TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No. : DREFCC1904-0121(1)

2. Client / Applicant

• Name : The Whistler Group, Inc.

Address : 168 Ayer Rd. Littleton, MA. 01460

3. Use of Report : Grant of Certification

- 4. Product Name / Model Name : Radar/Laser Detector with DVR / MFU440
- 5. Test Standard : ANSI C63.4:2014

FCC Part 15 Subpart B (Radar detector)

- 6. Date of Test : Mar. 27. 2019
- 7. Testing Environment : Temperature 21 °C , Humidity 39 % R.H.
- 8. Test Result : Refer to the attached Test Result

Affirmation	Tested by	у		Reviewe	d by	
Animation	Name :	Taehyun Choi	Billestyret	Name :	KyoungHwan Bae	(statisture)
The tes	t results p				e sample supplied by ap	plicant and
This tes	st report sl	the use of this tes hall not be reproduce			an its purpose. written approval of DT&	C Co., Ltd.
			Apr. 23. 20	019		
		C	T&C Co	., Ltd	Ι.	

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

CONTENTS

1. General Remarks	3
2. Test Laboratory	3
3. General Information of EUT	4
4. EUT Operations and Test Configurations	5
4.1 Principle of Configuration Selection	5
4.2 EUT Operation Mode	
4.3 Test Configuration Mode	5
4.4 Supported Equipment	6
4.5 EUT In/Output Port	6
4.6 Test Voltage and Frequency	6
5. Test Summary	7
6. Test Environment	7
7. Test Results : Emission	8
7.1 Conducted Disturbance	8
7.2 Radiated Disturbance	10
8. Revision History	

1. General Remarks

This report contains the result of tests performed by :

DT&C Co., Ltd. 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 http://www.dtnc.net Tel: +82-31-321-2664 Fax: +82-31-321-1664

2. Test Laboratory

DT&C Co., Ltd. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Remark
	Korea	KOLAS	393	ISO/IEC 17025
Accreditation	South Africa	SABS	0006	ISO/IEC 17025
	Ghana	NCA	NCA agreement 23rd,Oct,2018	-
	USA	FCC	KR0034 101842 678747, 596748, 804488, 165783	Accredited 2.948 Listed
Site Filing	Canada	IC	5740A-3 5740A-4	Registered
	Japan	VCCI	C-1427, R-3385, R-4076, R-4180, R-4496, T-1442, G-10338, G-754, G-10815, G-20051	Registered
	Korea	KC	KR0034	Designation
Certification	Germany	TUV	CARAT 089112 0006 Rev.00	ISO/IEC 17025
	Russia	RMRS	17.10189.296	ISO/IEC 17025

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

3. General Information of EUT

Applicant	The Whistler Group, Inc. 168 Ayer Rd. Littleton, MA. 01460					
Manufacturer	RDX Inc. 307(Daeryung Techno Town 3Cha), 115, Gasan digital 2-ro, Geumcheon-gu, Seoul, Korea 08505					
Factory	RADIX Telecom Phils., Ind. Inc. SUNPINO BLDG. BLK. 6 LOT 10 PHASE II CEPZ, ROSARIO CAVITE 4106 PHILIPPINES					
Product Name	Radar/Laser Detector with DVR					
Model Name	MFU440					
Add Model Name	MFU426					
Add Model Difference	Model name change for different buyer					
Maximum Internal Frequency	26 MHz (TCXO)					
Software Version	MFU440_DVR_REV.0					
Hardware Version	MFU440 MAIN REV.0					
FCC ID	HSXWH44					
RF Module Name	None					
Rated Power	DC 12 V, 0.35 A					
Remarks	Radar Frequencies : 10.500 ~ 10.550 GHz 24.050 ~ 24.250 GHz 33.400 ~ 36.000 GHz					

Related Submittal(s) / Grant(s) Original submittal only

4. EUT Operations and Test Configurations

4.1 Principle of Configuration Selection

Emission :

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use. For each testing mode different configurations were used, Refer to the individual tests.

4.2 EUT Operation Mode

No.	Mode	Description
1	Normal mode	The EUT operates with the DC voltage supplied and tests the image recorded on the SD card.

