

Application

For

Certification for an Intentional Radiator per Title 47 Part 95, Subpart H, Wireless Medical Telemetry Service (WMTS) paragraphs 95.2365, 95.2369, 95.2379 and Part 2, Subpart J, Equipment Authorization Procedures

For the

Murata Electronics North America

Model: WIT608B

FCC ID: HSW-608B

UST Project: 21-0024

Issue Date: March 15, 2021

Total Pages in This Report: 26

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-150 www.ustech-lab.com

Page 1 of 26

I certify that I am authorized to sign for the Test Agency and that all of the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible For Test):

By: Alan Ghasiani Name: Man Mhana

Title: Compliance Engineer – President

Date: March 15, 2021

TESTING NVLAP LAB CODE 200162-0

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

> 3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

> > Page 2 of 26

MEASUREMENT TECHNICAL REPORT

COMPANYS NAME:	Murata Electronics North America
MODEL:	WIT608B
FCC ID:	HSW-608B
DATE:	March 15, 2021

Table of Contents

Para	graph Title	<u>Page</u>
1 (General Information	
1.1	Purpose of this Report	6
1.2	2 Characterization of Test Sample	6
1.3		
1.4		
1.5	5 Test Facility	7
2	Tests and Measurements	
2.1	I Test Equipment	
2.2		9
2.3		9
2.4		
2.5		
2.6	· · · · · · · · · · · · · · · · · · ·	
2.7		
2.8		
2.9		
2.1	· · · · · · · · · · · · · · · · · · ·	
	2.10.1 Conducted Emissions Measurement Uncertainty	
	2.10.2 Radiated Emissions Measurement Uncertainty	
3 Co	nclusions	

List of Figures

Figures <u>Title</u>

Figure 1. Test Configuration	10
Figure 2. Expanded Frequency Channels	
Figure 3. Radiated Emissions 30 MHz to 1000 MHz, Horizontal Polarity	17
Figure 4. Radiated Emissions 30 MHz to 1000 MHz, Vertical Polarity	17
Figure 5. Radiated Emissions, above 1 GHz, Horizontal Polarity	19
Figure 6. Radiated Emissions, above 1 GHz, Vertical Polarity	19
Figure 7. 20dB / 99% Bandwidth, Low	21
Figure 8. 20dB / 99% Bandwidth, Mid	22
Figure 9. 20dB / 99% Bandwidth, High	23
Figure 10. Maximum Conducted Output Power (613.7125 MHz)	24

List of Tables

Table <u>Title</u>

Table 1. EUT and Peripherals	7
Table 2. Test Instruments	
Table 3. Allowed Antenna(s)	
Table 4. Frequency Stability vs. Temperature (at startup)	
Table 5. Quasi-Peak Radiated Fundamental Emissions (Antenna 1)	13
Table 6. Quasi-Peak Radiated Fundamental Emissions (Antenna 2)	13
Table 7. Radiated Emissions Test Data 9 kHz to 30 MHz (Part 95.2379)	15
Table 8. Radiated Emissions Test Data 30 MHz to 1000 MHz (Part 95.2379)	
Table 9. Radiated Emissions Test Data above 1000 MHz (Part 95.2379)	
Table 10. 20 dB Bandwidth and 99% Occupied Bandwidth	
Table 11. RF Exposure Evaluation	

<u>Page</u>

<u>Page</u>

1 General Information

1.1 Purpose of this Report

This is an original certification request for a Modular Approval of a WMTS radio module that operates in the band 608-614 MHz. Compliance results are presented herein.

1.2 Characterization of Test Sample

The sample used for testing was received by US Tech on February15, 2021 in good operating condition.

1.3 Product Description

The WIT608B radio transceiver provides wireless connectivity for either point-topoint or multipoint applications. Frequency hopping spread spectrum technology ensures maximum resistance to noise and multipath fading and robustness in the presence of interfering signals, while operation in the 611 MHz WMTS band allows protected operation in the US. A simple serial interface supports asynchronous data up to 115200 bps. An on-board 3 KB buffer and an error-correcting over-the-air protocol provide smooth data flow and simplify the task of integration with existing applications.

