

FCC Test Report

Equipment	:	Wireless Controller
Brand Name	:	Wacom
Model No.	:	EKR-100
FCC ID	:	HV4EKR100-1
Standard	:	47 CFR FCC Part 15.249
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DXX
Applicant Manufacturer	:	Wacom Co., Ltd. 2-510-1 Toyonodai, Kazo-shi Saitama 349-1148, Japan

The product sample received on Oct. 16, 2014 and completely tested on Feb. 06, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Measurement Configuration	9
2.4	Test Setup Diagram	10
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	Emission Bandwidth	15
3.3	Fundamental Emissions	17
3.4	Transmitter Radiated Unwanted Emissions	19
4	TEST EQUIPMENT AND CALIBRATION DATA	29

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result	
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied	
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 17.290MHz 42.46 (Margin 17.54dB) - QP 36.99 (Margin 13.01dB) - AV	FCC 15.207	Complied	
3.2	15.215(c)	Emission Bandwidth	2.1708 MHz; fall in band	Information only	Complied	
3.3	15.249(a)	Fundamental Emissions	[dBuV/m at 3m]: 77.62 (Margin 16.38dB) average	[dBuV/m at 3m]: average: 94	Complied	
3.4	15.249(a)/(d)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]:134.760 MHz 39.77 (Margin 3.73 dB) - PK	Harmonics: 54 dBuV/m@3m Other band: 50 dB or FCC 15.209, whichever is the lesser attenuation.	Complied	

Revision History

Report No.	Version	Description	Issued Date
FR400730	Rev. 01	Initial issue of report	Dec. 16, 2014
FR4O0730-01	Rev. 01	Product modification Refer to 1.1.4	Feb. 26, 2015

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information					
Frequency Range (MHz)	Modulation	Ch. Frequency (MHz)	Channel Number	Fundamental Field Strength (dBuV/m)	
2400-2483.5	GFSK	2402~2478	77	77.62	
Note 1: Field strength performed average level at 3m.					

1.1.2 Antenna Information

	Antenna Category				
\square	Integral antenna (antenna permanently attached)				
	External antenna (dedicated antennas) ; Unique antenna connector				

1.1.3 Type of EUT

	Identify EUT			
EUT	Serial Number	N/A		
Pre	sentation of Equipment	□ Production ; □ Pre-Production ; □ Prototype		
	Type of EUT			
\square	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Miscellaneous changes

Product Modifications			
No.	Description		
1	Change an antenna		
2	Add a SMD (0.33 Ω) and a 1/2w resistor		
3	Change of C31 & C32 location		
4	Change of U3 location from SOT-23-5 LN2054 to SOP-8 XT2055		
5	Change of Q3(NPN Transistor), SMD 0603 R61 , SMD 0603 R32 location		
6	Removed D1 & D2 (LED)		

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Duty Cycle Correction Factor [dB] = (20 log x)				
☑ 45.94% 6.76				
If worst duty < 100%, average emission = peak emission + 20 log x				

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery or System

1.2 Accessories and Support Equipment

Accessories Information					
Li ion Battony	Brand Name	Shenzhen Highest Electronic	Model Name	274462P	
LI-IOIT Ballery	Power Rating	3.7V 780mAh			
LISE Cable	Brand Name	Wacom	Model Name	STJ-A347	
Signal Line		0.3 meter, non-shielded cable			

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment - AC Conduction and Radiated Emission					
Equipment Brand Name Model Name FCC ID					
Notebook	DELL	E5530	DoC		

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013

1.4 Testing Location Information

Testing Location								
\boxtimes	HWA YA	A YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.						
		TEL	:	886-3-327-3456	FAX	:	886-3-327-0973	
				Test Site Registra	ation	Numb	er: FCC 636805	
	Test Condition Test Site No. Test Engineer Test Environment							
AC Conduction CO04-HY Zeus 22°C / 43%							22°C / 43%	
	RF Conducted TH01-HY Ian 23.4°C / 62%							23.4°C / 62%
F	Radiated Em	ission		03CH03-HY			Daniel	22°C / 54%