4.3 Test Configuration Mode

No.	Mode	Description
1	Normal mode	The EUT operates by receiving DC voltage through the cigar jack.

4.4 Supported Equipment

Used*	Product Type	Manufacturer	Model	Remarks		
AE	DC Power Supply	SMtechno	SDP 50-3D	503DNF 025		
AE	SD Card	SanDisk	MicroSD	0731902111S		
A	*Abbreviations: AE - Auxiliary/Associated Equipment, or SIM - Simulator					

4.5 EUT In/Output Port

Name		Cable	Cable	Cable	Remarks
Name	Туре*	Max. >3m	Shielded	Back shell	Remarks
Sigar Jack	DC	2.0	Non-Shield	Plastic	None
SD Card	N/E	-	Non-Shield	-	None
*Abbreviations: AC = AC Power Port I/O = Signal Input or Output Port TP = Telecommunication Ports		0C = DC Power	Port	N/E = Non-Electri	cal

4.6 Test Voltage and Frequency

Case	Voltage (V)	Frequency (DC/AC-Hz)	Phases	Remarks
1	DC 12	-	-	None

5. Test Summary

Test Items	Applied Standards	Results			
Conducted Disturbance	ANSI C63.4 : 2014	N/A (Note1)			
Radiated Disturbance	ANSI C63.4 : 2014	С			
C=Comply N/C=Not Co	omply N/T=Not Tested N/A=Not Applicable				
Note 1) This test was not required because EUT used DC power.					

The data in this test report are traceable to the national or international standards.

-Conducted Disturbance

Frequency [MHz]	Phase	Result [dBµV]	Detector	Limit [dBµV]	Margin [dB]
-	-	-	-	-	-

-Radiated Disturbance

Frequency [MHz]	Pol.	Result [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]
39901.000	Horizontal	49.37	CAV	54.00	4.63

6. Test Environment

Test Items	Test date	Temp.	Humidity	Pressure
	(YYYY-MM-DD)	(℃)	(% R.H.)	(kPa)
Radiated Disturbance	2019-03-27	21	39	-

7. Test Results : Emission

7.1 Conducted Disturbance

ANSI C63.4		Mains terminal disturbance voltage Result									
Method: The AMN placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment were at least 0,8 m from the AMN. All power was connected to the system through Artificial Mains Network (AMN). Conducted voltage measurements on mains lines were made at the output of the AMN. The measuring port of the LISN for EUT was connected to spectrum analyzer. Using conducted emission test software, the emissions were scanned with peak detector mode. After scanning over the frequency range, suspected emissions were selected to perform final measurement. When performing final measurement, the receiver was used which has Quasi-Peak detector and CISPR Average detector. For (0.15 ~ 30) MHz frequency range, Quasi-Peak detector with 10 kHz RBW and 30 kHz VBW was used. By varying the configuration of the test sample and the cable routing it was attempted to maximize the emission.											
	Fully configured sample scanned ov Frequency range on each side of line Measurement Point										
er the following fre	quency range	150 kHz to 30 MHz		Mains							
EUT mo	de	Test configuration mode		N/A							
(Refer to cla	uses 4)	EUT Operation mode		N/A							
		Limits – Class A									
Frequency (MHz)		Limit dBµV									
		Quasi-Peak		Average							
0.15 to 0.50		79		66							
0.50 to 30		73		60							
		Limits – Class B									
Frequency (MHz)		Limit	t dBµV								
		Quasi-Peak		Average							
0.15 to 0.50	0.15 to 0.50 66 to 56 56 to 46										
0.50 to 5	0.50 to 5 56 46										
5 to 30											

