	Ref	30 dBm	/	pur and a second			L. L. Martin Contraction	Alson a		Cen 2.462000	<b>ter Freq</b> 0000 GHz
-40 -50	2.462 GHz							Spa	in 50 MHz	5.000 Auto	CF Step 0000 MHz Man
#Res BV Occi	v 300 kHz	ndwidth 16.7	#\ IHz	/BW 910 Total I	kHz Power	19.10	Swe D dBm	eep 1 ms			
Trans x dB	smit Freq Bandwidt	Error th	-3097 20.43	2 Hz MHz	OBW x dB	Power	99 -26.	9.00 % 00 dB			

Product	Wireless Handy Scanner						
Test Item	Occupied Bandwidth						
Test Mode	Mode 1: Transmit						
Date of Test	2013/04/27	Test Site	SR7				

IEEE 802.11n (20MHz)										
Channel No.	Frequency	Measurement Level	Required Limit	Result						
	(MHz)	(MHz)	(MHz)	Result						
1	2412	20.82	≧0.5	Pass						
6	2437	20.74	≧0.5	Pass						
11	2462	21.88	≧0.5	Pass						

### Channel 1

💴 Agilent Spectrum	n Analyzer - (	Occupied BW								
50 Center Freq	Ω 2.4120	00000 G	Hz	C SE	NSE:INT req: 2.41200	0000 GHz		02:56:25 F Radio Std:	M Apr 27, 2013 None	Measurements
10 dB/div	Ref 30 d	i <b>Bm</b>	Gain:Low	#Atten: 30	) dB	Ext Gain:	-1.00 dB	Radio Dev	ice: BTS	Swept SA
20 20 10				a - martin a more	MADMADA					Channel Power
-10		ha Dover				-	Pluss a			Occupied BW
-30 -40 -50	Normalm	-logon and the form						unrillautym.	Martin Contraction	ACP
-60 Center 2.412 #Res BW 300	GHz 0 kHz			#VE	3W 910 k	Hz		Spa Swe	n 50 MHz ep 1 ms	Power Stat CCDF
Occupied Bandwidth 17.728 MHz					Total P	ower	19.1	ō dBm		BurstPower
Transmit Freq Error2.134 kHzx dB Bandwidth20.82 MHz			(Hz 1Hz	OBW Power 9 x dB -26		99 -26.	9.00 % 00 dB		More 1 of 2	
MSG 🔱 File <802	sc i) File <802.11n20_2412.png> saved status									
# QuieTek

🗊 Agilent S	Spectrum	Analyzer -	Occupied BW		ne -	10			Mari		
Center	50 s	2 2.4370 In	100000 G Iput: RF #IF	HZ Gain:Low	AC Center Trig: F #Atten	SENSE:INT Freq: 2.4370 ree Run : 30 dB	00000 GHz Avg Hold Ext Gain	ALIGN AUTO 1:>10/10 : -1.00 dB	02:53:56 Radio Std Radio Dev	PM Apr 27, 2013 : None /ice: BTS	Freq / Channel
10 dB/div	/ F	Ref 30 (	dBm	-	12		1	1	1		
20 <u> </u>			x								Center Fre 2.437000000 G⊦
-10				/ man				<b>V</b>			
-20 -30 -40 קאינאייל	p. J	hunn	hand the purport					Walnumah, Phone	mulannigh	Aurahan Martine	
-50 —— -60 ——											CF Ste
Center #Res B	2.437 N 300	GHz kHz			#	/BW 910	kHz		Spa Swe	in 50 MHz eep 1 ms	5.000000 MH Auto Ma
Occi	upied	l Banc	lwidth 17.7	'36 N	IHz	Total F	ower	18.8	9 dBm		
Tran	smit F	req Er	ror	-226	9 Hz	OBW	Power	99	9.00 %		
x dB	Band	width		20.74	MHz	x dB		-26.	.00 dB		
мsg 🧼 Fil	e <802.	11n20_24	437.png> sa	ved				STATUS	5		



🗊 Agilent S	pectrum Analyzer	- Occupied BW							
Center	50 Ω Freq 2.4620	000000 GH2 nput: RF #IFGai	AC Z Cent Trig: in:Low #Atte	SENSE:INT er Freq: 2.462000 Free Run n: 30 dB	0000 GHz Avg Hold: Ext Gain:	ALIGNAUTO > 10/10 -1.00 dB	02:50:35 F Radio Std Radio Dev	MApr 27, 2013 : None rice: BTS	Freq / Channel
20				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~				Center Freq 2.462000000 GHz
-10 -20	- Mt	the for a limit of former				h hulkhoware	Actual at		
-40 -50	holonal the to an inspire						* ~~~U\~~~U\~	horn for the second	
Center #Res B\	2.462 GHz N 300 kHz		l	#VBW 910 ki	Hz		Spa Swe	n 50 MHz ep 1 ms	CF Step 5.000000 MHz <u>Auto</u> Man
Occi	upied Band	dwidth 17.75	67 MHz	Total Po	ower	19.24	l dBm		
Tran: x dB	smit Freq Er Bandwidth	ror 2	-16545 Hz 21.88 MHz	OBW P x dB	ower	99 -26.	9.00 % 00 dB		
мsg 🗼 Fil	e <802.11n20_2	462.png> save	d			STATUS			

