

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease Control Record 4				
1	C	Certificate of Conformity	5		
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	Ģ	General Information	. 7		
•		General Description of EUT			
	3.1 3.2	Description of Test Modes			
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards	14		
4	Т	est Types and Results	15		
	4.1	Radiated Emission and Bandedge Measurement	15		
	4.1.1				
	4.1.2	Test Instruments	16		
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results (Mode 1)			
	4.1.8 4.2	Test Results (Mode 3)			
	4.2 4.2.1	Conducted Emission Measurement Limits of Conducted Emission Measurement			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results (Mode 2)			
	4.2.8	Test Results (Mode 3)	29		
	4.3	6dB Bandwidth Measurement			
	-	Limits of 6dB Bandwidth Measurement	-		
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard EUT Operating Conditions			
		Test Result (Mode 1)			
	4.4	Occupied Bandwidth Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results (Mode 1)			
	4.5	Conducted Output Power Measurement			
		Limits of Conducted Output Power Measurement			
		Test Setup			
		Test Instruments			
		Test Procedures			
	4.5.5	Deviation from Test Standard	30		

Ap	opend	lix – Information on the Testing Laboratories	42
5	Р	ictures of Test Arrangements	41
		Test Results (Mode 1)	
	4.7.6	EUT Operating Condition	39
		Deviation from Test Standard	
	4.7.4	Test Procedure	39
	4.7.3	Test Instruments	39
		Test Setup.	
		Limits of Conducted Out of Band Emission Measurement	
	4.7	Conducted Out of Band Emission Measurement	39
		Test Results (Mode 1)	
		EUT Operating Condition	
		Deviation from Test Standard	
	4.0.3	Test Procedure	37
		Test Setup Test Instruments	
		Limits of Power Spectral Density Measurement	
	4.6	Power Spectral Density Measurement.	
		Test Results (Mode 1)	36
	4.5.6	EUT Operating Conditions.	35
	4 = 0		~ -

	F	Release Control	Record	
Issue No.	Description			Date Issued
RF180131E02	Original release.			Feb. 27, 2018

1Certificate of ConformityProduct:HP Active Pen G2Brand:hpTest Model:HSN-W001PSample Status:ENGINEERING SAMPLEApplicant:Wacom Co., Ltd.Test Date:Jan. 16 to Feb. 13, 2018Standards:47 CFR FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Mary	K.	Date:	Feb. 27, 2018	
Frepared by .	Mary Ka / Spacia	,		1 60. 27, 2010	
	Mary Ko / Specia	list			
Approved by :	May Chen / Mana	,	Date:	Feb. 27, 2018	
	May Chen / Mana	ger			

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (SECTION 15.247)				
FCC Clause	Test Item	Result	Remarks		
15.207	15.207 AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -6.15dB at 0.19562MHz.		
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -8.9dB at 2483.50MHz.		
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.		
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.		
15.247(b)	Conducted power	PASS	Meet the requirement of limit.		
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	HP Active Pen G2
Brand	hp
Test Model	HSN-W001P
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	5Vdc from USB interface or 3.7Vdc from battery
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	2.307mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The EUT has two colors, which are identical to each other in all aspects except for the following:

Brand	Model	Product name	Color
hn	hp HSN-W001P	HP Active Pen G2	Black
hp		HF Active Fell G2	Silver

From the above models, color is **Silver** was selected as representative sample for the test and its data was recorded in this report.

2	The enterne	مائمه اممامات رمعم		a a a a a fa a ta	بملطمة ممانيتمالم أمطه
Ζ.	rne antenna	ριονίαθα ιο ιπ	ie EUT, pie	ease refer to	the following table:

Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Connecter Type
2.93	2.4~2.4835	Chip	none

3. The EUT could be supplied with rechargeable battery as the following table:

Source	Brand Name	Model No.	Spec.
Main source	EML	FT68200R	3.7V 50mAh
2nd source	EVE	L0678-LF	3.7V 50mAh

From the above models, source: **Main Source** was selected as representative model for the test and its data was recorded in this report.

The EUT was pre-tested under following test modes:				
Pre-test Mode	Power			
Mode A	Power from USB interface (Adapter)			
Mode B	Power from battery			

From the above modes, the worst radiated emission (below 1GHz) was found in **Mode A**, and the radiated emission (above 1GHz) was tested in **Mode B**. Therefore only the test data of the modes were recorded in this report.