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Test Item	Uncertainty	Limit				
AC power-line conducted emissions		±2.2 dB	N/A			
Emission bandwidth,		±1.4 %	N/A			
Unwanted emissions, conducted	30 – 1000 MHz	±0.5 dB	N/A			
	1 – 18 GHz	±0.6 dB	N/A			
	18 – 40 GHz	±0.8 dB	N/A			
	N/A	N/A				
All emissions, radiated	30 – 1000 MHz	±2.5 dB	N/A			
	1 – 18 GHz	±3.5 dB	N/A			
	18 – 40 GHz	±3.8 dB	N/A			
	40 – 200 GHz	N/A	N/A			
Temperature	·	±0.8 °C	N/A			
Humidity	±3 %	N/A				
DC and low frequency voltages	±3 %	N/A				
Time		±1.4 %	N/A			
Duty Cycle		±1.4 %	N/A			

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Modulation Used for Conformance Testing					
Test Mode Field Strength (dBuV/m at 3 m)					
GFSK-Transmit 77.62					

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration				
Test Mode Test Channel Frequencies (MHz)				
GFSK-Transmit 2402, 2445, 2478				

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item	AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	Power from Host & Radio link				

	The Worst Case Mode for Following Conformance Tests						
Г	ests Iter	n	Emission Bandwidth, Fundamental Emissions, Radiated Unwanted Emissions				
Тез	st Condit	ion	Radiated measurement				
Us	er Positi	on	EUT will be placed in fixed position.				
X Plane	Y Plane	Z Plane	EUT will be placed in mobile position and operating multiple positions.				
 ➡ 			EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is Y.				
000	vrating M	odo	Operating Mode Description				
Operating Mode Transmitter Mode							
Mod	ulation M	lode	GFSK-Transmit				

2.4 Test Setup Diagram

Transmitter Test Result 3

3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5 56 46						
5-30 60 50						
Note 1: * Decreases with the logarithm of	of the frequency.	·				

