

February 21, 2001

Mr. Mark Tucker Cirronet Corporation 5375 Oakbrook Parkway Norcross, GA 30093

Dear Mr. Tucker:

Enclosed please find Cirronet Corporation's file copy of the Part 15 Class II Permissive Change Application for the WIT2410 Transceiver.

Cirronet Corporation should expect to receive a certification grant for this product within the next 7-8 weeks.

If you have any questions, please don't hesitate to call. Thank you for your business.

Sincerely,

Timothy R. Johnson

Putty Of

NARTE Certified EMC Engineer

No. EMC-002205-NE

Cirronet Corporation FCC Part 15, Class II Permissive Change Application WIT2410

February 21, 2001

MEASUREMENT/TECHNICAL REPORT

COMPANY NAME: Cirronet Corporation.

MODEL:	WIT2410
FCC ID:	HSW-2410M
DATE:	February 21, 2001
This report concerns (che	eck one): Original grant <u>X</u> Class II change
Equipment type: Modu	lar Frequency Hopping Spread Spectrum Transceiver
Deferred grant requested If yes, defer until: date	per 47 CFR 0.457(d)(1)(ii)? yes No_X_
	the Commission by <u>N.A.</u> date nnouncement of the product so that the grant can be issued
3505 Francis Alpharetta, 0	GA 30004 per: (770) 740-0717

TABLE OF CONTENTS

SECTION 1

GENERAL INFORMATION

- 1.1 Product Description
- 1.2 Related Submittal(s)

SECTION 2

TESTS AND MEASUREMENTS

- 2.1 Configuration of Tested EUT
- 2.2 Test Facility2.3 Test Equipment
- 2.4 Modifications
- 2.5 Antenna Description
- 2.6 Peak Radiated Spurious Emissions
- 2.7 Average Radiated Spurious Emissions

SECTION 3

PHOTOGRAPHS

SECTION 4

USER'S MANUAL

SECTION 5

RF EXPOSURE INFORMATION

LIST OF FIGURES AND TABLES

FIGURES

- Test Configuration Photograph(s) for Spurious Emissions Peak Radiated Spurious Emissions 1) 2) 3)

TABLES

- 1) EUT and Peripherals
- Test Instruments
- 2) 3) 4)
- Peak Radiated Spurious Emissions Average Radiated Spurious Emissions

SECTION 1 GENERAL INFORMATION

GENERAL INFORMATION

1.1 Product Description

The Equipment Under Test (EUT) is a Cirronet Corporation, Model WIT2410 modular 2.4 GHz spread spectrum modular transceiver.

The EUT was originally approved for use with one of seven different antennas. The EUT was previously approved under FCC ID: HSW-2410M by the FCC on 10/6/99. Cirronet Corporation desires to add an additional 5 antennas to their original grant of certification.

1.2 Related Submittal(s)/Grant(s)

The EUT was been previously approved under FCC ID: HSW-2410M by the FCC on 10/6/99.

Additionally, the transceiver presented in this report will be used with other like transceivers.

SECTION 2 TESTS AND MEASUREMENTS

TEST AND MEASUREMENTS

2.1 Configuration of Tested System

The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary to maximize emissions. Interconnecting cables were manipulated as necessary to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for spurious and fundamental emissions are shown in Figure 2.

The sample used for testing was received by U.S. Technologies on January 17, 2001 in good condition.

The EUT was originally approved for use with one of seven different antennas. The EUT was previously approved under FCC ID: HSW-2410M by the FCC on 10/6/99. Cirronet Corporation desires to add an additional 5 antennas to their original grant of certification. Since the EUT has been previously tested and approved, only the spurious emissions test has been repeated. Additionally, since Cirronet Corporation desires to add two parabolic dish antennas (+18 dBi and +24 dBi), only the highest gain model was selected for test (+24 dBi).

2.2 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and submitted to the FCC, and accepted in their letter marked 31040/SIT. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number IC2982.

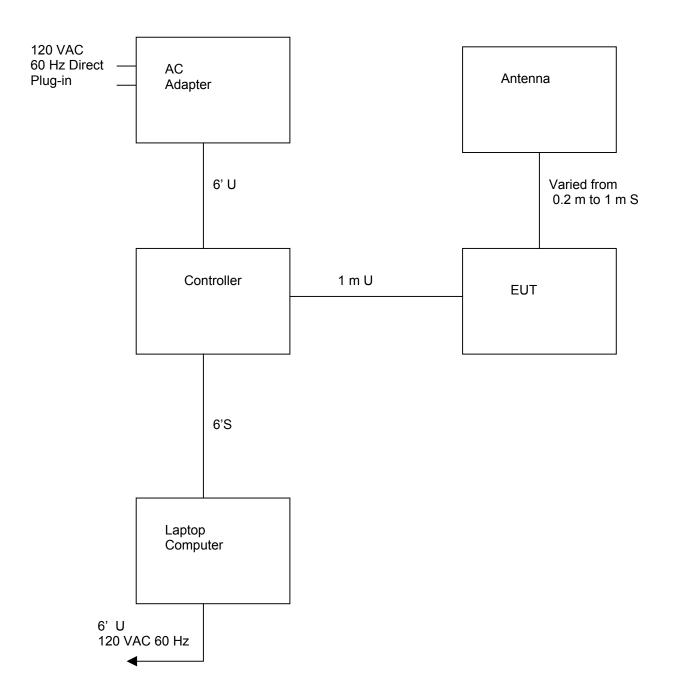

2.3 Test Equipment

Table 2 describes test equipment used to evaluate this product.

2.4 Modifications

No modifications were made by US Tech, to bring the EUT into compliance with FCC Part 15, Class B Limits for the transmitter portion of the EUT.

FIGURE 1 TEST CONFIGURATION

Test Date: February 4, 2001

UST Project: 01-0057

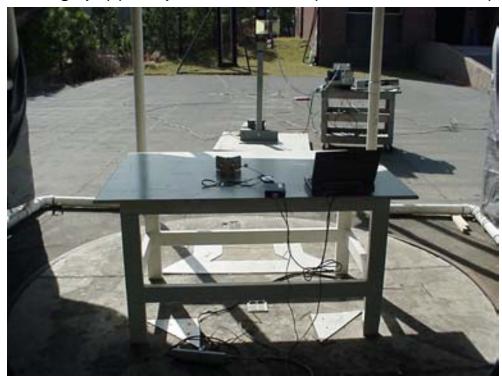
Customer: Cirronet Corporation

Model: WIT2410

FIGURE 2a

Photograph(s) for Spurious Emissions (2.5 dBi Vehicle Mount)

Test Date: February 4, 2001


UST Project: 01-0057

Customer: Cirronet Corporation

Model: WIT2410

FIGURE 2b

Photograph(s) for Spurious Emissions (9 dBi Corner Reflector)

Test Date: February 4, 2001

UST Project: 01-0057

Customer: Cirronet Corporation

Model: WIT2410

FIGURE 2c

Photograph(s) for Spurious Emissions (5 dBi Whip)

Test Date: February 4, 2001

UST Project: 01-0057

Customer: Cirronet Corporation

Model: WIT2410

FIGURE 2d

Photograph(s) for Spurious Emissions (24 dBi Parabolic Dish)

TABLE 1

Test Date: February 4, 2001

UST Project: 01-0057

Customer: Cirronet Corporation

Model: WIT 2410M

EUT and Peripherals

PERIPHERAL MANU.	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
(EUT) Cirronet Corporation	WIT 2410M	008517	HSW-2410M	1 m U
Antenna Various, see antenna descriptions			None	Varied from 0.2 to 1 m S
AC Adapter Volgen	SPU10R-1	None	None	6' U 120 VAC 60 Hz Direct Plug-in
Controller Cirronet Corporation	None	None	None	6' S
Laptop Computer Toshiba	Satelite Pro T2155CDS	09543879	CJ6UK323	6' U 120 VAC Hz Power Cord