1.4 Configuration of Tested System

The Test Sample was tested per ANSI C63.26-2015, American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services as well as TIA 603-E (2016), Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

A list of EUT and Peripherals is found in Table 1 below. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices.

US Tech Test Report:	FCC Part 95 Certification
FCC ID:	HSW-608B
Test Report Number:	21-0024
Issue Date:	March 15, 2021
Customer:	Murata
Model:	WIT608B

1.5 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC under registration number US5301.

Table 1. EUT and Peripherals

EUT	MODEL NUMBER	SERIAL NUMBER	FCC ID		
Murata (EUT)	WIT608B	N/A	HSW-608B	P/D	
PERIPHERAL/ MANUFACTURER	MODEL NUMBER	SERIAL FCC ID:		CABLES P/D	
AC Adaptor/ NETGEAR	2ABF060R	332-108 771-01	N/A	Р	
Ethernet Switch/ NETGEAR	GS308P	4F219B55A076D	N/A	D	
Patch Antenna	See Table 3 below for details.				
Dipole Antenna					

U= Unshielded S= Shielded P= Power D= Data

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

Table 2. Test Instruments

TEST INSTRUMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	CALIBRATION DUE
SPECTRUM ANALYZER	E4407B	AGILENT	AGILENT US41442935	
SPECTRUM ANALYZER	8593E	HEWLETT PACKARD	3205A00124	1/29/2022
BICONICAL ANTENNA	3110B	EMCO	9306-1708	6/27/2021 2 yr.
LOG PERIDOC ANTENNA	3146	EMCO	9110-3236	8/22/2021 2 yr.
LOG PERIDOC ANTENNA	3146 EMCO 9305-3600		9305-3600	5/01/2021 Extended 2 yr.
HORN ANTENNA	3115 EMCO 9107-372		9107-3723	3/02/2023 2 yr.
LOOP ANTENNA	6502	EMCO	9810-3246	6/04/2022 2 yr.
BAND PASS FILTER	NHP-800+	MINI CIRCUITS	15542	5/12/2021
PRE-AMPLIFIER	8449B	HEWLETT-PACKARD 3008A00480		5/13/2021
PRE-AMPLIFIER	8447D	HEWLETT-PACKARD	1937A02980	5/13/2021
TEMPERATURE CHAMBER	SM16	THERMOTRON 17095		3/27/2021

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

21-0024 March 15, 2021 Murata WIT608B

2.2 **Modifications to EUT Hardware**

No physical modifications were made by US Tech in order to bring the EUT into compliance with FCC Part 95, Subpart H Intentional Radiator Limits for the transmitter portion of the EUT.

2.3 **EUT Antenna Requirements**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this module.

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	PART NO.	GAIN dBi	TYPE OF CONNECTOR
Antenna 1	Nearson	Dipole	OEM181AM- 608S	+2	SMA
Antenna 2	Cushcraft	Patch	SL6081P	+2	SMA

Table 3. Allowed Antenna(s)

US Tech Test Report: FCC ID: Test Report Number: Issue Date: Customer: Model:

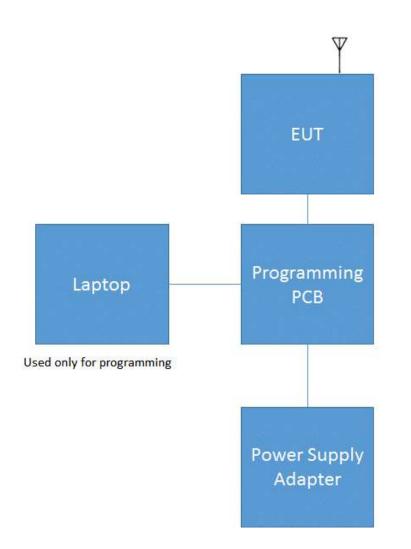


Figure 1. Test Configuration

2.4 WTMS Frequency Accuracy (CFR 95.2365)

Manufacturers of wireless medical telemetry devices are responsible for ensuring frequency accuracy such that all emissions are maintained within the designated bands of operation under all of the manufacturer's specified conditions.

According to the manufacturer the frequency drift of the transmitter is +/-20 ppm. This value was determined by the crystal used to stabilize the frequency synthesizer. The +/-20 ppm corresponds to an actual frequency drift of +4.3kHz/-5.5kHz.