## 7. Power Density

#### 7.1. Test Equipment

The following test equipment is used during the test:

#### Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
EXA Signal Analyzer	Agilent	N9010A-EXA	US47140172	2013/07/31

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

#### 7.2. Test Setup

IEEE 802.11 b / g / a / n ( 20M / 40M ) MODE



#### 7.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

#### 7.4. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, Set VBW= 300 kHz, Sweep time=Auto, Set detector=Peak detector

#### 7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

#### 7.6. Uncertainty

The measurement uncertainty is defined as ±1.27dB.

## 7.7. Test Result

Product	Wireless Handy Scanner		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/04/27	Test Site	SR7

IEEE 802.11g										
Channel No	Frequency	Reading Level	Measurement	Limit	Decult					
Channel No.	(MHz)	(dBm)	(dBm)	(dBm)	Result					
1	2412	0.296	-14.904	≦8	Pass					
6	2437	0.729	-14.471	≦8	Pass					
11	2462	0.777	-14.423	≦8	Pass					

Note: Measure Level = Reading level + BWCF = Reading level -15.2 dB

Bandwidth correction factor (BWCF) = 10log (3 kHz/100kHz)

💭 Agilent Spectrum Analy	zer - Swept SA				
ເ <u>₩</u> 50 Ω Marker 1 2.4132	48000000 GHz		ALIGN AUTO Avg Type: Log-Pwr AvgiHold:>100/100	02:40:57 PM Apr 27, 2013 TRACE 1 2 3 4 5 6 TYPE M MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Peak Search
10 dB/div Ref 20	Input: RF PNU: Fa IFGain:L	ow #Atten: 30 dB	Ext Gain: -1.00 dB	2.413 248 GHz 0.296 dBm	Next Peak
10.0		A1			Next Right
-10.0	pollondandan	work and and a	mmmhunhund	m	Next Left
-20.0	/				Marker Delta
-40.0 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4				Junior	Mkr→CF
-60.0					Mkr→RefLvl
Center 2.41200 G #Res BW 100 kHz	Hz #	VBW 300 kHz	Sweep	Span 26.00 MHz 2.53 ms (1001 pts)	More 1 of 2



# <u>Channel 6</u>

D Agi	ent Spec	ctrum Analyzer -	Swept SA								
w Marl	ker 1	^{50 Ω} 2.4382480	000000 G	Hz	AC SE		Avg Type	ALIGNAUTO	02:45:41	PM Apr 27, 2013	Peak Search
10 dE	3/div	Ref 20.00	dBm	NO: Fast 🖵 Sain:Low	#Atten: 30	) dB	Ext Gain:	-1.00 dB Mkr1	2.438 2 0.7	248 GHz 29 dBm	Next Peak
Log 10.0			8			▲1			0		Next Right
0.00 -10.0		ſ	hundre	Angen Angen	handrean	produced	hundhurd	- morphoned	1		Next Left
-20.0 -30.0	14								Un U		Marker Delta
-40.0 -50.0	Jul ^{aya} ya	4V ^{**}								mhh.a.Alman	Mkr→CF
-60.0											Mkr→RefLvl
Cent #Res	ter 2.4 s BW	13700 GHz 100 kHz		#VBW	300 kHz			Sweep	Span 2 2.53 ms (	26.00 MHz 1001 pts)	More 1 of 2
MSG								STATU	s		



D Agi	lent Spe	ctrum Analyzer -	Swept SA								
⊯ Mar	ker 1	^{50 Ω} 2.4632480	000000 G	iHz			Avg Type	ALIGNAUTO	02:48:43   TRA	M Apr 27, 2013	Peak Search
10 di	3/div	Ref 20.00	d <b>B</b> m	NO: Fast 🖵 Gain:Low	#Atten: 30	) dB	Ext Gain:	-1.00 dB Mkr1	2.463 2 0.7	48 GHz 77 dBm	NextPeak
<b>Log</b> 10.0			8			▲1					Next Right
0.00 -10.0			Murlup	Mum hun	himpor	molinal	Monthural	www.lwwwl			Next Left
-20.0 -30.0		have water							VI VI		Marker Delta
-40.0	<i>የመካ</i> ለት በ	_{יינ} י/µ [,]									Mkr→CF
-60.0											Mkr→RefLvl
-70.0 Cen #Re:	ter 2.4 s BW	l6200 GHz 100 kHz		#VBW	300 kHz			Sweep	Span 2 2.53 ms (	6.00 MHz 1001 pts)	More 1 of 2
MSG								STATU	5		