TABLE 2 TEST INSTRUMENTS

TYPE	MANUFACTURER	MODEL	SN.
SPECTRUM ANALYZER	HEWLETT-PACKARD	8593E	3205A00124
SPECTRUM ANALYZER	HEWLETT-PACKARD	8558B	2332A09900
S A DISPLAY	HEWLETT-PACKARD	853A	2404A02387
COMB GENERATOR	HEWLETT-PACKARD	8406A	1632A01519
RF PREAMP	HEWLETT-PACKARD	8447D	1937A03355
RF PREAMP	HEWLETT-PACKARD	8449B	3008A00480
HORN ANTENNA	EMCO	3115	3723
HORN ANTENNA	EMCO	3116	9505-2255
BICONICAL ANTENNA	EMCO	3110	9307-1431
LOG PERIODIC ANTENNA	EMCO	3146	9110-3600
BILOG	CHASE	CBL6112A	2238
LISN	SOLAR ELE.	8012	865577
LISN	SOLAR ELE.	8028	910494
LISN	SOLAR ELE.	8028	910495
THERMOMETER	FLUKE	52	5215250
MULTIMETER	FLUKE	85	53710469
FUNCTION GENERATOR	TEKTRONIX	CFG250	CFG250TW1505 9
PLOTTER	HEWLETT-PACKARD	7475A	2325A65394

2.5 Antenna Description (Paragraph 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Previously Approved Antennas as Listed in Original Submital

Cirronet Corporation will sell the WIT2410 with one of the following antennas.

MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB	Type of Connector
ACE	Dipole	ACE-2400NF	2 dBi	Reverse SMA to MMCX via adapter cable
Cushcraft	Yagi	PC2415-RTNF	15 dBi	Reverse TNC to MMCX via adapter cable
Mobile Mark	Omni-Directional	OD6-2400-RTNC	6 dBi	Reverse TNC to MMCX via adapter cable
Mobile Mark	Omni-Directional	OD12-2400PTA-RTNC	12 dBi	Reverse TNC to MMCX via adapter cable
Mobile Mark	Corner Reflector	SCR14-2400PTA-RTNC	14 dBi	Reverse TNC to MMCX via adapter cable
Mobile Mark	Patch	P7-2400RTNC	7 dBi	Reverse SMA to MMCX via adapter cable
Cirronet Corporation.	Patch	PA2410	Appx. 3 dBi	Non-standard MMCX

To ensure compliance with 15.203, Cirronet Corporation attachs reverse-sex TNC connectors to the 15dBi Yagi, the 14dBi corner reflector, and the 9dBi and 12dBi omnidirectional. The 2dBi dipole is fitted with a reverse sex SMA as the TNC is too large to fit onto the antenna body.

Cirronet Corporation. has arranged for the manufacturers of the 14 dBi corner reflector, the 15 dBi Yagi, the 6 dBi and 12 dBi omni-directional antennas to provide reverse-sex TNC connectors for these antennas. They have also arranged with the manufacturer of the 2dBi dipole to place a reverse sex SMA connector on that antenna. OEM customers wanting to use one of these antennas in their product will first need to obtain a special part number from Cirronet Corporation to give to the antenna manufacturer. The manufacturer, upon receipt of this number, will know to attach the reverse-sex TNC connector (or SMA in the case of the dipole) to the end of the antenna cable before shipping.

The customer then purchases an adapter cable from Cirronet Corporation that will connect the MMCX port on the module to the reverse-sex connector on the antenna. No other type of commercially available antenna will attach to this reverse-sex TNC (or SMA for the case of the dipole). Given the nonstandard nature of the interconnect between module and antenna and the difficulty involved in circumventing that connection, Cirronet Corporation feel that this procedure meets the requirements called out in 15.203.

The sixth antenna included in their application, the DWC patch, already has a nonstandard

MMCX mating connector attached to it. It cannot be connected to anything else but a MMCX connector. No adapter cable is needed when using this antenna – the antenna snaps directly to the module. Cirronet Corporation has no official data sheet for this antenna. Lab measurements show an approximate antenna gain of 3 dBi for the device.

New Additional Antennas

Cirronet Corporation will sell the WIT2410 with one of the following antennas.

MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB	Type of Connector
Mobile Mark	Vehicle Mount	RM3-2400-RTNC	2.5 dBi	Reverse TNC to MMCX via adapter cable
Mobile Mark	Corner Reflector	SCR9-2400-RN	9 dBi	Reverse N to MMCX via adapter cable
MaxRad	Whip	MUF24005-RTNC	5 dBi	Reverse TNC to MMCX via adapter cable
Andrews	Parabolic Dish	26T-2400 A	24 dBi	Reverse N to MMCX via adapter cable
Andrews	Parabolic Dish	18T-2400 A	18 dBi	Reverse N to MMCX via adapter cable

^{*}For more specific antenna specifications, please see the following pages.

To ensure compliance with 15.203, Cirronet Corporation proposes to attach reverse-sex TNC connectors to the 2.5 dBi vehicle mount and the 5 dBi whip antennas. The 2 parabolic dish antennas and the corner reflector will be fitted with a reverse N connector. Cirronet Corporation has arranged for the manufacturers of these antennas to provide non-standard connectors for these antennas. OEM customers wanting to use one of these antennas in their product will first need to obtain a special part number from Cirronet Corporation to give to the antenna manufacturer. The manufacturer, upon receipt of this number, will know to attach the non-standard connector to the end of the antenna before shipping.

The customer then purchases an adapter cable from Cirronet Corporation that will connect the MMCX port on our module to the non-standard connector on the antenna. Given the nonstandard nature of the interconnect between module and antenna and the difficulty involved in circumventing that connection, Cirronet Corporation believes that this procedure meets the requirements called out in 15.203.

Product **Specifications**

COMMUNICATIONS ANTENNAS

RM Body Mount Antenna

Body Mount 2.4 GHz Antenna WLAN, ISM & Video Systems

- Mounts easily to roof, trunk or bulkhead
- 2.5 dBi dipole omnidirectional configuration
- Rugged ABS radome, mounts to 5/8" hole
- "O"ring seal provides watertight use

Now Available in white or black!

This new antenna compliments Mobile Mark's 2.4 GHz antenna product line with a new mounting option. The body mount style antenna can be mounted to any vehicle, container or bulkhead. The rugged style is excellent for industrial applications, yet attractive for consumer use.

The design uses a 5/8" feed thru for securing to the vehicle. Access to the underside of the body surface is required to complete the installation. The antennas are outfitted with 1 foot of LMR-200 cable & TNC female connector. Jumper cables for completing the installation are supplied separately, and use LMR-195 low loss cable.

Antenna performance is 2.5 dBi, with no ground plane required for proper operation. The antenna can even be mounted on fiberglass or plastic housing and meet all specifications.

The antenna radome consists of Black ABS UV resistant plastic, with a chrome plated mounting plate and threaded feed thru. The bottom mounting plate is outfitted with an "O" ring for complete sealing. A mounting lock nut and washer are also supplied for securing the antenna.

The antenna can also be used as mini-base station or access point. An optional mounting bracket kit is available for this purpose, it allows mounting the antenna to

any vertical su	rface.
Model Numb	er
Model RM3-2400	Description Antenna with TNC coax pigtal and mounting hardware

LMXXX-YYY-MTN

Cable length, inches (3 digits) MSA=Male SMA

Example LM096-MTN-MTN is at jumper with 096 inches of LMR-195, a male TNC to connect to the receiver, and the male TNC to connect to the antenna.