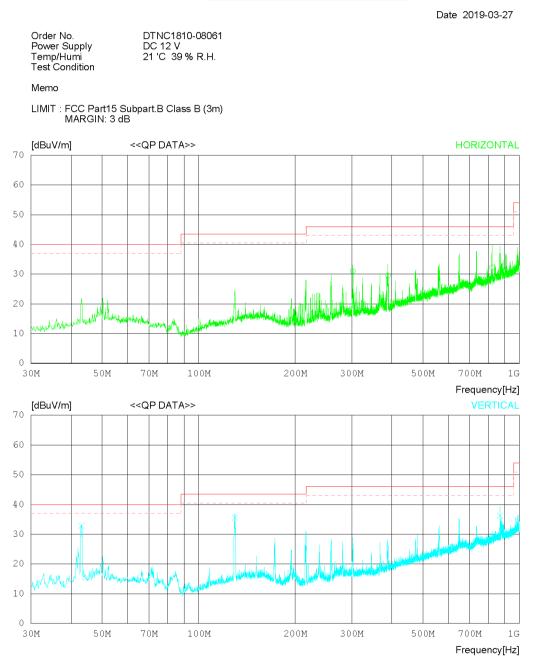
Measurement Instrument										
Description Model Manufacturer Identifier Cal. Date Cal. Due										
-	-	-	-	-	-					

Mains terminal disturbance voltage _Measurement data									
Test configuration mode N/A EUT Operation mode N/A									
Test voltage (V)	Test voltage (V) N/A Test Frequency (Hz) N/A								

Calculation

N : Neutral phase, L1 : Live phase
C.FACTOR(dB) : Pulse Limiter(dB) + Cable loss(dB) + Insertion loss of LISN(dB)
Result(dBµV) : Reading Value(dBµV) + C.FACTOR(dB)
Margin(dB) : Limit(dBµV) - Result(dBµV)

7.2 Radiated Disturbance


ANSI C63.4		Radiated	disturband	e 30 Mł	lz – 40 GHz		Result	
receive antenna loca were then performed m. All frequencies w applicable. For final 120 kHz Bandwidth)	and 3 meter ated at vario by rotating ere investig measureme was used.	above 1GHz. The bus heights in horiz the EUT 360° an ated in both horiz ent below 1 GHz fr For final measure	EUT was ro zontal and ve d adjusting th ontal and ver equency ran ment above	otated 360 ertical pol he receive rtical ante ige, Quas 1 GHz fre	D° about its azimuth wi arities. Final measuren e antenna height from	th the nents 1 to 4 RBW = letector	Comply	
EUT mode		Test config	uration mod	le	1			
(Refer to clauses 4)	EUT Oper	ation mode		1			
		Radiated Distur	bance below	v 1 000 N	ſHz			
Frequency range			Qu	asi-peak	limit dBµV/m			
(MHz)		Class A (10	m distance	e)	Class B (3 r	n distan	ce)	
30 to 88		3	9.1		4	0		
88 to 216	43.5				43.5			
216 to 960		4	6.4		46			
960 to 1 000		4	9.5		54	4		
According to 15.109(g), as a comply with the standards(C				shown a	bove, digital devices m	nay be sh	iown to	
Frequency range			Qu	asi-peak	limit dBµV/m			
(MHz)		Class A (10	m distance	e) Class B (10 m distance)				
30 to 230		2	40		3	0		
230 to 1 000		4	47		3	7		
Radiated	Disturbar	nce for above 1 0	00 MHz at a	n measur	ement distance of 3	m		
Frequency range		Peak lim	it dBµV/m		Average lin	nit dBµV	/m	
(GHz)		Class A	Class	s B	Class A	CI	ass B	
1 to 40		80	74		60		54	
The test fre	equency ra	nge of Radiated	Disturbance	e measur	ements are listed bel	low.		
Highest frequency g or on which the dev	vice operat	tes or tunes (MH		Upp	er frequency of meas (MHz)	suremer	nt range	
	Below 108				1 000			
	108 - 500			2 000				
500 – 1 000 Above 1 000					5 000 5 th harmonic of the highest frequency or 40 GHz, whichever is lower			