- 5. The USB port of the EUT is only for charging the rechargeable battery. And the EUT has Bluetooth function under charging mode.
- 6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

ONFIGURE		APPLICABL	E TO	DESCRIPTION		
MODE	RE≥1G	RE<1G	PLC	APCM	BESCHEITON	
1	\checkmark	-	-	\checkmark	Power from battery	
2	-	-	\checkmark	-	Power from USB interface (Laptop)	
3	-	\checkmark	\checkmark	-	Power from USB interface (Adapter)	
PLC: TE: 1. The EU 1GHz)	Power Line C		A	PCM: Antenna F	Emission below 1GHz Port Conducted Measurement rst case was found when positioned on Z-plan d	e (be
Pre-Scan between architectu	has been available m ure).		ates and	d antenna por	mode from all possible combinations ts (if EUT with antenna diversity is listed below.	
AVAILABLE	CHANNEL	TESTED CHANNEL	MODU	JLATION TYPE	DATA RATE (Mbps)	
0 to	o 39	0, 19, 39		GFSK	1	
] Pre-Scan	has been available m				mode from all possible combinations ts (if EUT with antenna diversity	
Pre-Scan between architectu Following	has been available m ure). g channel(s	conducted to dete nodulations, data r) was (were) selec	ates and ted for t	d antenna por	ts (if EUT with antenna diversity is listed below.	
 Pre-Scan between architectu Following AVAILABLE 	has been available m ure).	conducted to dete nodulations, data r	ates and ted for t	d antenna por	ts (if EUT with antenna diversity	
 Pre-Scan between architectu Following AVAILABLE 0 to the second sec	has been available m ire). channel(s CHANNEL o 39 Conducted has been available m ire).	conducted to detended to data r	ates and ted for t MODU rmine th ates and	d antenna por the final test a JLATION TYPE GFSK e worst-case d antenna por	ts (if EUT with antenna diversity s listed below. DATA RATE (Mbps) 1 mode from all possible combinations ts (if EUT with antenna diversity	
 Pre-Scan between architectu Following AVAILABLE 0 to wer Line Pre-Scan between architectu Following 	has been available m ire). channel(s CHANNEL o 39 Conducted has been available m ire). channel(s	conducted to detended to deten	rmine th ates and	d antenna por he final test a JLATION TYPE GFSK e worst-case d antenna por he final test a	ts (if EUT with antenna diversity s listed below. DATA RATE (Mbps) 1 mode from all possible combinations ts (if EUT with antenna diversity s listed below.	
 Pre-Scan between architectu Following AVAILABLE 0 to Pre-Scan between architectu Following AVAILABLE 	has been available m ire). channel(s CHANNEL 339 Conducted has been available m ire). channel(s CHANNEL	conducted to detended to deten	rmine th ates and	d antenna por the final test a JLATION TYPE GFSK e worst-case d antenna por the final test a JLATION TYPE	ts (if EUT with antenna diversity Is listed below. DATA RATE (Mbps) 1 mode from all possible combinations ts (if EUT with antenna diversity Is listed below. DATA RATE (Mbps)	
 Pre-Scan between architectu Following AVAILABLE 0 to Pre-Scan between architectu Following AVAILABLE 	has been available m ire). channel(s CHANNEL o 39 Conducted has been available m ire). channel(s	conducted to detended to deten	rmine th ates and	d antenna por he final test a JLATION TYPE GFSK e worst-case d antenna por he final test a	ts (if EUT with antenna diversity s listed below. DATA RATE (Mbps) 1 mode from all possible combinations ts (if EUT with antenna diversity s listed below.	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)	
0 to 39	0, 19, 39	GFSK	1	

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
RE≥1G	24deg. C, 69%RH DC 3.7V		Steven Chiang	
RE<1G	25deg. C, 69%RH	120Vac, 60Hz (system)	Weiwei Lo	
PLC	25deg. C, 75%RH	120Vac, 60Hz (system)	Andy Ho	
APCM	25deg. C, 60%RH	DC 3.7V	Robert Cheng	

3.3 Duty Cycle of Test Signal

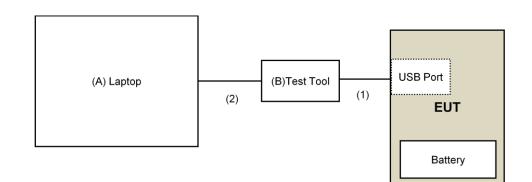
Duty cycle of test signal is < 98 %, duty factor shall be considered. Duty cycle = 0.42 ms/0.627 ms = 0.67, Duty factor = 10 * log(1/0.67) = 1.74RBW 10 MHz VBW 10 MHz SWT 5 ms Marker 1 [T1] 2.12 dBm 637.00000 us Detta 2 [T1] 0.34 dB IT11 MP V Ref 31 dBm Offset 11 dB 31 20 0.19 dB 627.000000 us 10 0 -10 -20 -30 -40 -50 -60 - (\mathfrak{D}) -69 -BUREAU VERITAS Center 2.48 GHz l 500 us/