Installation Jumper Cable Model Numbers Connector Type MTN=Male TNC FTN=Female TNC FSA=Female SMA MBC=Male BNC FBC=Female BNC MMU=Male Mini-UHF FMU¤Female Mini-UHF MCN=Male N FCN=Female N

Specifications			
Frequency:	2400-2485 MHz	Mounting:	5/8" diameter feed thru, 1/2" long
Gain:	2.3 dBi mux		thread for up to 1/4" thick metal
VSWR:	2.1 max over range	Hardware:	Nut, lockwasher and gasket
Operating Temp:	-40° to +85° C		included
Nominal Impedance:	50 ohms	Pigtail Cable :	LMR-200, 1 foot, exits at bottom
Maximum Power:	10 watta	Pigtali Connector:	TNC female, use jumpers for
			longer installation
Radome/Mount	2" diameter x 3" high	Jumper Cable:	Male TNC with LMR-195 cable
Case Material:	ABS plastic, UV Resistant		and choice of connector for
			receiver interface, see above

US Office & Headquarters; 3900-B River Road, Schiller Park, IL 60176 Tel: 800-648-2800 or 847-671-6690 Fax: 847-671-6715 UK Office: 106 Anglesey Business Park, Hednesford, Staffs. WS12 5NR UK Tel: (+44) 1543-878343 Fax: (+44) 1543-871714 Visit our web page at www.mobilemark.com. Specifications subject to change without notice (10/2000)

Product Specifications

MOBILE MARK®

14 dBi Comer Reflector

9 dBi Mini Comer Reflector

Corner Reflector Antenna (Pat.Pend.)

For PCS, ISM & High Frequency Applications

- 14 dBi models for 1.7 2.6 GHz
- 9 dBi Mini model for 2.4 GHz applications
- Small aperture; minimizes windloading
- Split balun feed provides superior bandwidth & gain performance

Mobile Mark's high frequency Corner Reflector antennas are useful for many applications including surveillance work, PCS, LAN/WAN and other high frequency applications. Its unique design features allow the antenna to overcome many of the problems normally associated with higher frequency systems.

These corner reflectors utilize a half-wavelength element configuration. A unique balun fed design provides high

Model Numbers		
Frequency Range	Gain	Model
1700 -1900 MHz	14 dBi	SGR14-1800
1800 - 2000 MHz	14 dBi	SCR14-1900
2300 - 2600 MHz	14 dBi	SCR14-2400

Please confirm desired operating frequency at time of order. Other special configurations are available upon request. Operation subject to bandwidth restrictions. efficiency radiation without skewing of the radiation pattern. The resultant performance provides excellent bandwidth, gain and match over the frequency range.

These antennas are very small in design and appearance. The connector mechanism exits at the rear of the antenna, allowing easy installation. The mounting bracket (supplied) allows both horizontal and vertical mounting of the antenna. Surface mount can also be accommodated. Each reflector panel on the 14 dBi models measure 7" x 7", providing very low aperture and windloading. The 9 dBi Mini-Corner Reflector has 3" x 3" panels, with total aperture of only 3" x 5.5".

The reflectors are made of aluminum, and irridited for weather protection. The radiating elements are weather protected within an ABS radome. This maintains integrity of the antenna without sacrificing looks or windloading.

Frequency:	See above	SCR14 Panel Size:	7" x 7" each
Gain:	See above	Max Wind Velocity:	100+ mph
Bandwidth @2:1 SWR:	200 MHz or better	Material:	Irridited aluminum, ABS
Impedance:	50 Ohm nominal		plastic radome material
Maximum Power:	100 Watts	Weight:	
SCR9 Beamwidth:	65" vertical, 75" horizontal	SCR9	<1 lbs
SCR14 Beamwidth:	44" vertical, 35" horizontal	SCR14	<2 lbs
Front-to-Back ratio:	22 dB or better	Mounting:	Pole, surface, & corner
Lightning Protection:	DC grounded, external		mount, hardware included.
	protection recommended	Mounting Dimension:	Mounts up to 2" outside
SCR9 Aperture:	3" x 5.5" front facer		diameter mast
SCR9 Panel Size:	3" x 3" each	Connector:	N female, stached at
SCR14 Aperture:	7" x 10.5" front face		rear of antenna

Data/Spec Sheet

ORDER (800) 323-9122 FAX (630) 372-8077

2.4 GHz ISM Mobile Antennas

The 2.4 GHz ISM mobile antennas cover frequencies from 2.400 to 2.4835 GHz. The (B)MAXC models feature MAXRAD's popular BMAX molded polymer base, a plated spring-loaded contact pin, and a .100" diameter stainless steel whip for long lasting, trouble free service. The MUF model is a chrome nut antenna with a .062" stainless steel whip. Various mount and connector options provide low-loss mounting for a variety of metal surfaces.

General Specifications:

2.4 GHz ISM mobile antennas

Radiator Material:

.100" dia. stainless steel; bright (MAXC) or black finish (BMAXC) .

.062" dia. stainless steel; bright finish - MUF model

Antenna Base:

Molded polymer with a plated brass insert ring and a spring-loaded, brass contact pin - (B)MAXC models

Brass mount nut with bright chrome finish - MUF model

Maximum Power:

100 Watts - all models

VSWR:

<1.5:1

Nominal Impedance:

50 Ohms

Antenna Type:

Collinear array - (B)MAXC models

Dual open coil chrome nut - MUF model

Rod Ferrule:

5/16" - 24 thread; bright or black chrome plated brass - (B)MAXC models

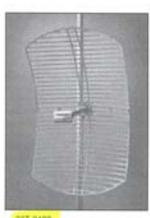
2.4 GHz ISM Mobile Antennas

Model #	Frequency Range	Factory Tuned Frequency	Coll Type	Gain
(B)MAXC24503	2.400 - 2.4835 GHz	2.45 GHz	Closed	3 dBi
(B)MAXC24505	2.400 - 2.4835 GHz	2.45 OHz	Closed	5 dBi
MUF24005	2,400 - 2,4835 GHz	2.45 GHz	Open	5 dBi

^{*} Prefix "B" indicates black

Mechanical Specifications


2.4 GHz ISM Mobile Antennas


Antenna Height	Weight
5-1/4"	0.12 bs.
7-1/2"	0.16 bs.
8-3/4"	0.10 lbs.
	5-1/4" 7-1/2"

^{*} Prefix "B" indicates black

26T-2400

23T-5800

PD Series Parabolic Dish Antennas

- · Durable antenna offers excellent performance at low cost.
- Spun aluminum reflector.
- Lightweight, stacked packaging minimizes freight and handling costs.
- RG8 pigtail, 13 in (330 mm) long.
- Up to 60° tilt adjustment.

MAG GRID Antennas

- Patented grid reflector design provides excellent reliability plus easy handling and installation.
- · Lightweight and durable. Materials include magnesium alloy, aluminum, and stainless steel.
- RG8 pigtall, 24 in (610 mm) long.
- Up to 60° tilt adjustment.
- · Antenna ships disassembled for minimum freight costs. Factory assembly is available as an option.

Ordering Information

Frequency Band MHz	Type Number*	Gain dBi	3 dB Beamwidth Degrees	VSWR, MAX (R.L., dB)
PD Series Antennas			7.	
1700-2100	19T-1940	19	16	1.5
2100-2700	19T-2127	19	16	1.5
2400-2500	19T-2440	19	10	1.5
5725-5850	23T-5800	23	6	1.5
MAG GRID Amennas				
1700-2100	18T-1900	18	14	1.5
1700-2100	26T-1900	24	1	1.5
2100-2700	18T-2127	-18	14	1.5
2100-2700	26T-2127	24		1.5
2400-2500	18T-2400	18	14	1.5
2400-2500	26T-2400	24	- 1	1.5

^{*} Nimale connector is standard. To order optional Nifemale connector, add Fito end of Type Number.

2.6 Peak Radiated Spurious Emission in the Frequency Range 30-25000 MHz (FCC Section 15.247(c))

The EUT was hop-stopped and when possible placed into a continuous transmit mode of operation. A preliminary scan was performed on the EUT to determine frequencies that were caused by the transmitter portion of the product. Significant emissions that fell within restricted bands were then measured on an OAT's site. Radiated measurements below 1 GHz were tested with a RBW = 120 kHz. Radiated measurements above 1 GHz were measured using a RBW = VBW = 1 MHz. The results of peak radiated spurious emissions falling within restricted bands are given in Table 3a –3d and Figure 5a – Figure 5x.