Measurement Instrument											
Description	Model	Manufacturer Identifier		Cal. Date	Cal. Due						
MEASUREMENT SOFTWARE	EMI-R VER. 2.00.0177	TSJ	N/A	N/A	N/A						
EMI TEST RECEIVER	ESU	ROHDE & SCHWARZ	100469	2018.06.28	2019.06.28						
TRILOG BROAD BAND ANTENNA	VULB9160	SCHWARZBECK	9160-3339	2018 10 22	2020 10 22						
WITH 6DB ATT	8491B	HP	18403	2018.10.22	2020.10.22						
LOW NOISE PRE AMPLIFIER	MLA-100K01-B01-26	TSJ	1252741	2019.02.18	2020.02.18						
HORN ANTENNA	3117	ETS-LINDGREN	00152093	2018.03.26	2020.03.26						
PRE AMPLIFIER	8449B	H.P	3008A00887	2018.08.31	2019.08.31						
HORN ANTENNA WITH	EM-6969/	ELECTRO-METRICS/	156/	2019.02.13	2021.02.13						
PREAMPLIFIER	MLA-0618-B03-34	TSJ	1785642	2019.01.02	2020.01.02						
HORN ANTENNA WITH	3116C /	ETS-LINDGREN /	00213177 /	2017.12.05	2019.12.05						
PREAMPLIFIER	JS44-18004000-35-8P	L3 NARDA-MITEQ	2046884	2018.11.09	2019.11.09						
(NOTE : THE MEASUREM	IENT ANTENNAS WERE	CALIBRATED IN ACCORI	DANCE TO THE F	REQUIREMENTS	OF C63.5-2017.)						

Radiated disturbance at (30 ~ 1000) MHz _Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V) DC 12 Test Frequency (Hz)								

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

N	ο.	FREQ	READING	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
		[MHz]	QP [dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	- I	Horizont	al								
-	3	02.320 88.648 21.211	33.40 29.80 23.40	19.50 21.26 28.44	3.95 4.26 6.14	25.84 25.85 25.76	29.47	46.00 46.00 46.00	14.99 16.53 13.78	100 246 319	228 262 247
	- 1	Vertical									
4 5 6	1	43.095 29.544 69.237	39.10 40.50 26.60	17.60 17.95 29.20	2.01 2.78 6.27	25.81 25.68 25.78	35.55	40.00 43.50 46.00	7.10 7.95 9.71	118 122 145	323 115 293

Radiated disturbance at (1 ~ 6) GHz _ Peak Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V) DC 12 Test Frequency (Hz)								

					Date 2	019-03-27
	Order No.DTNC1810-080Power SupplyDC 12 VTemp/Humi21 'C 39 % R.ITest Condition					
	Memo					
	LIMIT:FCC Part15 Subpart.B Class B (FCC Part15 Subpart.B Class B (3m) - GHz(Pe 3m) - GHz(Av	eak) erage)			
90	[dBuV/m] < <peak data="">></peak>				нс	RIZONTAL
80						
70						
60	P		- 8			hathan
50	I had a had bulked bard to be a second manual second	and the second second second second				
40	RUTTY CONTRACTOR CONTRACTOR					
30						
20						
10						
0	LG	2G	3	G	5	G 6G
					Fre	quency[Hz]
90	[dBuV/m] < <peak data="">></peak>					VERTICAL
80						
70						
60			<u>×</u>			
50	×					
40	Heller bor for the share a strate state of an and an and the second state of the secon	parties with growth production to the				
30						
20						
10						
0						
	LG	2G	3	G		G 6G
					Fre	quency[Hz]

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

No.	FREQ 1	READING		LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE		
	[MHz]	PEAK [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m] [dB]	[cm]	[DEG]		
		_										
Horizontal												
1	1025.625	58.60	27.60	4.27	35.82	54.65	74.0	19.35	300	0		
2	1079.375	55.90	27.75	4.43	35.77	52.31	74.0	21.69	100	288		
3	1811.250	49.60	30.45	5.67	35.01	50.71	74.0	23.29	400	358		
4	2146.250	46.70	31.70	6.33	34.82	49.91	74.0	24.09	300	0		
5	2436.875	51.60	32.02	6.68	34.83	55.47	74.0	18.53	300	0		
	Vertical											
6	1080.000	55.30	27.76	4.43	35.77	51.72	74.0	22.28	400	338		
7	1731.875	52.80	29.38	5.51	35.10	52.59	74.0	21.41	400	0		
8	1811.250	50.20	30.45	5.67	35.01	51.31	74.0	22.69	199	0		
9	2145.625	47.50	31.70	6.33	34.82	50.71	74.0	23.29	299	299		
10	2420.625	59.00	31.92	6.66	34.83	62.75	74.0	11.25	100	166		