3.4 Description of Support Units

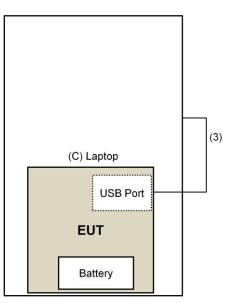
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E6420	482T3R1	FCC DoC	Provided by Lab
В.	Test Tool	Wacom	NA	NA	NA	Supplied by client
C.	Laptop	HP	HP EliteBook x360 1030 G3	NA	NA	Supplied by client
D.	USB Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab

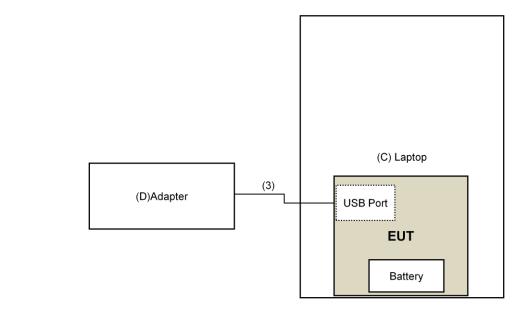
Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Console Cable	1	0.1	No	0	Supplied by client
2.	USB Cable	1	1	Yes	0	Supplied by client
3.	USB type C Cable	1	1.2	Yes	0	Provided by Lab



3.4.1 Configuration of System under Test


Battery mode for radiated emission test (above 1GHz):

Laptop mode for conducted emission test:

Adapter mode for conducted emission and radiated emission test (below 1GHz):

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 ~ 0.490	2400/F(kHz)	300		
0.490 ~ 1.705	24000/F(kHz)	30		
1.705 ~ 30.0	30	30		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For output power test:

DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED DATE	CALIBRATED UNTIL	
Spectrum Analyzer R&S	FSV40	100964	July 1, 2017	June 30, 2018	
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018	
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 4.

3. The CANADA Site Registration No. is 20331-2

4. Tested Date: Jan. 16, 2018

For other test:							
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL			
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018			
Loop Antenna ^(*) TESEQ	HLA 6121	45745	May 19, 2017	May 18, 2018			
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018			
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018			
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018			
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018			
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 12, 2017	Dec. 11, 2018			
Pre-Amplifier EMCI	EMC12630SE	980385	Jan. 29, 2018	Jan. 28, 2019			
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Jan. 29, 2018 Jan. 29, 2018 Jan. 29, 2018	Jan. 28, 2019 Jan. 28, 2019 Jan. 28, 2019			
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 29, 2018	Jan. 28, 2019			
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018			
RF Cable	EMC102-KM-KM-1200	160925	Jan. 29, 2018	Jan. 28, 2019			
Software	ADT_Radiated_V8.7.08	NA	NA	NA			
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA			
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA			

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

4. The CANADA Site Registration No. is 20331-2

- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Feb. 05 to 09, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

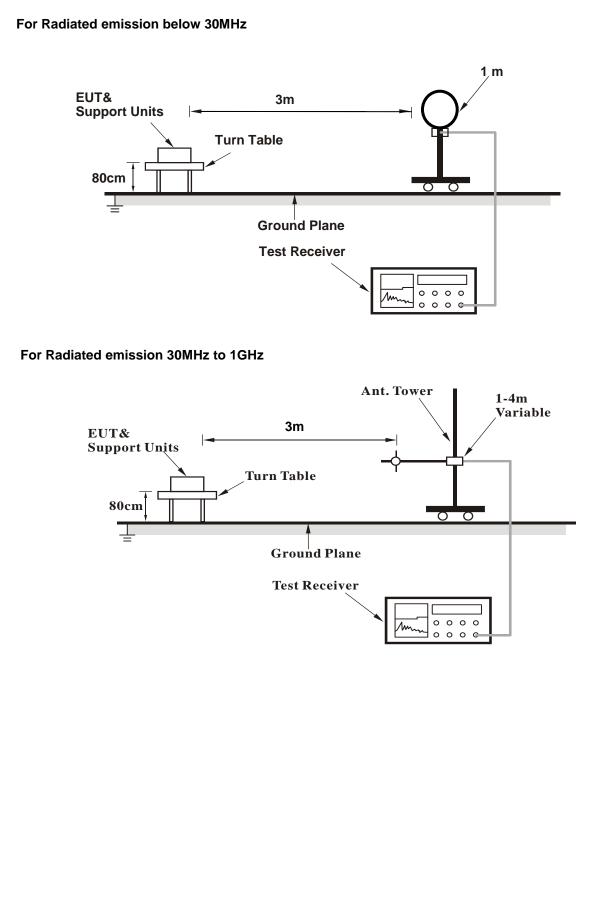
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission above 1GHz Ant. Tower 1-4m Variable EUT& 3m **Support Units Turn Table** Absorber 150cn 00 **Ground Plane Test Receiver** 0 0 0 0 0 0 0