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

				Ower-i		maaoto		ssions	Resu		-		
perating Mode 1				1 Power Phase						Neutr	al		
erating Function			Power from Host & Radio link										
	Level (d	(BuV)	Date: 2015-02-06										
	80												
		· · · · ·				_							
					-				_				
	/	~									CISPR	CNSM	CCLB
											010111		
	110	-									CIEDD/CH	ENICO	PAV
	H H									-	LISPRICH	LLL	-D AV
	n ka											Mil.	
	40			di tui .		1 3 1 3	It. eff		-	1	-	HE W	ma.
			. IA A Additta	ALL P	ANIMA	Alle La Julie	WWW.	di		WWW	M		MA.
		14.00			A distantia		Phi man			ALL LIN	her of		N
		I I I I	Negar 1				10	Willi	the start		14		
	1			4 0 YL	1			14	AWAP "	1			-
													1
			1										
								-		_			
		1 1											
		-11-1											
		-11-1											
	0 0.15 0.2	-11-1	0.5		1	2		5		1	0	20	30
	0.150.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.150.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0.150.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.15 0.2		0.5		1	2 Frequen	cy (MHz)	5		1	0	20	30
	0 0.15 0.2		0.5 Over	Limit	1 Read	2 Frequen	cy (MHz) Cable	5		1	0	20	30
	0.150.2	Level	0.5 Over Limit	Limit Line	1 Read Level	2 Frequen LISN Factor	cy (MHz) Cable Loss	5 Remark		1	0	20	30
	0 0.150.2 Freq	Level	0.5 Over Limit	Limit Line	1 Read Level	2 Frequen LISN Factor	Cable Loss	5 Remark		1	0	20	30
	0 0.150.2 Freq MHz	Level	Over Limit dB	Limit Line dBuV	1 Read Level dBuV	2 Frequen LISN Factor dB	Cable Loss	5 Remark		1	0	20	30
1	0 0.150.2 Freq MHz 0.1590020	Level dBuV 27.08	Over Limit dB -28.44	Limit Line dBuV 55.52	1 Read Level dBuV 26.64	2 Frequen LISN Factor dB 0.07	Cable Loss dB 0.37	Remark Average		1	0	20	30
1 2	0.150.2 Freq MHz 0.1590020 0.1590020	Level dBuV 27.08 48.71	0.5 Over Limit dB -28.44 -16.81	Limit Line dBuV 55.52 65.52	1 Read Level dBuV 26.64 48.27	LISN Factor dB 0.07 0.07	Cable Loss dB 0.37 0.37	Remark Average QP		1	0	20	30
1 2 3	0.150.2 Freq MHz 0.1590020 0.1590020 0.2028850	Level dBuV 27.08 48.71 39.88	0.5 Over Limit dB -28.44 -16.81 -23.61	Limit Line dBuV 55.52 65.52 63.49	1 Read Level dBuV 26.64 48.27 39.31	2 Frequen LISN Factor dB 0.07 0.07 0.07	Cable Loss dB 0.37 0.37 0.50	Remark Average QP QP		1	0	20	30
1 2 3 4	0.150.2 Freq MHz 0.1590020 0.1590020 0.2028850 0.2028850	Level dBuV 27.08 48.71 39.88 30.61	0.5 Over Limit dB -28.44 -16.81 -23.61 -22.88	Limit Line dBuV 55.52 65.52 65.52 63.49 53.49	1 Read Level dBuV 26.64 48.27 39.31 30.04	2 Frequen	Cable Loss dB 0.37 0.50 0.50	Remark Average QP Average		1	0	20	30
1 2 3 4 5	0 0.150.2 Freq 0.1590020 0.1590020 0.2028850 0.2028850 0.2028850 0.5701000	Level dBuV 27.08 48.71 39.88 30.61 26.04	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96	Limit Line dBuV 55.52 65.52 65.52 65.49 53.49 46.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28	2 Frequen	Cable Loss dB 0.37 0.50 0.50 0.68	Remark Average OP Average Average			0	20	30
1 2 3 4 5 6	0.150.2 Freq MHz 0.1590020 0.2028850 0.2028850 0.2028850 0.5701000 0.5701000	Level dBuV 27.08 48.71 39.88 30.61 26.04 35.45	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96 -20.55	Limit Line dBuV 55.52 65.52 63.49 53.49 53.49 46.00 56.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69	2 Frequen Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.37 0.50 0.50 0.68 0.68	Remark Average OP Average Average OP		1	0	20	30
1 2 3 4 5 6 7	0.150.2 0.150.2 Freq MHz 0.1590020 0.2028850 0.2028850 0.5701000 0.5701000 0.5701000 0.5710300	Level dBuV 27.08 48.71 39.88 30.61 26.04 35.45 20.61	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96 -20.55 -25.39	Limit Line dBuV 55.52 63.49 53.49 53.49 53.49 53.60 46.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69 19.75	2 Frequen ELISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.37 0.37 0.50 0.50 0.68 0.68 0.77	Average QP QP Average QP Average		1	0	20	30
1 2 3 4 5 6 7 8	0.150.2 0.150.2 MHz 0.1590020 0.202850 0.202850 0.5701000 0.5701000 0.5701000 0.5710300 0.8710300	Level dBuV 27.08 48.71 39.88 30.61 35.45 20.61 32.54	0.5 0.5 Limit dB -28.44 -16.81 -22.88 -19.96 -20.55 -25.39 -23.46	Limit Line dBuV 55.52 65.52 63.49 53.49 53.49 53.49 53.49 53.49 53.60 56.00 46.00 56.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69 19.75 31.68	2 Frequen ELISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.37 0.37 0.50 0.50 0.50 0.50 0.68 0.68 0.77 0.77	Average QP QP Average QP Average QP			0	20	30
1 2 3 4 5 6 7 8 9	Freq 0.150020 0.1590020 0.1590020 0.2028850 0.5701000 0.5701000 0.5710300 0.8710300 0.8710300 0.8710300 0.8710300	Level dBuV 27.08 48.71 39.88 30.61 26.04 35.45 20.61 32.54 32.54 32.54	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96 -20.55 -25.39 -23.46 -23.81 -23.81	Limit Line dBuV 55.52 63.52 63.49 53.49 46.00 56.00 46.00 56.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69 19.75 31.68 31.33 2.32	2 Frequen ELISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.37 0.50 0.50 0.68 0.68 0.77 0.77 0.77	Remark Average OP QP Average QP Average OP			0	20	30
1 2 3 4 5 6 7 8 9 10	Freq 0.150.2 MHz 0.1590020 0.2028850 0.5701000 0.5701000 0.5710300 0.8700000000 0.8710300000000000000000000000000000000000	Level dBuV 27.08 48.71 39.88 30.61 26.04 35.45 20.61 32.54 32.59 23.50	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96 -20.55 -25.39 -23.46 -23.81 -22.50	Limit Line dBuV 55.52 65.52 63.49 53.49 46.00 56.00 46.00 56.00 56.00 46.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69 19.75 31.68 31.33 22.66 31.33	2 Frequent LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.37 0.50 0.68 0.68 0.77 0.77 0.75 0.75	Remark Average OP Average OP Average OP Average OP Average OP			0	20	30
1 2 3 4 5 6 7 8 9 10 11	Freq 0.150.2 0.150.2 0.150020 0.1590020 0.2028850 0.5701000 0.5701000 0.8710300000000000000000000000000000000000	Level dBuV 27.08 48.71 39.88 30.61 26.04 35.45 20.61 32.54 32.19 23.50 42.40 23.50	0.5 0.5 Limit dB -28.44 -16.81 -23.61 -22.88 -19.96 -20.55 -25.39 -23.46 -23.81 -22.50 -17.54	Limit Line dBuV 55.52 63.49 53.49 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	1 Read Level dBuV 26.64 48.27 39.31 30.04 25.28 34.69 19.75 31.68 31.33 22.64 41.33	2 Frequen ELISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.37 0.50 0.68 0.68 0.68 0.77 0.75 0.75 0.75 0.75	Remark Average QP Average QP Average QP Average QP Average QP			0	20	30