Table 3a. PEAK RADIATED SPURIOUS EMISSIONS (Low)
Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-56.95	33.9	34.5	3.4	508.1	5000.0
7.205	-46.79	33.7	37.4	4.7	2689.1	5000.0

Table 3a. PEAK RADIATED SPURIOUS EMISSIONS (Middle) Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm)	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	@ 3m -60.12	33.9	34.7	3.4	361.7	5000.0
7.307	-50.89	33.7	37.4	4.7	1685.2	5000.0

Table 3a. PEAK RADIATED SPURIOUS EMISSIONS (High) Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-55.86	33.9	34.9	3.5	605.7	5000.0
7.410	-45.66	33.7	37.5	4.7	3091.7	5000.0

^{* -} Data corrected by 1 dB for loss of high pass filter

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-56.95 - 33.9 + 34.9 + 3.5 + 107)/20) = 508.1 CONVERSION FROM dBm TO dBuV = 107 dB

Tester
Signature: Name: Sam Wismer

Table 3b. PEAK RADIATED SPURIOUS EMISSIONS (Low) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-56.71	33.9	34.5	3.4	522.4	5000.0
7.205	-50.35	33.7	37.4	4.7	1784.8	5000.0

Table 3b. PEAK RADIATED SPURIOUS EMISSIONS (Middle) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-59.69	33.9	34.7	3.4	380.1	5000.0
7.307	-51.52	33.7	37.4	4.7	1567.3	5000.0

Table 3b. PEAK RADIATED SPURIOUS EMISSIONS (High) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-53.55	33.9	34.9	3.5	790.2	5000.0
7.410	-46.97	33.7	37.5	4.7	2658.9	5000.0

^{* -} Data corrected by 1 dB for loss of high pass filter

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-56.71- 33.9 + 34.5 + 3.4 + 107)/20) = 522.4 CONVERSION FROM dBm TO dBuV = 107 dB

Tester	Descript.			
Signature:	1 Smy	Name: _	Sam Wismer	
_				

Table 3c. PEAK RADIATED SPURIOUS EMISSIONS (Low) MaxRad 5 dBi Whip Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-56.66	33.9	34.5	3.4	525.4	5000.0
7.205	-48.72	33.7	37.4	4.7	2153.3	5000.0

Table 3c. PEAK RADIATED SPURIOUS EMISSIONS (Middle)

MaxRad 5 dBi Whip Antenna

	DI Willip Alle					
Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-59.31	33.9	34.7	3.4	397.1	5000.0
7.307	-53.16	33.7	37.4	4.7	1297.6	5000.0

Table 3c. PEAK RADIATED SPURIOUS EMISSIONS (High) MaxRad 5 dBi Whip Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-55.33	33.9	34.9	3.5	629.1	5000.0
7.410	-47.53	33.7	37.5	4.7	2492.9	5000.0

^{* -} Data corrected by 1 dB for loss of high pass filter

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-56.66 - 33.9 + 34.5 + 3.4 + 107)/20) = 525.4 CONVERSION FROM dBm TO dBuV = 107 dB

Tester	D (-//			
Signature:	(Smy	Name:	Sam Wismer	

Table 3d. PEAK RADIATED SPURIOUS EMISSIONS (Low) Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-60.44	33.9	34.5	3.4	340.0	5000.0
7.205	-50.98	33.7	37.4	4.7	1660.0	5000.0

Table 3d. PEAK RADIATED SPURIOUS EMISSIONS (Middle)

Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-63.16	33.9	34.7	3.4	254.9	5000.0
7.307	-51.75	33.7	37.4	4.7	1526.3	5000.0

Table 3d. PEAK RADIATED SPURIOUS EMISSIONS (High) Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-49.74	33.9	34.9	3.5	1225.3	5000.0
7.410	-45.23	33.7	37.5	4.7	3248.6	5000.0

^{* -} Data corrected by 1 dB for loss of high pass filter

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-60.44 - 33.9 + 34.5 + 3.4 + 107)/20) = 340.0 CONVERSION FROM dBm TO dBuV = 107 dB

Tester	7 (//			
Signature:	(Smy	Name: _	Sam Wismer	

Figure 3a
Peak Radiated Spurious Emission 15.247(c) Low – Mobile Mark 2.5 dBi Vehicle Mount

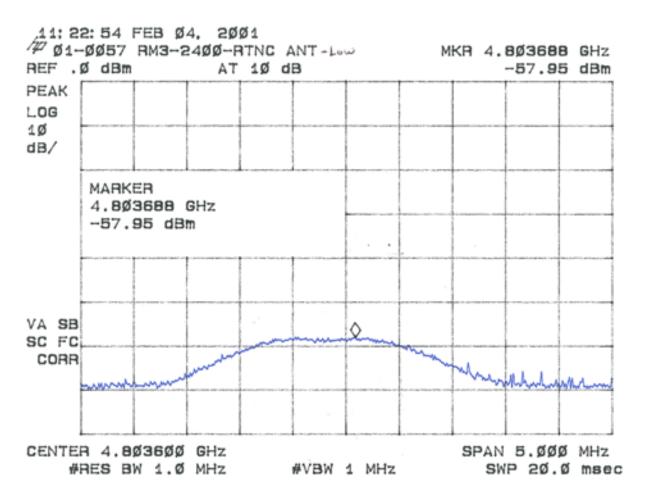


Figure 3b
Peak Radiated Spurious Emission 15.247(c) Low – Mobile Mark 2.5 dBi Vehicle Mount

Figure 3c
Peak Radiated Spurious Emission 15.247(c) Mid – Mobile Mark 2.5 dBi Vehicle Mount

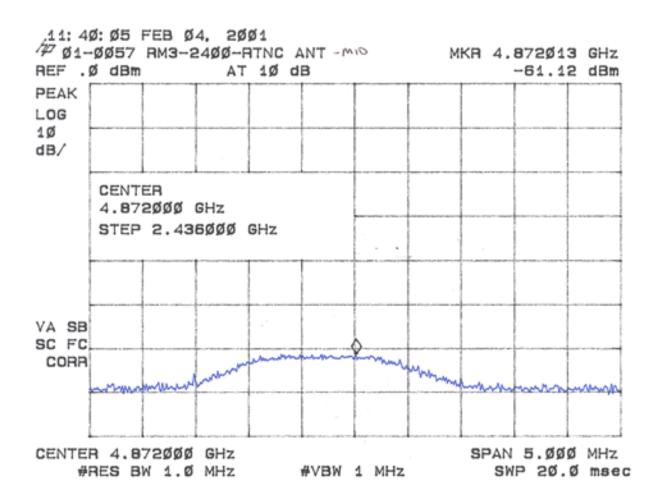


Figure 3d
Peak Radiated Spurious Emission 15.247(c) Mid – Mobile Mark 2.5 dBi Vehicle Mount

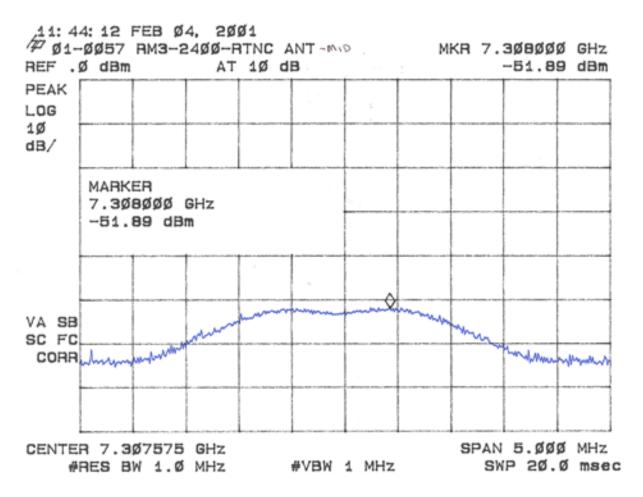


Figure 3e
Peak Radiated Spurious Emission 15.247(c) High– Mobile Mark 2.5 dBi Vehicle Mount