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

For below 1GHz test:

- a. Turn on the power of all equipment.
- b. Support unit C (Laptop) runs" G12PenMonitorPlus.exe" to check EUT under typical use condition.

For above 1GHz test:

- a. Connected the EUT with the Laptop.
- b. Controlling software (nrfgostudio.exe) has been activated to set the EUT on specific status.

4.1.7 Test Results (Mode 1)

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	57.7 PK	74.0	-16.3	1.00 H	62	58.7	-1.0		
2	2390.00	43.9 AV	54.0	-10.1	1.00 H	62	44.9	-1.0		
3	*2402.00	94.9 PK			1.00 H	62	95.9	-1.0		
4	*2402.00	93.9 AV			1.00 H	62	94.9	-1.0		
5	4804.00	38.9 PK	74.0	-35.1	1.47 H	260	35.8	3.1		
6	4804.00	29.1 AV	54.0	-24.9	1.47 H	260	26.0	3.1		
		ANTENNA		& TEST D	ISTANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	59.1 PK	74.0	-14.9	2.25 V	69	60.1	-1.0		
2	2390.00	44.6 AV	54.0	-9.4	2.25 V	69	45.6	-1.0		
3	*2402.00	95.6 PK			2.25 V	69	96.6	-1.0		
4	*2402.00	94.8 AV			2.25 V	69	95.8	-1.0		
5	4804.00	38.6 PK	74.0	-35.4	1.59 V	146	35.5	3.1		
6	4804.00	28.2 AV	54.0	-25.8	1.59 V	146	25.1	3.1		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

									1		
CHANNEL T				TX Channel 19			ETECTOR		Peak (PK)		
FRE		ANGE	1Gł	Hz ~ 25GHz		F	UNCTION		Average (AV)		
					R TEST D	IS	TANCE: HO	RIZONTAI	AT 3 M		
NO.	FREQ. (MHz)	EMISSI LEVE (dBuV/	ON L	LIMIT (dBuV/m)	MARGIN (dB)		ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	57.0 P	K	74.0	-17.0		1.03 H	51	58.0	-1.0	
2	2390.00	42.6 A	V	54.0	-11.4		1.03 H	51	43.6	-1.0	
3	*2440.00	95.2 P	K				1.03 H	51	96.6	-1.4	
4	*2440.00	94.2 A	V				1.03 H	51	95.6	-1.4	
5	2483.50	53.5 P	K	74.0	-20.5		1.03 H	51	54.7	-1.2	
6	2483.50	42.8 A	V	54.0	-11.2		1.03 H	51	44.0	-1.2	
7	4880.00	38.3 P	K	74.0	-35.7		1.53 H	276	35.0	3.3	
8	4880.00	28.8 A	V	54.0	-25.2		1.53 H	276	25.5	3.3	
9	7320.00	44.7 P	K	74.0	-29.3		1.51 H	84	34.7	10.0	
10	7320.00	32.9 A	V	54.0	-21.1		1.51 H	84	22.9	10.0	
		ANTE	NNA	POLARITY	' & TEST	D	ISTANCE: V		AT 3 M		
NO.	FREQ. (MHz)	EMISSI LEVE (dBuV/	L	LIMIT (dBuV/m)	MARGIN (dB)	I	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	58.7 P	К	74.0	-15.3		2.37 V	69	59.7	-1.0	
2	2390.00	43.8 A	V	54.0	-10.2		2.37 V	69	44.8	-1.0	
3	*2440.00	96.5 P	К				2.37 V	69	97.9	-1.4	
4	*2440.00	95.5 A	V				2.37 V	69	96.9	-1.4	
5	2483.50	54.7 P	К	74.0	-19.3		2.37 V	69	55.9	-1.2	
6	2483.50	43.4 A	V	54.0	-10.6		2.37 V	69	44.6	-1.2	
7	4880.00	39.0 P	К	74.0	-35.0		1.56 V	139	35.7	3.3	
8	4880.00	28.5 A	V	54.0	-25.5		1.56 V	139	25.2	3.3	
9	7320.00	43.9 P	К	74.0	-30.1		1.56 V	194	33.9	10.0	
10	7320.00	32.4 A	V	54.0	-21.6		1.56 V	194	22.4	10.0	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	95.7 PK			1.01 H	58	97.0	-1.3
2	*2480.00	94.9 AV			1.01 H	58	96.2	-1.3
3	2483.50	59.4 PK	74.0	-14.6	1.01 H	58	60.6	-1.2
4	2483.50	44.5 AV	54.0	-9.5	1.01 H	58	45.7	-1.2
5	4960.00	38.6 PK	74.0	-35.4	1.51 H	265	35.1	3.5
6	4960.00	28.8 AV	54.0	-25.2	1.51 H	265	25.3	3.5
7	7440.00	44.3 PK	74.0	-29.7	1.50 H	77	34.2	10.1
8	7440.00	32.8 AV	54.0	-21.2	1.50 H	77	22.7	10.1
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	96.2 PK			2.57 V	65	97.5	-1.3
2	*2480.00	95.4 AV			2.57 V	65	96.7	-1.3
3	2483.50	60.7 PK	74.0	-13.3	2.57 V	65	61.9	-1.2
4	2483.50	45.1 AV	54.0	-8.9	2.57 V	65	46.3	-1.2
5	4960.00	38.6 PK	74.0	-35.4	1.56 V	131	35.1	3.5
6	4960.00	28.1 AV	54.0	-25.9	1.56 V	131	24.6	3.5
7	7440.00	44.0 PK	74.0	-30.0	1.53 V	195	33.9	10.1
8	7440.00	32.6 AV	54.0	-21.4	1.53 V	195	22.5	10.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