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

Emission Bandwidth Limit

Emission bandwidth falls completely within authorized band.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method Refer as ANSI C63.10, clause 6.9.2 for 20 dB emission bandwidth and 99% occupied bandwidth measurement.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Emission Bandwidth Result								
Modulation Mode	Frequency (MHz)	20dB BW (MHz)	99% Bandwidth (MHz)	F _L at 20dB BW (MHz)	F _H at 20dB BW (MHz)			
GFSK-Transmit	2402	1.8958	1.7366	2401.0955	-			
GFSK-Transmit	2445	2.1563	2.0767	-	-			
GFSK-Transmit	2478	2.1708	2.1635	-	2479.2880			
Lir	nit	N/A N/A 2400 2483.5						
Res	sult		Complied					

3.3 Fundamental Emissions

3.3.1 Fundamental Emissions Limit

	Fundamental Emissions E-Field Strength Limit (3m)					
	902-928 MHz Band: 94 dBuV/m (quasi peak)					
\boxtimes	2400-2483.5 MHz Band: 94 dBuV/m (average)					
	5725-5785 MHz Band: 94 dBuV/m (average)					

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

☑ The average emission levels shall be measured in [duty cycle ≤ 100 or by duty cycle correction factor].
 ☑ For the transmitter emissions shall be measured using following options below:
 ☑ Refer as ANSI C63.10, clause 4.1.2.3 (Reduced VBW) – Duty cycle ≥ 100%.
 ☑ Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).
 ☑ Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
 ☑ For radiated measurement, refer as ANSI C63.10, clause 6.6 for radiated emissions

3.3.4 Test Setup

3.3.5	Test Result of	Fundamental	Emissions
-------	----------------	--------------------	-----------

Field Strength of Fundamental Emissions Result							
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Margin (dB)	Limit (dBuV/m)@3m	Туре		
GFSK-Transmit	2402	84.38	29.62	114	peak		
GFSK-Transmit	2402	77.62	16.38	94	average		
GFSK-Transmit	2445	83.44	83.44	114	peak		
GFSK-Transmit	2445	76.68	17.32	94	average		
GFSK-Transmit	2478	82.01	31.99	114	peak		
GFSK-Transmit	2478	75.25	18.75	94	average		
Result Complied							
Note 1: Measuren	nent worst emissic	ons of receive ante	nna polarization: \	Vertical.			

Note 2: If duty cycle < 100%, average emission = peak emission + 20 log (duty cycle).

3.4 Transmitter Radiated Unwanted Emissions

3.4.1 Transmitter Radiated Unwanted Emissions Limit

	Transmitter Radiated Unwanted Emissions Limit								
Harı	monics:								
\boxtimes	54 dBuV/m (average)								
Oth	Other Unwanted Emissions:								
\boxtimes	50 dB below the level of the fundamental or FCC 15.209, whichever is the lesser attenuation.								

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method – General Information							
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).								
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
\boxtimes	Refe cha	er as ANSI C63.10, clause 6.10.3 bandedge testing shall be performed at the lowest frequency not and highest frequency channel within the allowed operating band.							
\bowtie	For	the transmitter unwanted emissions shall be measured using following options below:							
		Refer as ANSI C63.10, clause 4.1.2.3 (Reduced VBW) – Duty cycle ≥ 100%.							
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = peak emission + 20 log (duty cycle).							
	\boxtimes	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.							
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:							
	\boxtimes	Refer as ANSI C63.10, clause 6.10 for band-edge testing.							
		Refer as ANSI C63.10, clause 6.10.6 for marker-delta method for band-edge measurements.							
\boxtimes	For	radiated measurement.							
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.							
	\bowtie	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.							
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.							