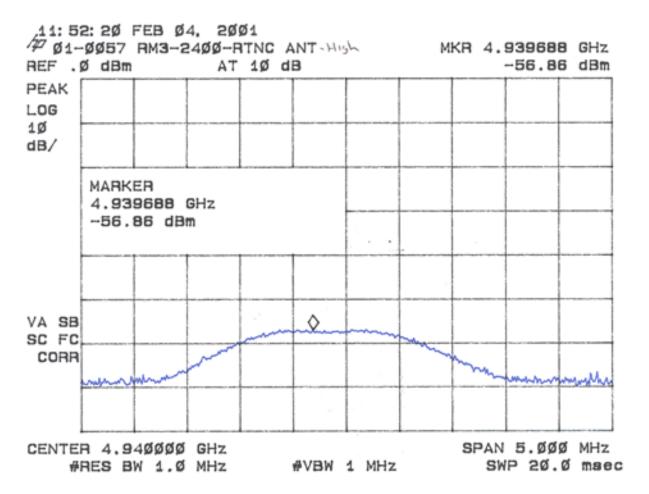


Figure 3f
Peak Radiated Spurious Emission 15.247(c) High– Mobile Mark 2.5 dBi Vehicle Mount

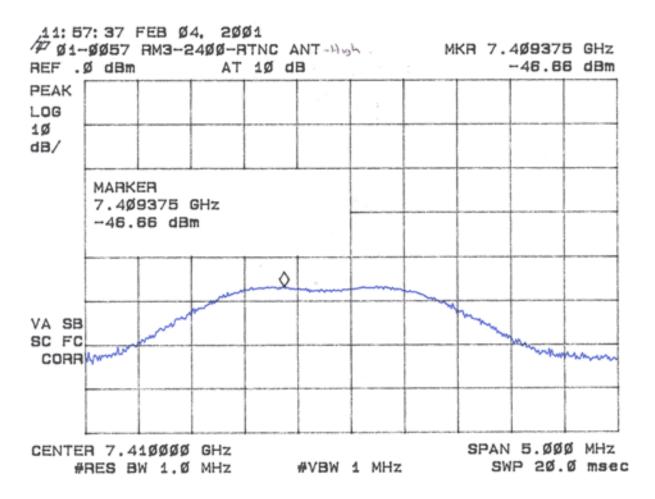


Figure 3g
Peak Radiated Spurious Emission 15.247(c) Low – Mobile Mark 9 dBi Corner Reflector

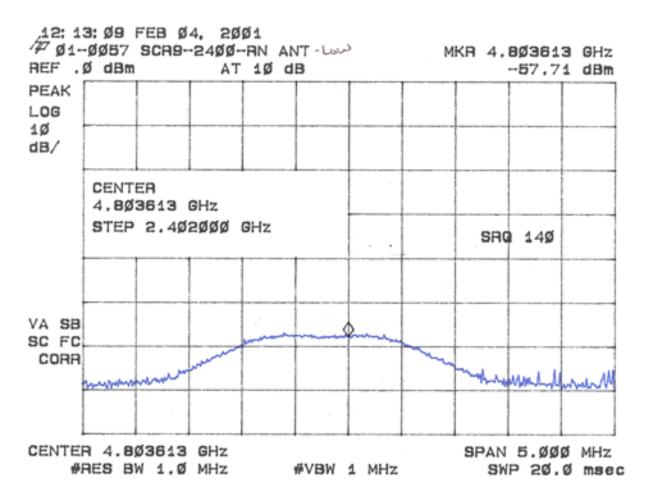


Figure 3h
Peak Radiated Spurious Emission 15.247(c) Low – Mobile Mark 9 dBi Corner Reflector

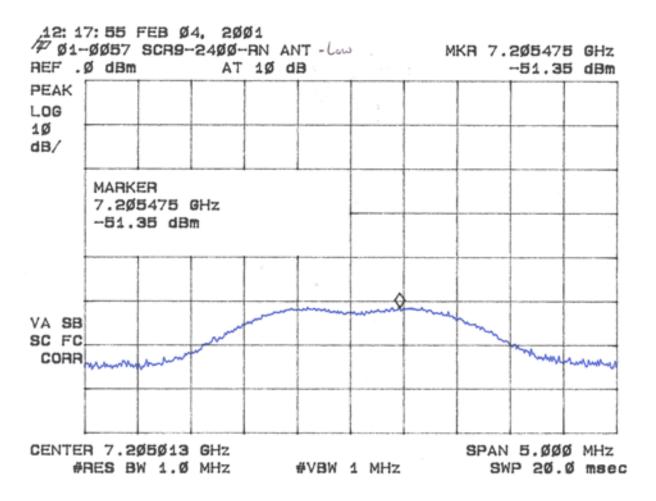


Figure 3i
Peak Radiated Spurious Emission 15.247(c) Mid – Mobile Mark 9 dBi Corner Reflector

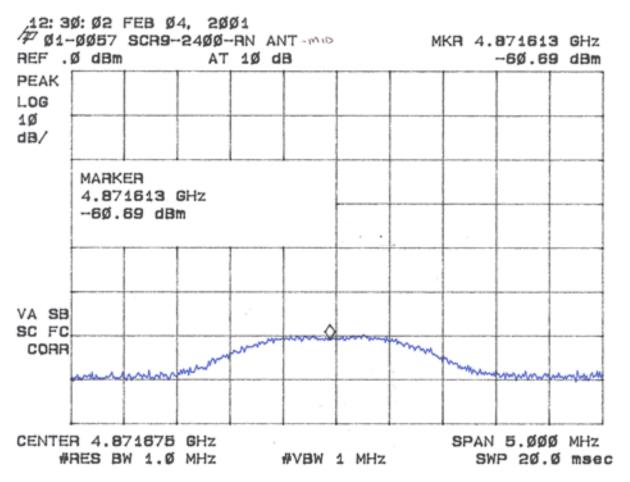


Figure 3j
Peak Radiated Spurious Emission 15.247(c) Mid – Mobile Mark 9 dBi Corner Reflector

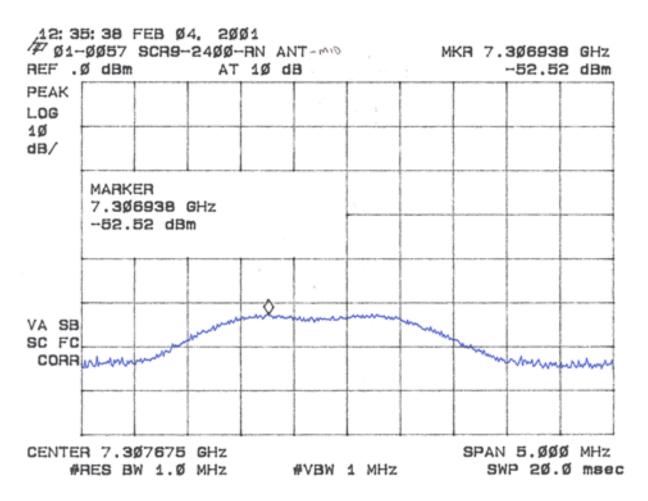


Figure 3k
Peak Radiated Spurious Emission 15.247(c) High– Mobile Mark 9 dBi Corner Reflector