4.1.8 Test Results (Mode 3)

Below 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
47.53	26.4 QP	40.0	-13.6	1.50 H	311	34.3	-7.9		
148.61	23.6 QP	43.5	-19.9	1.50 H	52	31.3	-7.7		
298.71	27.0 QP	46.0	-19.0	1.00 H	103	34.3	-7.3		
532.17	32.4 QP	46.0	-13.6	1.50 H	157	34.0	-1.6		
603.27	32.3 QP	46.0	-13.7	1.50 H	101	32.0	0.3		
725.08	32.9 QP	46.0	-13.1	2.00 H	42	31.4	1.5		
	ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
42.59	28.7 QP	40.0	-11.3	1.00 V	8	36.7	-8.0		
111.77	27.2 QP	43.5	-16.3	1.00 V	347	37.7	-10.5		
297.53	27.4 QP	46.0	-18.6	1.50 V	102	34.7	-7.3		
399.25	31.0 QP	46.0	-15.0	1.00 V	360	35.6	-4.6		
533.16	33.5 QP	46.0	-12.5	1.00 V	348	35.1	-1.6		
896.16	35.2 QP	46.0	-10.8	1.50 V	56	30.8	4.4		
	(MHz) 47.53 148.61 298.71 532.17 603.27 725.08 FREQ. (MHz) 42.59 111.77 297.53 399.25 533.16	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 47.53 26.4 QP 148.61 23.6 QP 298.71 27.0 QP 532.17 32.4 QP 603.27 32.3 QP 725.08 32.9 QP ANTENNA FREQ. (MHz) EMISSION LEVEL (dBuV/m) 42.59 28.7 QP 111.77 27.2 QP 297.53 27.4 QP 399.25 31.0 QP 533.16 33.5 QP	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 47.53 26.4 QP 40.0 148.61 23.6 QP 43.5 298.71 27.0 QP 46.0 532.17 32.4 QP 46.0 603.27 32.3 QP 46.0 725.08 32.9 QP 46.0 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 42.59 28.7 QP 40.0 111.77 27.2 QP 43.5 297.53 27.4 QP 46.0 399.25 31.0 QP 46.0 533.16 33.5 QP 46.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 47.53 26.4 QP 40.0 -13.6 148.61 23.6 QP 43.5 -19.9 298.71 27.0 QP 46.0 -13.6 532.17 32.4 QP 46.0 -13.6 603.27 32.3 QP 46.0 -13.7 725.08 32.9 QP 46.0 -13.1 MARGIN (MHz) MARGIN (dBuV/m) FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 42.59 28.7 QP 40.0 -11.3 111.77 27.2 QP 43.5 -16.3 297.53 27.4 QP 46.0 -15.0 533.16 33.5 QP 46.0 -15.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 47.53 26.4 QP 40.0 -13.6 1.50 H 148.61 23.6 QP 43.5 -19.9 1.50 H 298.71 27.0 QP 46.0 -19.0 1.00 H 532.17 32.4 QP 46.0 -13.6 1.50 H 603.27 32.3 QP 46.0 -13.7 1.50 H 725.08 32.9 QP 46.0 -13.1 2.00 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 42.59 28.7 QP 40.0 -11.3 1.00 V 111.77 27.2 QP 43.5 -16.3 1.00 V 297.53 27.4 QP 46.0 -18.6 1.50 V 399.25 31.0 QP 46.0 -15.0 1.00 V 533.16 33.5 QP 46.0 -12.5 1.00 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 47.53 26.4 QP 40.0 -13.6 1.50 H 311 148.61 23.6 QP 43.5 -19.9 1.50 H 52 298.71 27.0 QP 46.0 -19.0 1.00 H 103 532.17 32.4 QP 46.0 -13.6 1.50 H 157 603.27 32.3 QP 46.0 -13.1 2.00 H 42 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 42.59 28.7 QP 40.0 -11.3 1.00 V 8 111.77 27.2 QP 43.5 -16.3 1.00 V 8 111.77 27.2 QP 43.5 -16.3 1.00 V 347 297.53 27.4 QP 46.0 -18.6 1.50 V 102 399.25 31.0 QP 46.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 47.53 26.4 QP 40.0 -13.6 1.50 H 311 34.3 148.61 23.6 QP 43.5 -19.9 1.50 H 52 31.3 298.71 27.0 QP 46.0 -19.0 1.00 H 103 34.3 532.17 32.4 QP 46.0 -13.6 1.50 H 157 34.0 603.27 32.3 QP 46.0 -13.7 1.50 H 101 32.0 725.08 32.9 QP 46.0 -13.1 2.00 H 42 31.4 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 42.59 28.7 QP 40.0 -11.3 1.00 V 8 36.7 111.77 27.2 QP 43.5 -16.3 1.00 V 347 37.7		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)				
Frequency (MHZ)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