3.4.4 Test Setup

calibrated bi-log antenna.

3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

rating Mode			1			FUIA	Polarization			V		
erating Function			Transmitter Mode									
16	Level (dBu)	//m)							I	Date: 20	015-02-06	K III
	80				6		1		1 19 10	NCCA	IC/FCC.B	1.4
	70					-		-			Sur	
	60	-					-		_			
	50			_			-					
	50				-			-		_	-	
	40	2 3	-	×	-	1	1					
	30	-		4		5	-			6		
	20				-	1		-				
	20		_			1						
	10		-					-				
	0	-		_		-	-		-			
	10				_							
	-10	200.	300	0. 40	0. t Frequ	500. (iency (MHz	500.	700.	800.	900	. 100	0
	-10	200.	300	0. 40	0, S Frequ	500. (iency (MHz)	500.	700.	800.	900	. 100	0
	-10 -20 30 100.	200. Level	300 Over Limit	D. 40	0, t Frequ Read. Level	Goo. (eency (MHz) Antenna Factor	Cable Loss	700. Preamp Factor	800. Remark	900	. 100 A/Pas	0 T/Pos
	-10 -20 30 100. Freq 	200. Level dBuV/m	300 Over Limit	D. 40	0, s Frequ Read. Level dBuV	Antenna Factor dB/m	Cable Loss	700. Preamp Factor dB	800.	900	A/Pos	T/Pos
	-10 -20 30 100. Freq MHz 31 940	200. Level dBuV/m	Over Limit dB	Limit Line dBuV/m	0, 9 Frequ Read. Level dBuV	Antenna Factor dB/m	Cable Loss dB	700. Preamp Factor dB	800. Remark	900	A/Pos	0 T/Pos deg
1	-10 -20 30 100. Freq MHz 31.940 142.520	200. 200. Level dBuV/m 33.65 34.79	300 300 Limit dB -6.35 -8.71	Limit Line dBuV/m 40.00 43.50	0, t Frequ Read, Level dBuV 43.23 49.15	Antenna Factor dB/m 16.90 10.82	Cable Loss dB 0.87 1.98	700. Preamp Factor dB 27.35 27.16	800. Remark Peak Peak	900	A/Pos	T/Pos
1 2 3	-10 -20 30 100. Freq MHz 31.940 142.520 165.800	200. 200. Level dBuV/m 33.65 34.79 35.61	300 300 0ver Limit dB -6.35 -8.71 -7.89	Limit Line dBuV/m 40.00 43.50 43.50	0, 9 Frequ Read. Level dBuV 43.23 49.15 51.13	Antenna Factor dB/m 16.90 10.82 9.51	Cable Loss dB 0.87 1.98 2.12	700. 700. Preamp Factor dB 27.35 27.16 27.15	800. Remark Peak Peak Peak Peak	900	A/Pos	T/Pos deg
1 2 3 4	-10 -20 30 100. Freq MHz 31.940 142.520 165.800 336.520	200. 200. 200. 200. 200. 200. 200. 200.	300 Over Limit dB -6.35 -8.71 -7.89 -16.61	Limit Line dBuV/m 40.00 43.50 43.50 46.00	0. ! Frequ Read. Level dBuV 43.23 49.15 51.13 39.75	Antenna Factor dB/m 16.90 10.82 9.51 13.49	Cable Loss dB 0.87 1.98 2.12 3.06	700. 700. Preamp Factor dB 27.35 27.16 27.15 26.91	800. Remark Peak Peak Peak Peak Peak	900	A/Pos	0 T/Pos deg
1 2 3 4 5	-10 -20 30 100. Freq MHz 31.940 142.520 165.800 336.520 528.580	200. 200. 200. 200. 200. 200. 200. 200.	300 0ver Limit dB -6.35 -8.71 -7.89 -16.61 -19.82	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00	0. ! Frequ Read. Level dBuV 43.23 49.15 51.13 39.75 32.75	Antenna Factor dB/m 16.90 10.82 9.51 13.49 17.48	Cable Loss dB 0.87 1.98 2.12 3.06 3.86	700. 700. Preamp Factor dB 27.35 27.16 27.15 26.91 27.91	800. 800. Peak Peak Peak Peak Peak Peak Peak	900	A/Pos	00 T/Pos