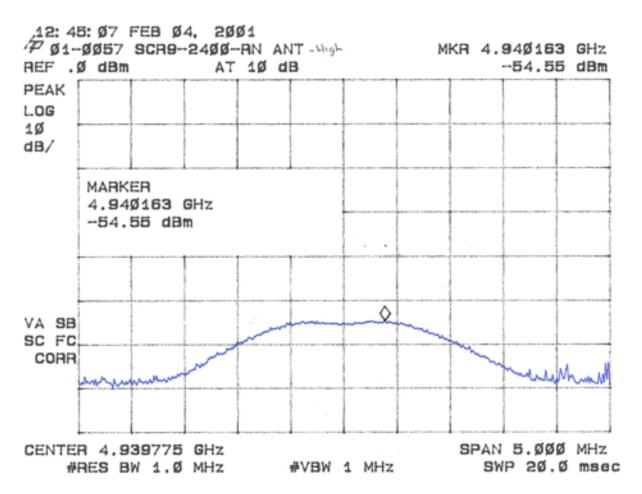


Figure 3I
Peak Radiated Spurious Emission 15.247(c) High– Mobile Mark 9 dBi Corner Reflector

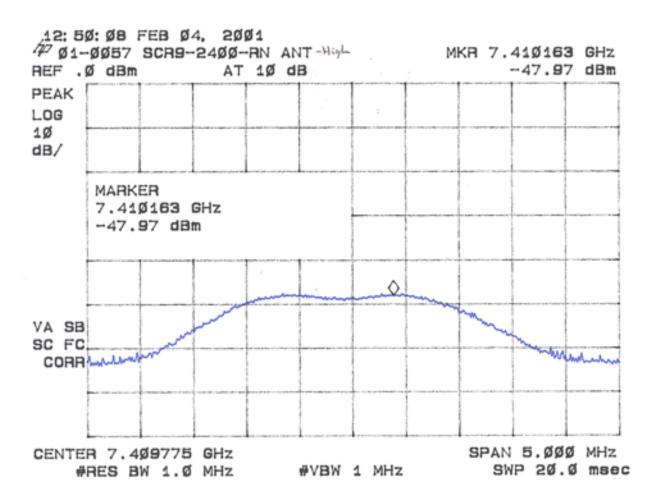


Figure 3m
Peak Radiated Spurious Emission 15.247(c) Low – MaxRad 5 dBi Whip

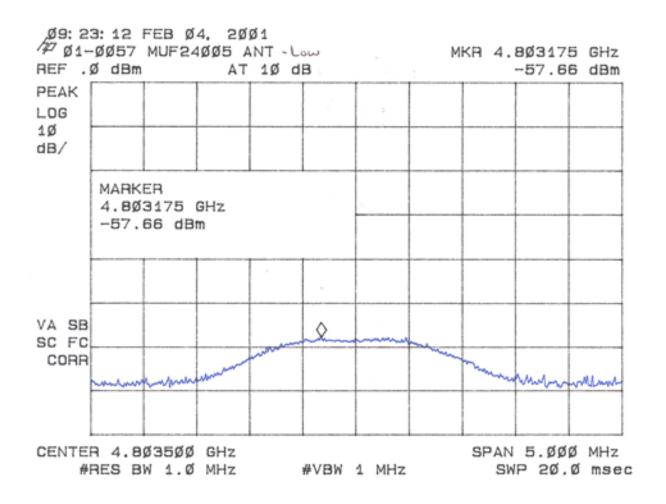


Figure 3n
Peak Radiated Spurious Emission 15.247(c) Low – MaxRad 5 dBi Whip \

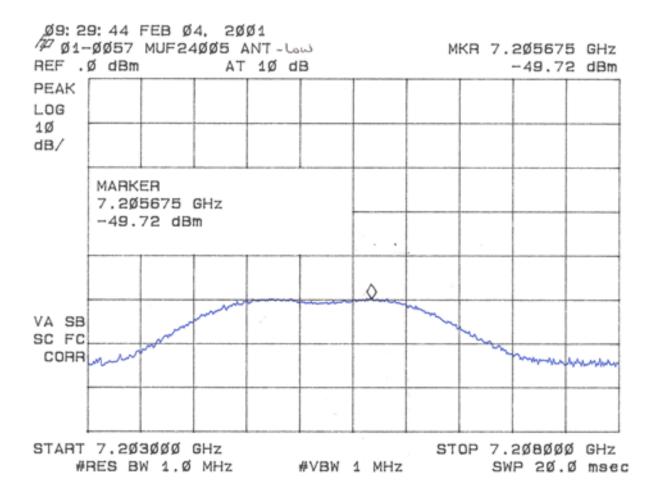


Figure 3o
Peak Radiated Spurious Emission 15.247(c) Mid – MaxRad 5 dBi Whip

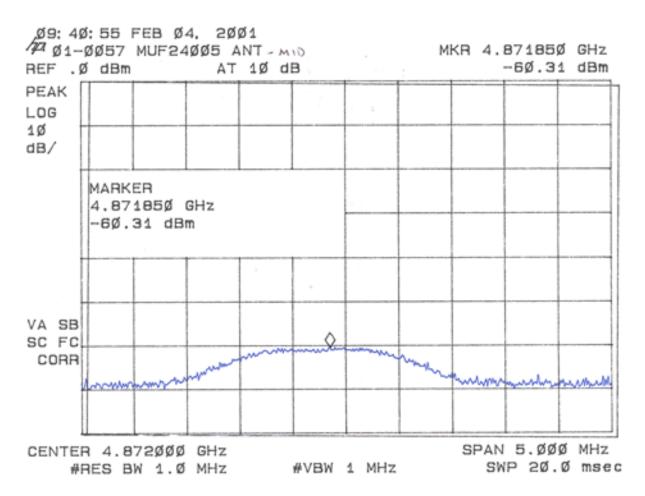


Figure 3p
Peak Radiated Spurious Emission 15.247(c) Mid – MaxRad 5 dBi Whip

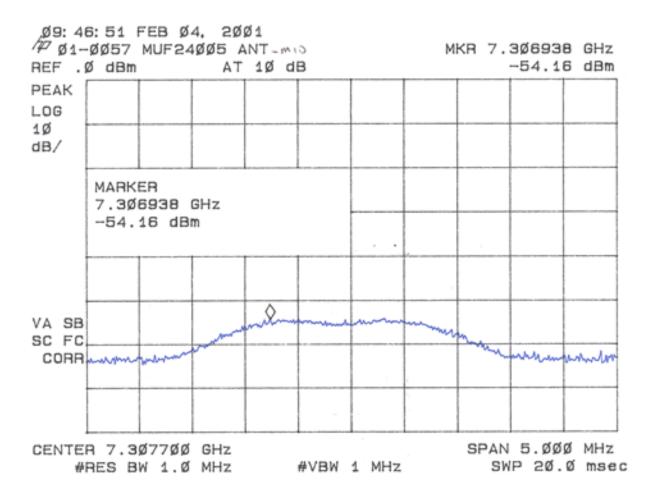


Figure 3q
Peak Radiated Spurious Emission 15.247(c) High – MaxRad 5 dBi Whip

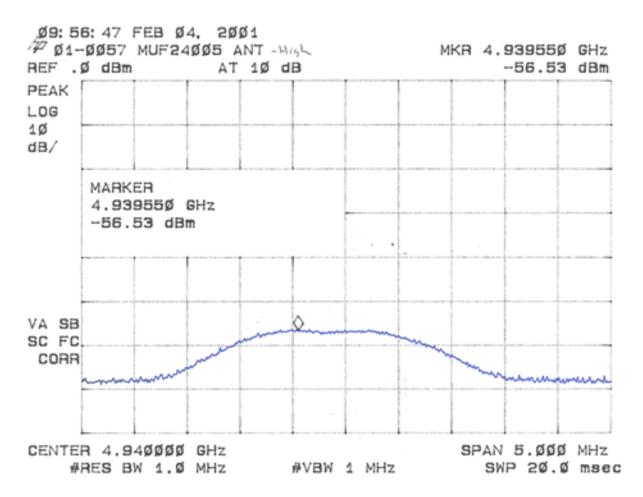


Figure 3r
Peak Radiated Spurious Emission 15.247(c) High – MaxRad 5 dBi Whip

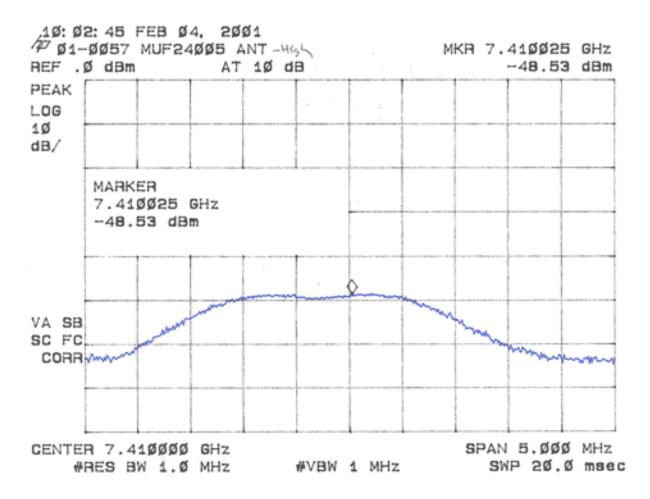


Figure 3s
Peak Radiated Spurious Emission 15.247(c) Low – Andrews 24 dBi Parabolic Dish

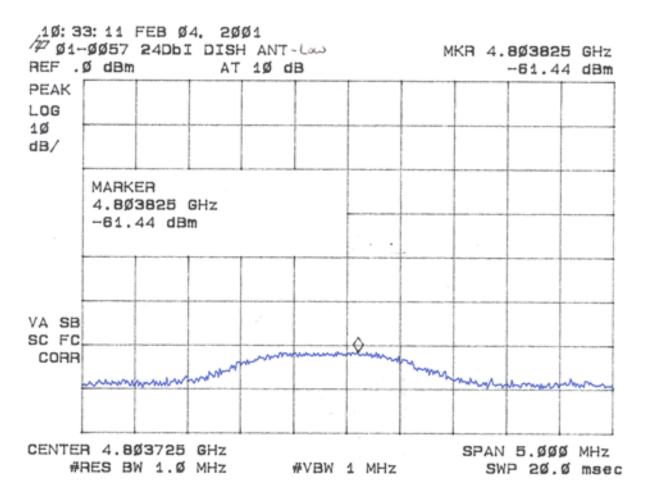


Figure 3t