# **QuieTek**

Product	Wireless Handy Scanner		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/04/27	Test Site	SR7

IEEE802.11n_20MHz										
Channel No.	Frequency (MHz)	Reading Level (dBm)	Measure Level (dBm)	Limit (dBm)	Result					
1	2412	0.756	-14.444	≦8	Pass					
6	2437	-0.275	-15.475	≦8	Pass					
11	2462	0.518	-14.682	≦8	Pass					

Note: Measure Level = Reading level + BWCF = Reading level -15.2 dB

Bandwidth correction factor (BWCF) = 10log (3 kHz/100kHz)

🗊 Agi	lent Spec	trum Analyzer	- Swept SA								
<mark>⊯</mark> Mar	ker 1	^{50 Ω} 2.413248	3000000	GHz		NSE:INT	Avg Type	ALIGNAUTO	02:57:54 F	M Apr 27, 2013	Peak Search
10 dE	3/div	Ref 20.00	Input: RF ) dBm	PNO: Fast G	#Atten: 30	) dB	Ext Gain:	-1.00 dB Mkr1	2.413 2 0.7	48 GHz 56 dBm	NextPeak
10.0						<b>▲</b> ¹					Next Right
0.00 -10.0		pro-	manh	when have been	lung han	punhan	haventon	manlingen	hung		Next Left
-20.0 -30.0		, r							M N		Marker Delta
-40.0 -50.0	4₩₩									MURUAN AND	Mkr→CF
-60.0											Mkr→RefLvl
Cen #Re:	ter 2.4 s BW 1	1200 GHz 100 kHz		#VBW	300 kHz			Sweep	Span 2 2.53 ms (	6.00 MHz 1001 pts)	More 1 of 2
MSG 🤇	Storin	ng Hardware	Statistics					STATU	s		



# <u>Channel 6</u>

🗊 Agi	ilent Spec	trum Analyze:	r - Swept SA								
₩ Mar	ker 1	^{50 Ω} 2.43572	6000000 G	Hz	AC SE		Avg Type AvgHold	ALIGNAUTO	02:55:03 F	PM Apr 27, 2013	Peak Search
10 dl	B/div	Ref 20.0	0 dBm	NO: Fast 🖵 Sain:Low	#Atten: 30	) dB	Ext Gain:	-1.00 dB Mkr1	2.435 7 -0.2	26 GHz 75 dBm	Next Peak
10.0					▲1				·		Next Right
0.00 -10.0		<i>س</i> ر	workantum	Amahan	hunder	parabasal	horn trank	handburd			Next Left
-20.0 -30.0		A Alexandre									Marker Delta
-40.0 -50.0	wpw4nCVP									"Induction of the second se	Mkr→CF
-60.0											Mkr→RefLvl
Cen #Re	ter 2.4 s BW	.3700 GHz 100 kHz	2	#VBW	300 kHz			Sweep	Span 2 2.53 ms (	6.00 MHz 1001 pts)	More 1 of 2
MSG								STATU	S		



								wept SA	nalyzer - S	ectrum An	ilent Spe	D Agi
Peak Search	M Apr 27, 2013	02:52:29 F	ALIGNAUTO : Log-Pwr	Avg Type	NSE:INT	AC SE	Hz	00000 G	32220	50 Ω <b>2.46</b>	ker 1	<i>⊯</i> Mar
NextPeak		TYF	>100/100 -1.00 dB	Avg Hold Ext Gain:	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB			Input: RF PNC				
	Mkr1 2.463 222 GHz 10 dB/div Ref 20.00 dBm 0.518 dBm											
												Log
Next Right	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				. 1		0				·	10.0
			Δ	n n	<b>∳</b> '	n n	A A	<u> </u>			i	0.00
Next Left		mon		wyn lawn	mantman	burn hurn		ปลางสารให้เวลา	Mar			
									]			-10.0
Marker Delta							1.		 الر			-20.0
	<b>n</b>	- My				<i>6</i>			<u>.</u>			-30.0
Mkr→CF	mality									New Marker	, AMAN M	40.0
				-								-40.0
												-50.0
Mkr→RefLvl												-60.0
					-							70.0
More 1 of 2												-70.0
	enter 2.46200 GHz Span 26.00 MHz											Cen
	1001 pts)	2.53 ms (	Sweep			300 kHz	#VBW		Hz	100 kł	s BW	#Re
		3	STATU									MSG

## Channal 11