Frequency stability measurements were performed. The test data is presented below:

	Measured	
Temperature	Frequency	Deviation
(degrees C)	(MHz)	(ppm)
-30	608.3977	-2.1
-20	608.4015	4.1
-10	608.4041	8.4
0	608.4020	4.9
10	608.4015	4.1
20	608.3990	0.0
30	608.3990	0.0
40	608.3977	-2.1
50	608.3938	-8.5

Table 4. Frequency Stability vs. Temperature (at startup)

Maximum Deviation = 0.0002% or 20ppm

Test Date: March 3, 2021

Tested By Signature: <u>S. Malakher</u>

2.5 WMTS Frequency Bands and Channels (CFR 95.2363)

The channel plan for this radio is presented below. The channels fall within the operating frequency band, 608-614 MHz for WMTS devices.

	ChHEX	Fout (MHz)
Lowest Ch.	FFFFFFFFFF	608.392533
	FFFFFFFFF	608.529067
	0	608.665600
	1	608.802133
	2	608.938667
	3	609.075200
	4	609.211733
	5	609.348267
	6	609.484800
	7	609.621333
	8	609.757867
	9	609.894400
	А	610.030933
	B	610.167467
	C	610.304000
	D	610.440533
	E	610.577067
	F	610.713600
	10	610.850133
	11	610.986667
Mid Ch.	12	611.123200
	13	611.259733
	14	611.396267
	15	611.532800
	16	611.669333
	17	611.805867
	18	611.942400
	19	612.078933
	1A	612.215467
	18	612.352000
	1C	612.488533
	1D	612.625067
	1E	612.761600
	1F	612.898133
	20	613.034667
	21	613.171200
	22	613.307733
	23	613.444267
Highest Ch.	24	613.580800

Figure 2. Expanded Frequency Channels

2.6 WMTS Field Strength Limits (CFR 95.2369(a))

For WMTS transmitter types operating in the 608-614 band, the field strength of the transmitted signal must not exceed 200 mV/m, measured at a distance of 3 meters (106 dBuV/m), using instrumentation with an CISPR quasi-peak detector.

Table 5. Quasi-Peak Radiated Fundamental Emissions (Antenna 1)

Те	Test: FCC Part 95, Para 95.2369								
Project: 21-0024					Model: WIT	608B			
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Distance/				
				Low Channe	I - QP			•	
608.30	80.86	24.73 105.59 106.0 3m./VERT 0.4 QP							
				Mid Channe	I - QP				
610.71	80.61		24.75	105.36	106.0	3m./VERT	0.6	QP	
	High Channel - QP								
613.56	80.02		24.85	104.87	106.0	3m./VERT	1.1	QP	
*Nata: Daaim	Note: Desimal Value was set to 03 for adjusting output power								

*Note: Decimal Value was set to 93 for adjusting output power

Table 6. Quasi-Peak Radiated Fundamental Emissions (Antenna 2)

Test: FCC Part 95, Para 95.2369				Model: WIT608B				
	Proj	ect: 21-00)24					
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
				Low Channe	I - QP			
608.33	79.66		24.73	104.39	106.0	3m./VERT	1.6	QP
				Mid Channe	I - QP			•
610.79	79.51		24.85	104.36	106.0	3m./VERT	1.6	QP
High Channel - QP								
613.50	79.39		24.95	104.34	106.0	3m./VERT	1.7	QP

*Note: Decimal Value was set to 48 for adjusting output power

1. The EUT was placed in its normal operating position and the transmitter was in constant broadcast mode, with a duty cycle of less than 15%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 608.30 MHz:		
Magnitude of Measured Frequency	80.86	dBuV
+Antenna Factor + Cable Loss - Amplifier Gain	24.73	dB/m
Corrected Result	105.59	dBuV/m

Test Date: March 24, 2018 and March 25, 2018 Tested By Signature: ________ Name: Shahram Mafakher

2.7 WMTS unwanted emissions limits (CFRP95.2379)

Each WMTS transmitter must be designed to comply with the following requirements:

(a) Unwanted emissions on frequencies below 960 MHz must not exceed 200 μ V/m (46 dBuV/m), measured at a distance of 3 meters using measuring instrumentation with a CISPR quasi-peak detector.