Radiated disturbance at (1 ~ 6) GHz _ Average Measurement data									
Test configuration mode 1 EUT Operation mode 1									
Test voltage (V)	DC 12	Test Frequency (Hz)	-						

Date 2019-03-27 Order No. Power Supply Temp/Humi DTNC1810-08061 DC 12 V 21 'C 39 % R.H. Test Condition Memo LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Peak) <<AV DATA>> HORIZONTAL [dBuV/m] 90 80 70 60 50 الماريل 40 30 20 10 0 3G 6G 1G 2G 5G Frequency[Hz] [dBuV/m] <<AV DATA>> VERTICAL 90 80 70 60 50 1. ht 40 30 20 10 0 1G 2G 3G 5G 6G Frequency[Hz]

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition

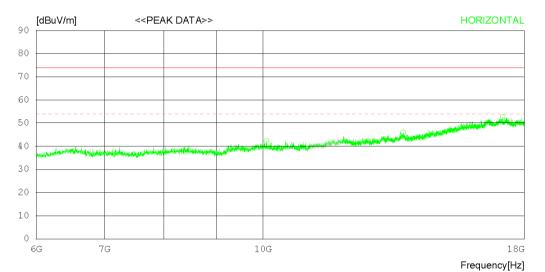
DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

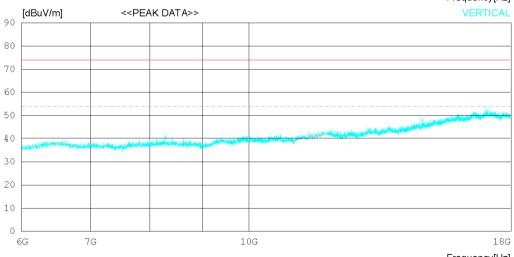
Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

Nc	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m] [dB]	[cm]	[DEG]
	Horizon	tal								
1 2 3 4 5	1025.289 1079.33 1811.564 2146.196 2436.179	7 39.80 4 31.20 5 34.40	27.60 27.75 30.45 31.70 32.02	4.27 4.43 5.67 6.33 6.68	35.82 35.77 35.01 34.82 34.83	36.21 32.31 37.61	54.00 54.00 54.00 54.00 54.00	14.15 17.79 21.69 16.39 19.33	247 155 377 328 293	221 288 330 285 217
	Vertica	l								
6 7 8 9 10	1080.23 1731.889 1811.22 2145.525 2420.419	31.70 132.30 34.60	27.76 29.38 30.44 31.70 31.92	4.43 5.51 5.67 6.33 6.66	35.77 35.10 35.01 34.82 34.83	31.49 33.40 37.81	54.00 54.00 54.00 54.00 54.00	17.68 22.51 20.60 16.19 19.65	387 400 189 267 121	338 227 197 299 166

Radiated disturbance at (6 ~ 18) GHz _ Peak Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V)	DC 12	Test Frequency (Hz)	-					


Date 2019-03-27


Order No.	
Power Supply	
Temp/Humi	
Test Condition	

DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

Memo

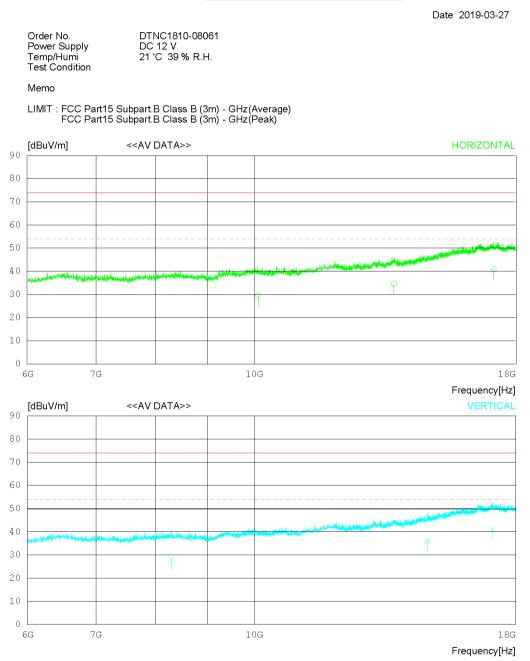
LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