3.4.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

berating Mode			1				Polarization			Н	
erating Function			Transmitter Mode								
	Level (dBu)	V/m)		(1923) <u>3</u>	1997 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -		en en ret	2 2	Da	ate: 2015-02-06	i.
	80		-			[1		T	NCC/IC/FCC	
	70				-		-	-		-31(0	
	60						-	_	_	_	
	50		_		_						2
	50	1	-		_			-			
	40	1 2	2	4 5		7100					
	30	2	3	- Î	5	6			-		
	20			111				_			
										11 11	
	10				-						
	0			_			-	-			-
	.10						_		_		
	30 100.				Frequ	ency (MHz)				
	30 100.				Frequ	ency (MHz)				
	Freq	Level	0ver Limit	Limit Line	Frequ ReadA Level	ency (MHz Antenna Factor) Cable Loss	Preamp Factor	Remark	A/Pos	T/Pos
	Freq 	Level dBuV/m	0ver Limit dB	Limit Line dBuV/m	ReadA Level dBuV	Antenna Factor dB/m	(able Loss dB	Preamp Factor dB	Remark	A/Pos	T/Pos
1	Freq 	Level dBuV/m 39.77	Over Limit 	Limit Line dBuV/m 43.50	ReadA Level dBuV 53.43	ency (MHz Antenna Factor dB/m 11.59) Cable Loss dB 1.92	Preamp Factor dB 27.17	Remark	A/Pos	T/Pos deg
12	Freq MHz 134.760 212.360	Level dBuV/m 39.77 31.54	0∨er Limit 	Limit Line dBuV/m 43.50 43.50	ReadA Level dBuV 53.43	Antenna Factor dB/m 11.59 8.82) Cable Loss dB 1.92 2.40	Preamp Factor dB 27.17 27.08	Remark Peak Peak	A/Pos 	T/Pos deg
1 2 3	Freq MHz 134.760 231.760	Level dBuV/m 39.77 31.54 31.24	Over Limit 	Limit Line dBuV/m 43.50 43.50 46.00	Freque ReadA Level dBuV 53.43 47.40 45.67	Antenna Factor dB/m 11.59 8.82 10.05	Cable Loss dB 1.92 2.40 2.51	Preamp Factor dB 27.17 27.08 26.99	Remark Peak Peak Peak	A/Pos 	T/Pos deg
1 2 3 4	Freq 	Level dBuV/m 39.77 31.54 31.24 32.60	0ver Limit dB -3.73 -11.96 -14.76 -13.40	Limit Line dBuV/m 43.50 43.50 46.00 46.00	Read/A Level dBuV 53.43 47.40 45.67 42.96	Antenna Factor dB/m 11.59 8.82 10.05 13.49	Cable Loss dB 1.92 2.40 2.51 3.06	Preamp Factor dB 27.17 27.08 26.99 26.91	Remark Peak Peak Peak Peak Peak	A/Pos	T/Pos deg
1 2 3 4 5 6	Freq MHz 134.760 212.360 231.760 336.520 400.540 528.580	Level dBuV/m 39.77 31.54 31.24 32.60 31.58 29.78	0ver Limit dB -3.73 -11.96 -14.76 -13.40 -14.42 -16.22	Limit Line dBuV/m 43.50 46.00 46.00 46.00	Read/ Level dBuV 53.43 47.40 45.67 42.96 40.24 36.35	Antenna Factor dB/m 11.59 8.82 10.05 13.49 15.32 17.48	(able Loss dB 1.92 2.40 2.51 3.06 3.34 3.86	Preamp Factor dB 27.17 27.08 26.99 26.91 27.32 27.91	Remark Peak Peak Peak Peak Peak Peak	A/Pos	T/Pos deg