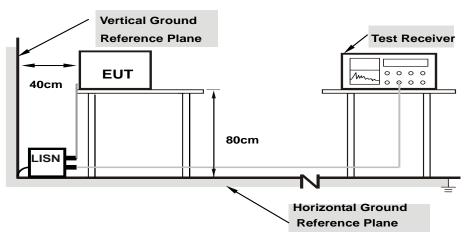
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 18, 2017	June 17, 2018
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 1.

3 Tested Date: Feb. 13, 2018


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Controlling software (nrfgostudio.exe) has been activated to set the EUT on specific status.

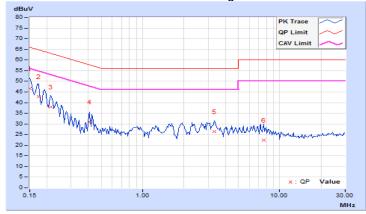
Phase	Phase Line (L)					Detector Function Quasi-Peak (QP) / Average (AV)				
	Free	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dE	3 (uV)]	[dB (uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.13	35.56	14.01	45.69	24.14	66.00	56.00	-20.31	-31.86
2	0.18906	10.14	45.02	34.47	55.16	44.61	64.08	54.08	-8.92	-9.47
3	0.20859	10.14	41.77	25.07	51.91	35.21	63.26	53.26	-11.35	-18.05
4	0.25156	10.15	38.05	25.51	48.20	35.66	61.71	51.71	-13.51	-16.05
5	1.42969	10.25	31.91	20.74	42.16	30.99	56.00	46.00	-13.84	-15.01
6	1.65625	10.26	31.30	21.37	41.56	31.63	56.00	46.00	-14.44	-14.37
7	1.77734	10.26	30.52	21.60	40.78	31.86	56.00	46.00	-15.22	-14.14
8	3.23828	10.33	31.53	23.56	41.86	33.89	56.00	46.00	-14.14	-12.11