Frequency[Hz]

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition

Memo


LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

No.	. FREQ	READING PEAK	ANT FACTO	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizon	tal								
1 2 3	13696.8	75033.30 3 88032.60 3 88032.80 3	33.80	14.42 17.24 19.50	37.94 37.73 37.38	42.32 45.91 52.58	74.0 74.0 74.0	31.68 28.09 21.42	400 300 200	28 0 358
	Vertica	1								
4 5 6	14770.0	75 34.50 3 00032.70 3 38032.40 3	35.10	12.83 17.87 19.84	37.72 37.27 37.32	41.14 48.40 52.52	74.0 74.0 74.0	32.86 25.6 21.48	400 100 199	8 358 0

Radiated disturbance at (6 ~ 18) GHz _ Average Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V)	DC 12	Test Frequency (Hz)	-					

Date 2019-03-27

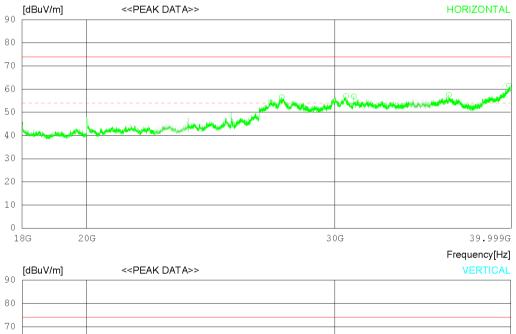
Order No. Power Supply Temp/Humi Test Condition

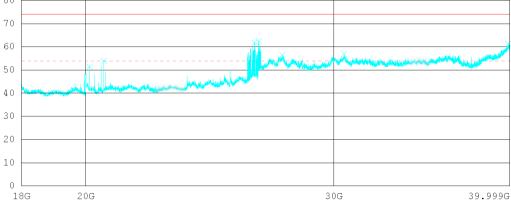
DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

No.	FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizont	al								
2 13	0083.11 3694.23 7141.77	021.30 021.00	32.54 33.80 37.66	14.42 17.24 19.49	37.95 37.74 37.38	34.60	54.00 54.00 54.00	24.39 19.40 13.23	391 313 211	28 267 216
4 82 5 14	297.177 1770.53 7070.67	21.40 020.60	31.54 35.10 37.60	12.84 17.87 19.85	37.71 37.27 37.32	36.30	54.00 54.00 54.00	25.93 17.70 12.87	331 106 208	153 322 98


Radiated disturbance at (18 ~ 40) GHz _ Peak Measurement data									
Test configuration mode 1 EUT Operation mode 1									
Test voltage (V)	DC 12	Test Frequency (Hz)	-						


Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

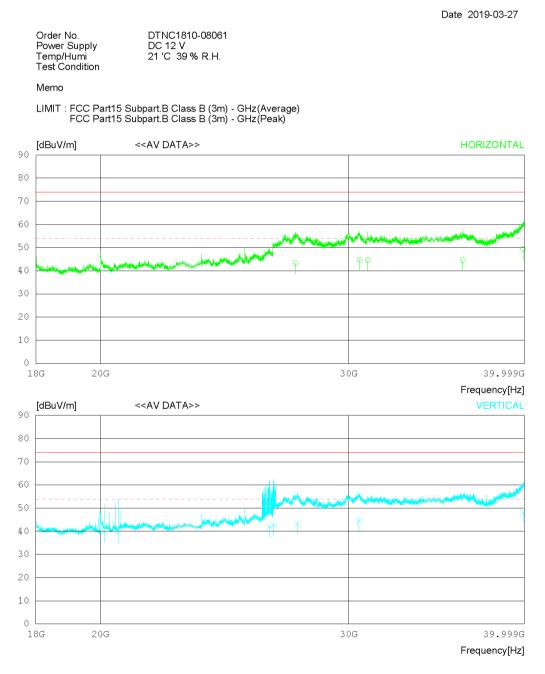
Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Peak) FCC Part15 Subpart.B Class B (3m) - GHz(Average)

Frequency[Hz]

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition DTNC1810-08061 DC 12 V 21 'C 39 % R.H.