erating		lation Mode GFSK-Transmit					Test Freq. (MHz)			2402	
perating Function Transmit				Pol			arization			V	
	Level (dBu							Da	rte: 2015-02-06		
	120			- 2 X		-					
	110										-
	90	-	-			-		-	-		
				_						15 249	
	70	-			-	-				10.210	1.
				1.11							
	50	1	4	6	-					15.249-AV	
	50		3	7							
	30										
	10					-			-		-
		000. 60	00. 800	0. 10000.	12000. Frequ	14000. 1(ency (MHz	5000. 18)	000. 2000	00. 22000.	24000. 2650	00
		000. 60	00. 800	0. 10000.	12000. Frequ	14000. 1(ency (MHz	6000. 18	000. 2000 Preamp	00. 22000.	24000. 2650 A/Pos	T/Pos
	10 0 1000 4	000. 60 Level	Over Limit	0. 10000. Limit Line	12000. Frequ Read/ Level	14000. 10 ency (MHz Antenna Factor	Cable Loss	000. 2000 Preamp Factor	00. 22000. Remark	24000. 2650 A/Pos	T/Pos
	10 0 1000 4 Freq МHz	Level	Over Limit	D. 10000.	12000. Frequ Read/ Level dBuV	Antenna Factor dB/m	Cable Loss	Preamp Factor	00. 22000. Remark	24000. 2650 A/Pos	T/Pos
	10 0 1000 4 Freq MHz 4804 000	Level dBuV/m 47 76	00. 8000 00. 8000 Limit dB -6 24	Limit Line dBuV/m 54 00	12000. Frequ Read/ Level dBuV 42 54	Antenna Factor dB/m 33 20	Cable Loss dB	Preamp Factor dB 32 47	Remark	24000. 2650 A/Pos	T/Pos deg
1 2	10 0 1000 4 Freq MHz 4804.000 4804.000	Level dBuV/m 47.76 54.51	0ver Limit -6.24 -19.49	Limit Line dBuV/m 54.00 74.00	12000. Frequ Read/ Level dBuV 42.54 49.29	Antenna Factor dB/m 33.20 33.20	Cable Loss dB 4.49 4.49	Preamp Factor dB 32.47 32.47	Remark	24000. 2650 A/Pos	T/Pos deg
1 2 3	10 0 1000 4 Freq MHz 4804.000 4804.000 7206.000	Level dBuV/m 47.76 54.51 43.19	0ver Limit -6.24 -19.49 -10.81	Limit Line dBuV/m 54.00 74.00 54.00	12000. Frequ Read/ Level dBuV 42.54 49.29 34.27	Antenna Factor dB/m 33.20 35.84	Cable Loss dB 4.49 5.71	Preamp Factor dB 32.47 32.63	Remark Average Peak Average	24000. 2650 A/Pos	T/Pos deg
1 2 3 4	10 0 1000 4 Freq MHz 4804.000 4804.000 7206.000 7206.000	Level dBuV/m 47.76 54.51 43.19 49.94	0ver Limit dB -6.24 -19.49 -10.81 -24.06	Limit Line dBuV/m 54.00 74.00 54.00 74.00	12000. Frequ Read/ Level dBuV 42.54 49.29 34.27 41.02	Antenna Factor dB/m 33.20 35.84 35.84	Cable Loss dB 4.49 4.49 5.71 5.71	Preamp Factor dB 32.47 32.63 32.63	Remark Average Peak Average Peak	24000. 2650 A/Pos	T/Pos deg
1 2 3 4 5	10 0 1000 4 Freq MHz 4804.000 4804.000 7206.000 7206.000 9608.000	Level dBuV/m 47.76 54.51 43.19 49.94 45.61	0ver Limit dB -6.24 -19.49 -10.81 -24.06 -8.39	Limit Line dBuV/m 54.00 74.00 54.00 54.00 54.00	12000. Frequ Read/ Level dBuV 42.54 49.29 34.27 41.02 33.72	Antenna Factor dB/m 33.20 35.84 35.84 38.37	Cable Loss dB 4.49 4.49 5.71 5.71 6.66	Preamp Factor dB 32.47 32.63 32.63 33.14	Remark Average Peak Average Peak Average	24000. 2650 A/Pos	T/Pos deg

3.4.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 14, 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 31, 2014	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101514	9kHz ~ 40GHz	Jun. 13, 2014	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 31, 2014	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 29, 2014	Radiation
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May 05, 2014	Radiation
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Sep. 01, 2014	Radiation
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiation
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 20, 2014	Radiation
Horn Antenna	ETS · LINDGREN	3115	6741	1GHz ~ 18GHz	Jul. 11, 2014	Radiation
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 27, 2015	Radiation
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 15, 2014	Radiation
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 12, 2014	Radiation
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation
Note: Calibration Int	erval of instruments	listed above is one	vear.			

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9kHz ~ 30MHz	Jul. 28, 2014	Radiation

Note: Calibration Interval of instruments listed above is two years.