Peak Radiated Spurious Emission 15.247(c) Low – Andrews 24 dBi Parabolic Dish

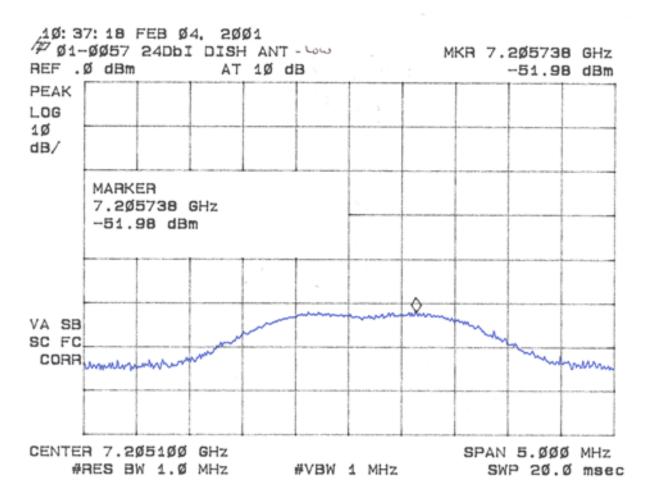


Figure 3u
Peak Radiated Spurious Emission 15.247(c) Mid – Andrews 24 dBi Parabolic Dish

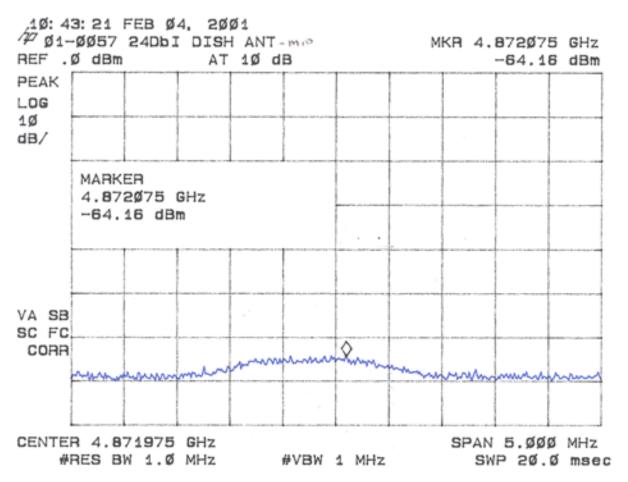


Figure 3v
Peak Radiated Spurious Emission 15.247(c) Mid – Andrews 24 dBi Parabolic Dish

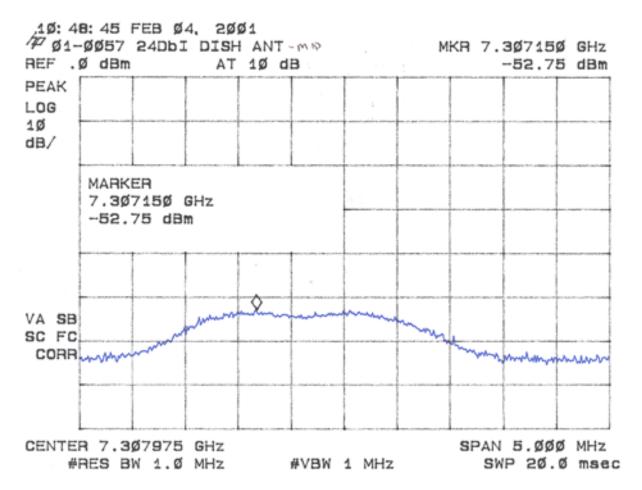


Figure 3w
Peak Radiated Spurious Emission 15.247(c) High - Andrews 24 dBi Parabolic Dish

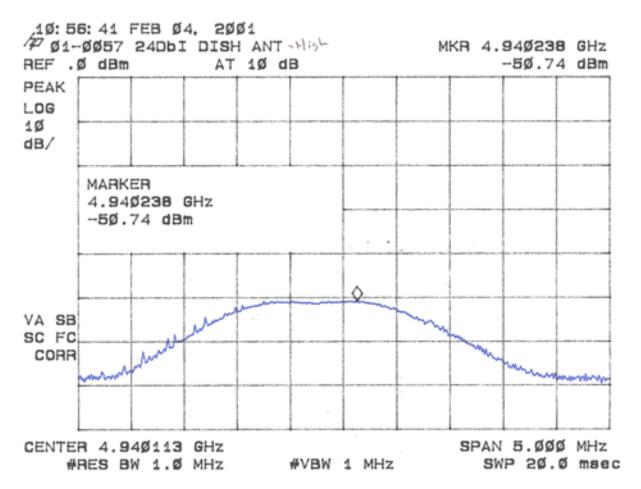
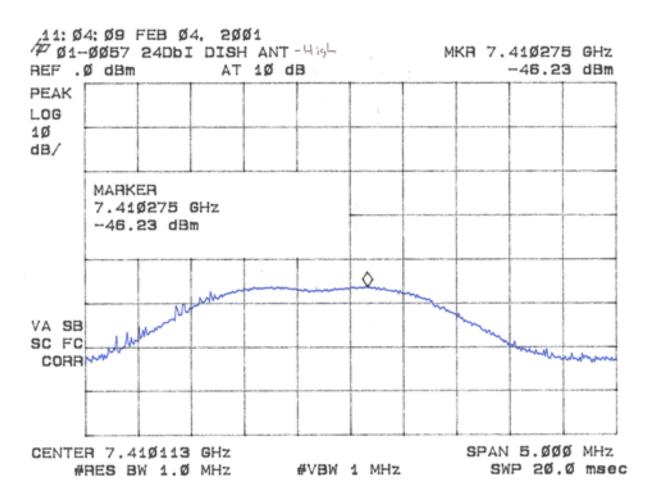



Figure 3x
Peak Radiated Spurious Emission 15.247(c) High - Andrews 24 dBi Parabolic Dish

2.7 Average Spurious Emission in the Frequency Range 30 - 25000 MHz (FCC Section 15.247(c))

The results of average radiated spurious emissions falling within restricted bands are given in Table 4a - 4d. Due to the functionality of the transmitter and the complexity of the test setup in order to measure worse case duty cycle, Cirronet Corporation provided an explanation of the worse case duty cycle of the transmitter (provided on the following pages).