4.2.7 Test Results (Mode 2)

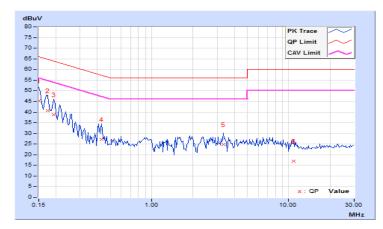
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Phase Neutral (N)				[Detector Fu	nction	Quasi- Averag	Peak (QP) e (AV)	/
		1								
	Freq.	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin
No	i ieq.	Factor	[dB	(uV)]	[dE	8 (uV)]	[dB ([uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19562	10.04	47.60	34.10	57.64	44.14	63.79	53.79	-6.15	-9.65
2	0.25156	10.05	39.95	25.65	50.00	35.70	61.71	51.71	-11.71	-16.01
3	0.31016	10.06	34.68	21.53	44.74	31.59	59.97	49.97	-15.23	-18.38
4	1.43359	10.13	30.50	20.04	40.63	30.17	56.00	46.00	-15.37	-15.83
5	1.86328	10.14	30.25	20.58	40.39	30.72	56.00	46.00	-15.61	-15.28
6	3.21094	10.20	31.90	23.31	42.10	33.51	56.00	46.00	-13.90	-12.49
7	3.35547	10.21	31.87	24.81	42.08	35.02	56.00	46.00	-13.92	-10.98
8	5.35938	10.30	27.62	21.86	37.92	32.16	60.00	50.00	-22.08	-17.84

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Phase Line (L)			D	Detector Function Quasi-Peak (QP) / Average (AV)					
	Frog	Corr.	Readin	g Value	Emissi	on Level	Lir	Limit		gin
No	Freq.	Factor	[dB((uV)]	[dB	(uV)]	[dB ([uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.13	36.35	20.37	46.48	30.50	66.00	56.00	-19.52	-25.50
2	0.17344	10.13	32.80	16.38	42.93	26.51	64.79	54.79	-21.86	-28.28
3	0.21250	10.14	27.82	13.12	37.96	23.26	63.11	53.11	-25.15	-29.85
4	0.40781	10.19	20.78	12.55	30.97	22.74	57.69	47.69	-26.72	-24.95
5	3.32813	10.34	16.17	5.39	26.51	15.73	56.00	46.00	-29.49	-30.27
6	7.60156	10.53	11.78	3.10	22.31	13.63	60.00	50.00	-37.69	-36.37


4.2.8 Test Results (Mode 3)

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)					Detector Function Quasi-Peak (QP) / Average (AV)					
	No Freq. Corr. Factor		Readin	g Value	Emis	sion Level	Lir	nit	Mar	gin
No			[dB (IB (uV)] [0		dB (uV)] [dB (u		uV)]	V)] (dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.04	35.34	17.33	45.38	3 27.37	66.00	56.00	-20.62	-28.63
2	0.17344	10.04	30.70	14.19	40.74	24.23	64.79	54.79	-24.05	-30.56
3	0.19297	10.04	28.80	13.02	38.84	23.06	63.91	53.91	-25.07	-30.85
4	0.43125	10.08	17.26	8.50	27.34	18.58	57.23	47.23	-29.89	-28.65
5	3.33984	10.21	14.61	2.09	24.82	2 12.30	56.00	46.00	-31.18	-33.70
6	10.90234	10.54	6.45	-3.51	16.99	7.03	60.00	50.00	-43.01	-42.97

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result (Mode 1)

Channel	Frequency (MHz)	Frequency (MHz) 6dB Bandwidth (MHz)		Pass / Fail
0	2402	0.70	0.5	Pass
19	2440	0.70	0.5	Pass
39	2480	0.72	0.5	Pass

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

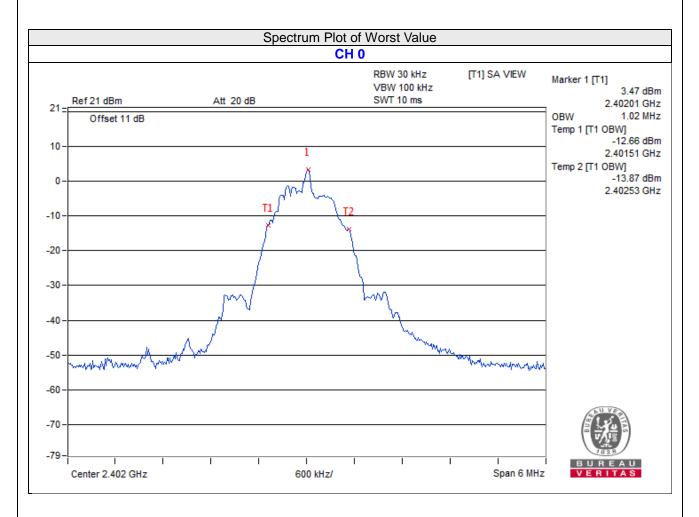
4.4.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to sampling. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

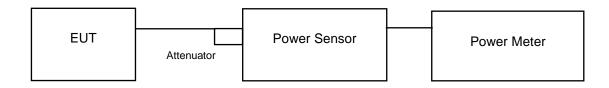
4.4.4 Deviation from Test Standard


No deviation.