Memo

LIMIT : FCC Part15 Subpart B Class B (3m) - GHz(Peak) FCC Part15 Subpart B Class B (3m) - GHz(Average)

No.	FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	PEAK [dBuV]	FACTO [dB]	R [dB]	[dB]	[dBuV/m]	[dBuV/m] [dB]	[cm]	[DEG]
	Horizon	tal								
1 2 3 4 5	30553. 30952. 36163.	50042.50 75040.90 50040.90 75040.70 00041.40	17.80 17.55 18.30	21.24 21.91 21.95 22.98 23.99	54.04 53.60 53.60 54.44 52.56	56.52 57.01 56.80 57.54 61.47	74.0 74.0 74.0 74.0 74.0 74.0	17.48 16.99 17.2 16.46 12.53	100 200 100 200 100	0 219 16 15 0
6 7 9 10 11 12	20596. 26362. 26549. 27586. 30518.	75042.60 00045.00 75049.10 75049.30 50042.50 00040.80 75041.20	15.44 16.65 16.71 16.82 17.82	18.41 18.50 20.36 20.59 21.22 21.91 24.02	54.75 54.94 54.24 54.20 54.02 53.60 52.56	51.48 54.00 61.87 62.40 56.52 56.93 61.31	74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	22.52 20 12.13 11.6 17.48 17.07 12.69	100 100 199 299 100 400 299	358 358 0 357 288 173 358

Radiated disturbance at (18 ~ 40) GHz _ Average Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V)	DC 12	Test Frequency (Hz)	-					

Date 2019-03-27

Order No. Power Supply Temp/Humi Test Condition

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) - GHz(Average) FCC Part15 Subpart.B Class B (3m) - GHz(Peak)

DTNC1810-08061 DC 12 V 21 'C 39 % R.H.

No	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB] [dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizon	tal								
1 2 3 4 5	27509.50 30553.79 30952.50 36163.79 39901.00 Vertica	5028.60 0028.70 5027.70 0029.30	46.82 47.80 47.55 48.30 48.64	21.24 21.91 21.95 22.98 23.99	54.04 53.60 53.60 54.44 52.56	43.42 44.71 44.60 44.54 49.37	54.00 54.00 54.00 54.00 54.00 54.00	10.58 9.29 9.40 9.46 4.63	127 226 106 186 131	274 219 116 274 321
6 7 9 10 11 12	20125.79 20596.00 26362.79 26549.79 27586.50 30518.00 39914.79	0030.80 5029.30 5029.70 0029.40 0028.60	45.22 45.44 46.65 46.71 46.82 47.82 48.65	18.41 18.50 20.36 20.59 21.22 21.91 24.02	54.75 54.94 54.24 54.20 54.02 53.60 52.56	39.88 39.80 42.07 42.80 43.42 44.73 48.21	54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00	14.12 14.20 11.93 11.20 10.58 9.27 5.79	124 162 186 329 100 379 318	284 158 296 223 288 173 87

Calculation

Result(dBµV/m) : 30 ~ 1G : Reading Value(dBµV) + Cable loss(dB) - Pre amplifier gain(dB) + Ant. Factor(dB) 1 ~ 6 G : Ant. Factor = Ant. Factor - Pre amplifier gain Margin(dB) : Limit(dBµV/m) - Result(dBµV/m)

8. Revision History

Date	Description	Revised By	Reviewed By	
Apr. 05. 2019	Initial report	Taehyun Choi	JunHo Park	
Apr. 23. 2019	 This report is revised, because use of report was changed. (SDoC → CoC) Changed Applicant Name (The Whistler group → The Whistler Group, Inc.) Changed RF Frequency (11.26 ~ 11.68 GHz → 10.500 ~ 10.550 GHz, 24.050 ~ 24.250 GHz, 33.400 ~ 36.000 GHz) 	Taehyun Choi	KyoungHwan Bae	

-End of test report-