Worst Case Transmit Duty Cycle for WIT2410

The duty cycle de-rating factor used in the calculation of average radiated limits (per 15.209) is described below. This factor was calculated by first determining the worst case scenario for system operation - worst case being defined as the scenario when the WIT2410 would be transmitting the longest period during a dwell.

This worst case operating scenario is as follows:

- point-to-point operation
 (only two units communicating with one another)
- data flow is almost completely unidirectional
 (that is, one radio is relaying a large amount of data to the other radio with only synchronization data being passed back the other direction)
- The amount of data being fed to the sending radio is exactly portioned out to fit the maximum packet size allowable (280 bytes). The radio cannot send more than 280 bytes on a single channel additional data must be sent on the next hop.

For this example, a remote unit is transferring a large data file to a base unit.

Maximum transmit time by Remote on a single channel:

$$= 280 \text{ bytes * 8 bits/byte * (1/460.8Kbps)} = 4.86\text{ms}$$

The minimum hop duration for this scenario would be 6.94ms. Given that we have 75 channels in our hop set, it takes 521ms to go through the entire hop table and repeat a transmission on the same channel. Therefore, only 4.86milliseconds worth of data can be transmitted on a single channel in any 100ms time period.

The transmission duty cycle correction factor is then calculated as:

$$20 * Log_{10} (4.86 ms/100 ms) = -26.3 dB$$

Table 4a. AVERAGE RADIATED SPURIOUS EMISSIONS (Low) Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-83.25	33.9	34.5	3.4	24.6	500.0
7.205	-73.09	33.7	37.4	4.7	130.2	500.0

Table 4a. AVERAGE RADIATED SPURIOUS EMISSIONS (Middle) Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-86.42	33.9	34.7	3.4	17.5	500.0
7.307	-77.19	33.7	37.4	4.7	81.6	500.0

Table 4a. AVERAGE RADIATED SPURIOUS EMISSIONS (High) Mobile Mark 2.5 dBi Vehicle Mount Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-82.16	33.9	34.9	3.5	29.3	500.0
7.410	-71.96	33.7	37.5	4.7	149.7	500.0

 $^{^*}$ - Data corrected by 1 dB for loss of high pass filter and 20 Log₁₀ (4.86ms/100ms) = -26.3 dB

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-83.25 - 33.9 + 34.5 + 3.4 + 107)/20) = 24.6 CONVERSION FROM dBm TO dBuV = 107 dB

Table 4b. AVERAGE RADIATED SPURIOUS EMISSIONS (Low) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-83.01	33.9	34.5	3.4	25.3	500.0
7.205	-76.65	33.7	37.4	4.7	86.4	500.0

Table 4b. AVERAGE RADIATED SPURIOUS EMISSIONS (Middle) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-85.99	33.9	34.7	3.4	18.4	500.0
7.307	-77.82	33.7	37.4	4.7	75.9	500.0

Table 4b. AVERAGE RADIATED SPURIOUS EMISSIONS (High) Mobile Mark 9 dBi Corner Reflector Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-79.78	33.9	34.9	3.5	38.3	500.0
7.410	-73.27	33.7	37.5	4.7	128.7	500.0

^{* -} Data corrected by 1 dB for loss of high pass filter and 20 Log_{10} (4.86ms/100ms) = -26.3 dB

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-83.01 - 33.9 + 34.5 + 3.4 + 107)/20) = 25.3 CONVERSION FROM dBm TO dBuV = 107 dB

Table 4c. AVERAGE SPURIOUS EMISSIONS (Low) MaxRad 5 dBi Whip Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-82.96	33.9	34.5	3.4	25.4	500.0
7.205	-75.02	33.7	37.4	4.7	104.3	500.0

Table 4c. AVERAGE RADIATED SPURIOUS EMISSIONS (Middle) MaxRad 5 dBi Whip Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-85.61	33.9	34.7	3.4	19.2	500.0
7.307	-79.46	33.7	37.4	4.7	62.8	500.0

Table 4c. AVERAGE RADIATED SPURIOUS EMISSIONS (High) MaxRad 5 dBi Whip Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-81.83	33.9	34.9	3.5	30.5	500.0
7.410	-73.83	33.7	37.5	4.7	120.7	500.0

^{* -} Data corrected by 1 dB for loss of high pass filter and 20 Log_{10} (4.86ms/100ms) = -26.3 dB

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-82.96 - 33.9 + 34.5 + 3.5 + 107)/20) = 25.4 CONVERSION FROM dBm TO dBuV = 107 dB

Table 4d. AVERAGE RADIATED SPURIOUS EMISSIONS (Low) Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.803	-86.74	33.9	34.5	3.4	16.5	500.0
7.205	-77.28	33.7	37.4	4.7	80.4	500.0

Table 4d. AVERAGE RADIATED SPURIOUS EMISSIONS (Middle)

Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @ 3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.871	-89.46	33.9	34.7	3.4	12.3	500.0
7.307	-78.05	33.7	37.4	4.7	73.9	500.0

Table 4d. AVERAGE RADIATED SPURIOUS EMISSIONS (High) Andrews 24 dBi Parabolic Dish Antenna

Freq. (GHz)	Test Data* (dBm) @3m	Amp. Gain (dB)	Antenna Factor (dB)	Cable Loss (dB)	Results (uV/m) 3m	FCC Limits (uV/m)
4.939	-76.04	33.9	34.9	3.5	59.3	500.0
7.410	-71.53	33.7	37.5	4.7	157.3	500.0

^{* -} Data corrected by 1 dB for loss of high pass filter and 20 Log_{10} (4.86ms/100ms) = -26.3 dB

SAMPLE CALCULATION:

RESULTS (uV/m @ 3m) = Antilog ((-86.74 - 33.9 + 34.5 + 3.4 + 107)/20) = 16.5 CONVERSION FROM dBm TO dBuV = 107 dB

SECTION 3 PHOTOGRAPHS

PHOTOS OF THE TESTED EUT

The following photos are attached:

Photo 1. Antenna, Mobile Mark 2.5 dBi Vehicle Mount (M/N RM3-2400-RTNC)
Photo 2. Antenna, Mobile Mark 9 dBi Corner Reflector (M/N SCR9-2400-RN)

Photo 3. Antenna, MaxRad 5 dBi Whip (M/N MUF24005-RTNC)
Photo 4. Antenna, Andrews 18 dBi Parabolic Dish (M/N 18T-2400 A)
Photo 5. Antenna, Andrews 24 dBi Parabolic Dish (M/N 26T-2400 A)

Photo 1. Antenna, Mobile Mark 2.5 dBi Vehicle Mount (M/N RM3-2400-RTNC)

Photo 2. Antenna, Mobile Mark 9 dBi Corner Reflector (M/N SCR9-2400-RN)

Photo 3. Antenna, MaxRad 5 dBi Whip (M/N MUF24005-RTNC)

Photo 4. Antenna, Andrews 18 dBi Parabolic Dish (M/N 18T-2400 A)

Photo 5. Antenna, Andrews 24 dBi Parabolic Dish (M/N 26T-2400 A)