4.4.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.6 Test Results (Mode 1)	4.4.6 Test Results (Mode 1)									
Channel	Frequency (MHz)	Occupied Bandwidth (MHz)								
0	2402	1.02								
19	2440	1.02								
39	2480	1.02								



4.5 Conducted Output Power Measurement

4.5.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Conditions

Same as Item 4.3.6.

4.5.7 Test Results (Mode 1)

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	2.307	3.63	30	Pass
19	2440	2.123	3.27	30	Pass
39	2480	1.888	2.76	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	2.291	3.60
19	2440	2.109	3.24
39	2480	1.875	2.73

4.6 Power Spectral Density Measurement

4.6.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.6.2 Test Setup

4.6.3 Test Instruments

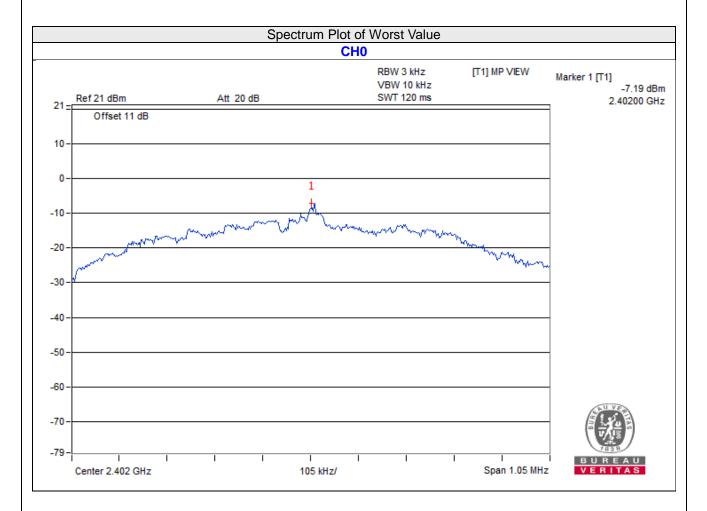
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW ≥ $3 \times RBW$.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

Same as Item 4.3.6

4.6.7 Test Results (Mode 1)

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-7.19	8	Pass
19	2440	-10.12	8	Pass
39	2480	-8.61	8	Pass

4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

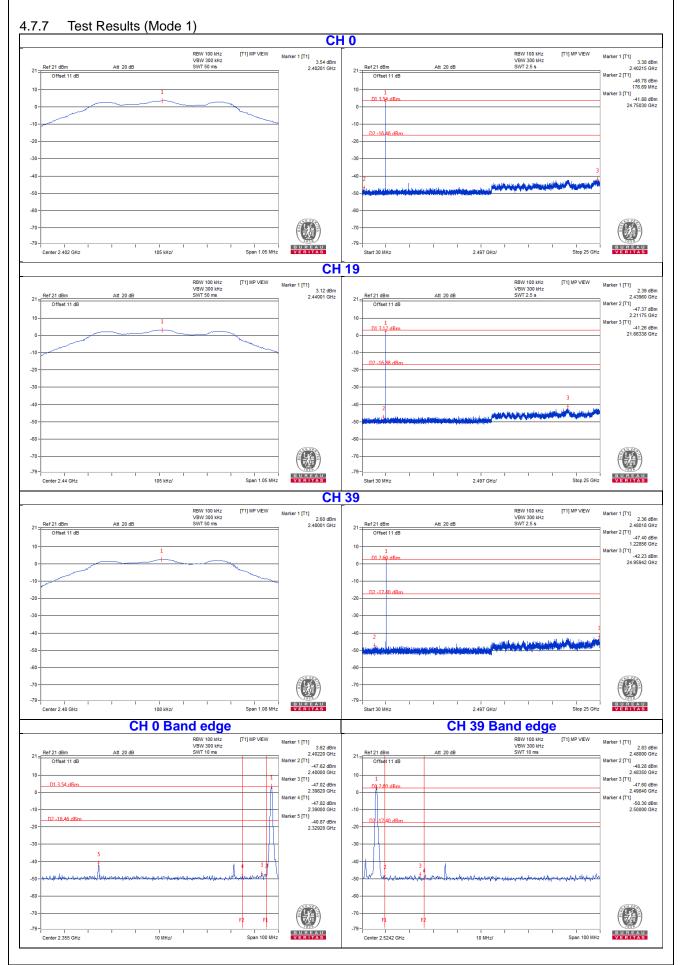
4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.


4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

Same as Item 4.3.6

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---