(b) Unwanted emissions on frequencies above 960 MHz must not exceed 500 μ V/m (54 dBuV/m), measured at a distance of 3 meters using measuring equipment with an averaging detector and a 1 MHz measurement bandwidth.

Table 7. Radiated Emissions Test Data 9 kHz to 30 MHz (Part 95.2379)

Test: FCC Part 95, Para 95.2379 Project: 21-0024			Model: WIT608B				
Frequency (MHz)	Test Data (dBuV)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Distanco/			Detector Mode
All emissions were more than 20 dB below the limit.							

1. No other signals detected within 20 dB of specification limit.

2. The EUT was placed in its normal operating position and the transmitter was in constant broadcast (test) mode, with a duty cycle of greater than its normal operating duty cycle. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Test Date: March 8, 2021

Tested By Signature : <u>S. Haller</u>

Table 8. Radiated Emissions Test Data 30 MHz to 1000 MHz (Part 95.2379)

Test: FCC Part 95, Para 95.2379				Model: WIT608B			
	Project: 21-0024						
Frequency (MHz)	Test Data (dBuV)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
46.2200	45.77	-15.61	30.16	46.0	3.0m./HORZ	15.8	PK
178.6800	45.17	-11.77	33.40	46.0	3.0m./HORZ	12.6	PK
833.3500	42357	0.02	42.59	46.0	3.0m./HORZ	3.4	PK
46.7800	58.45	-16.31	42.14	46.0	3.0m./VERT	3.9	PK
167.6800	44.48	-11.55	32.93	46.0	3.0m./VERT	13.1	PK
857.5800	41.45	-0.90	40.55	46.0	3.0m./VERT	5.4	PK

1. Worst case emissions presented above. All other emissions presented in the graphs that follow.

2. The EUT was placed in its normal operating position and the transmitter was in constant broadcast (test) mode, with a duty cycle of greater than its normal operating duty cycle. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 46.2200 MHz:

Magnitude of Measured Frequency	45.77	dBuV
+Antenna Factor + Cable Loss - Amplifier Gain	-15.61	dB/m
Corrected Result	30.16	dBuV/m

Test Date: March 8, 2021

Tested By Signature : S. Haller

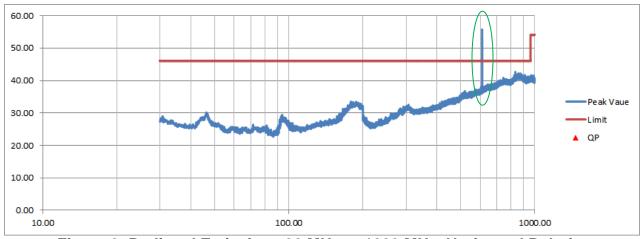
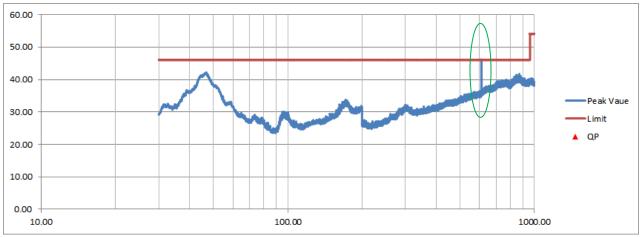



Figure 3. Radiated Emissions 30 MHz to 1000 MHz, Horizontal Polarity

Note: Large signal at 610 MHz is fundamental signal.

Note: Large signal at 610 MHz is fundamental signal.

US Tech Test Report:	FCC Part 95 Certification
FCC ID:	HSW-608B
Test Report Number:	21-0024
Issue Date:	March 15, 2021
Customer:	Murata
Model:	WIT608B

Table 9. Radiated Emissions Test Data above 1000 MHz (Part 95.2379)

Tes	t: FCC Part	95, Para 95.2	379	Model: WIT608B			
	Project:	21-0024					
Frequency (MHz)	Test Data (dBuV)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
2463.29	55.85	-8.68	47.18	54.0	3.0m./HORZ	6.8	PK
2979.40	55.27	-5.94	49.33	54.0	3.0m./HORZ	4.7	PK
6034.61	51.07	-0.86	50.21	54.0	3.0m./HORZ	3.8	PK
2463.29	57.78	-8.78	49.00	54.0	3.0m./VERT	5.0	PK
2976.40	54.71	-6.08	48.63	54.0	3.0m./VERT	5.4	PK
6807.16	50.19	0.49	50.68	54.0	3.0m./VERT	3.3	PK

1. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic

2. The EUT was placed in its normal operating position and the transmitter was in constant broadcast (test) mode, with a duty cycle of greater than its normal operating duty cycle. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 2463.29 MHz:

Magnitude of Measured Frequency	55.85	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	-8.68	dB/m
Corrected Result	47.18	dBuV/m

Test Date: March 8, 2021

Tested By Signature : S. Halakhee

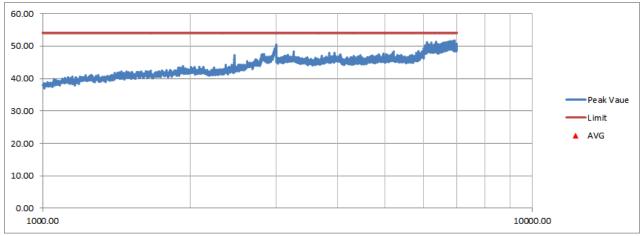


Figure 5. Radiated Emissions, above 1 GHz, Horizontal Polarity

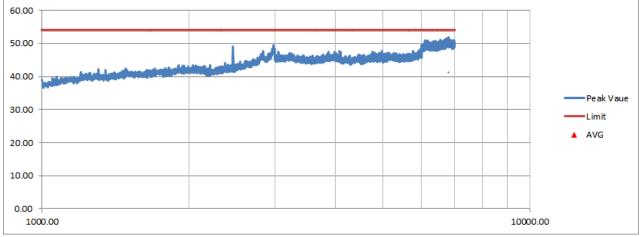


Figure 6. Radiated Emissions, above 1 GHz, Vertical Polarity

2.8 Occupied Bandwidth (CFR 2.1049)

These measurements were performed while the EUT was in a constant transmit mode. A method similar to the marker delta method was used to capture the points. The RBW was set to approximately 1/100 of the manufacturers claimed RBW and with the VBW \geq RBW. The results of this test are given in Table 16 and Figures 29-31.

Table 10. 20 dB Bandwidth and 99% Occupied Bandwidth

Frequency (MHz)	20 dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
608.3900	265	265
610.8300	275	275
613.5800	270	270

Test Date: March 17, 2021

Tested By Signature : <u>S. Halakhee</u>

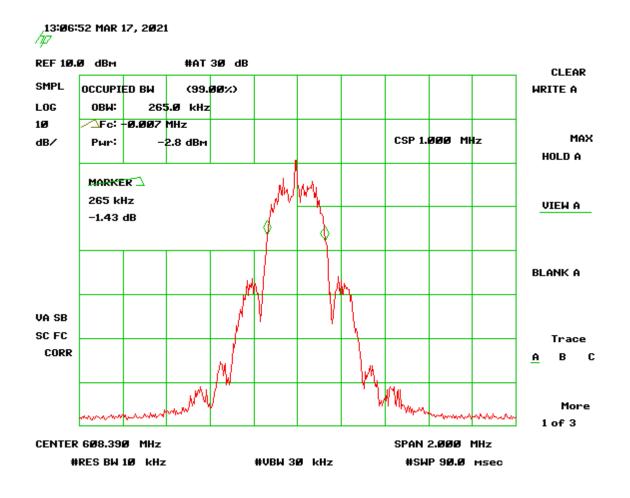


Figure 7. 20dB / 99% Bandwidth, Low

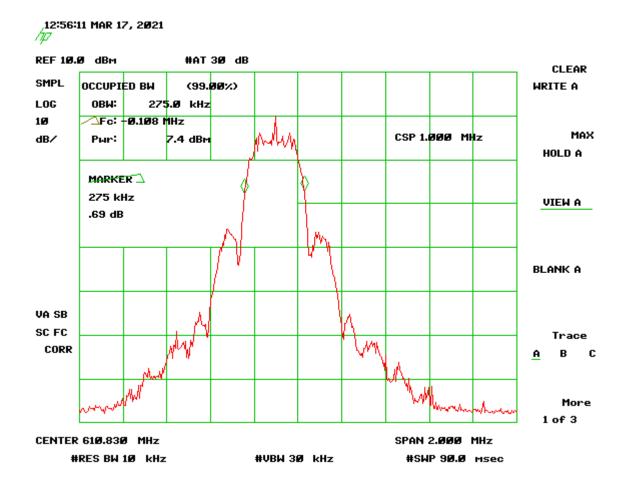


Figure 8. 20dB / 99% Bandwidth, Mid

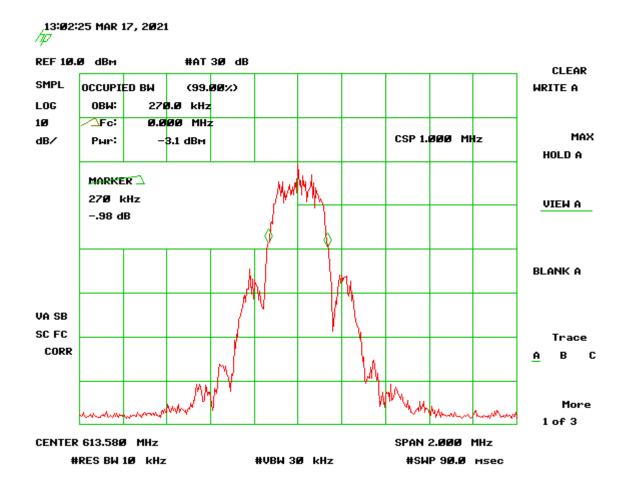


Figure 9. 20dB / 99% Bandwidth, High

US Tech Test Report: FCC ID:	FCC Part 95 Certification HSW-608B
Test Report Number:	21-0024
Issue Date:	March 15, 2021
Customer:	Murata
Model:	WIT608B

2.9 WMTS RF Exposure Evaluation (CFR 95.2385)

The EUT does not meet the definition of a portable device per Part 2.1093(b) because the EUT is a transmitting device designed to be used so that the radiating structure of the device is greater than 20 cm of the body of the user. The user's manual includes instructions to the installer to ensure this separation distance is meet. An evaluation of the Spectrum Density (S) at 20 cm is provide here for reference.

Table 11. RF Exposure Evaluation

Frequency of Fundamental Signal (MHz)	Max Conducted Output Power reading (dBm)	Antenna Gain (dBi)	Power (eirp)
608.39-613.58	9.565	2.0 (both dipole & patch have same max gain value)	11.565 dBm (14.34 mW)

MPE calculation:

The limit for this unit (uncontrolled exposure) is 0.4 mW/cm^2 RF Density Field Equation: S= (EIRP in mW)/($4\pi R^2$) and solving at 20cm for R. S= (14. 34)/($4^*\pi^2 2^2$) = 9.046/5026.55 = 0.0028mW/cm²

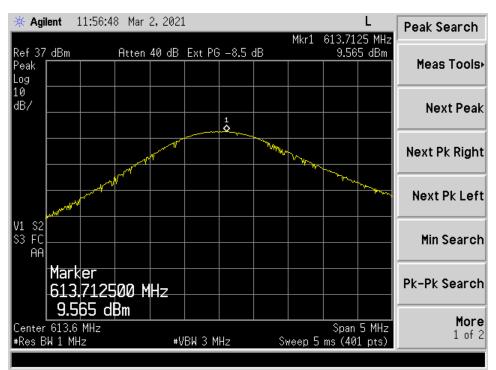


Figure 10. Maximum Conducted Output Power (613.7125 MHz)

2.10 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4. A coverage factor of k=2 was used to give a level of confidence of approximately 95%.

2.10.1 Conducted Emissions Measurement Uncertainty

Measurement uncertainty (within a 95% confidence level) for this test is \pm 2.78dB.

2.10.2 Radiated Emissions Measurement Uncertainty

For a measurement distance of 3 m the measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna (30 MHz to 200 MHz) is \pm 5.39dB. This value includes all elements of measurement.

The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna (200 MHz to 1000 MHz) is \pm 5.18 dB

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna is ±5.21dB.

3 Conclusions

The EUT meets the requirements when tested in the configurations tested herein.