

Test Details					
Manufacturer	Astronics				
Model No.	Focus Pro				
Serial No.	1378317				
Mode	802.11n – MCS1				
Carrier Frequency	2462MHz				
Parameters	Peak Measurements in the Restricted Bands				
Notes	Antenna U7; Power Setting = 87				
notes	Duty Cycle Factor = 0.46				

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
4924.00	Н	49.1	Ambient	3.7	36.2	-39.6	49.4	295.7	5000.0	-24.6
4924.00	V	49.9	Ambient	3.7	36.2	-39.6	50.2	324.2	5000.0	-23.8
7386.00	Н	43.9		5.3	39.3	-39.2	49.3	290.2	10158.9	-30.9
7386.00	V	41.6		5.3	39.3	-39.2	47.0	222.7	10158.9	-33.2
12310.00	Н	36.6	Ambient	6.8	42.2	-38.6	46.9	222.6	10158.9	-33.2
12310.00	V	36.1	Ambient	6.8	42.2	-38.6	46.4	210.1	10158.9	-33.7
19696.00	Н	36.3	Ambient	7.3	44.1	-37.4	50.4	329.8	10158.9	-29.8
19696.00	V	36.4	Ambient	7.3	44.1	-37.4	50.5	333.6	10158.9	-29.7
22158.00	Н	22.2		2.2	40.6	-29.0	36.0	63.4	10158.9	-44.1
22158.00	V	21.9	Ambient	2.2	40.6	-29.0	35.7	61.3	10158.9	-44.4

Test Details					
Manufacturer	Astronics				
Model No.	Focus Pro				
Serial No.	1378317				
Mode	802.11n – MCS1				
Carrier Frequency	2462MHz				
Parameters	Average Measurements in the Restricted Bands				
Notes	Antenna U7; Power Setting = 87				
Notes	Duty Cycle Factor = 0.46				

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
4924.00	Н	34.9	Ambient	3.7	36.2	-39.6	0.5	35.7	60.8	500.0	-18.3
4924.00	V	34.8	Ambient	3.7	36.2	-39.6	0.5	35.6	60.1	500.0	-18.4
7386.00	Н	36.50		4.7	38.0	-39.6	0.5	40.1	101.5	500.0	-13.8
7386.00	V	38.9		4.7	38.0	-39.6	0.5	42.5	133.9	500.0	-11.4
12310.00	Н	32.6	Ambient	6.1	41.6	-38.8	0.5	41.9	124.8	500.0	-12.1
12310.00	V	32.6	Ambient	6.1	41.6	-38.8	0.5	41.9	124.8	500.0	-12.1
19696.00	Н	16.9	Ambient	2.2	40.4	-28.0	0.5	31.9	39.6	500.0	-22.0
19696.00	V	16.9	Ambient	2.2	40.4	-28.0	0.5	31.9	39.6	500.0	-22.0
22158.00	Н	22.2	Ambient	2.2	40.6	-28.7	0.5	36.7	68.6	500.0	-17.3
22158.00	V	22.2	Ambient	2.2	40.6	-28.7	0.5	36.7	68.6	500.0	-17.3

Test Details					
Manufacturer	Astronics				
Model No.	Focus Pro				
Serial No.	1378317				
Mode	802.11n – MCS1				
Carrier Frequency	2462MHz				
Parameters	Peak Measurements in the Non-Restricted Bands				
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.46				

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
2462.00	Н	57.3		2.6	33.0	0.0	92.9	44345.2		
2462.00	V	64.5		2.6	33.0	0.0	100.1	101589.0		
9848.00	Н	43.9		5.3	39.3	-39.2	49.3	290.2	10158.9	-30.9
9848.00	V	41.6		5.3	39.3	-39.2	47.0	222.7	10158.9	-33.2
14772.00	Н	36.6	Ambient	6.8	42.2	-38.6	46.9	222.6	10158.9	-33.2
14772.00	V	36.1	Ambient	6.8	42.2	-38.6	46.4	210.1	10158.9	-33.7
17234.00	Н	36.3	Ambient	7.3	44.1	-37.4	50.4	329.8	10158.9	-29.8
17234.00	V	36.4	Ambient	7.3	44.1	-37.4	50.5	333.6	10158.9	-29.7
24620.00	Н	22.2		2.2	40.6	-29.0	36.0	63.4	10158.9	-44.1
24620.00	V	21.9	Ambient	2.2	40.6	-29.0	35.7	61.3	10158.9	-44.4

29. Band-Edge Compliance

EUT Information					
Manufacturer	Astronics				
Product	Resideo Thermostat				
Model No.	Focus Pro				
Serial No.	1378317 and 1378290				
Mode	802.11b, 802.11g, 802.11n				

Test Setup Details						
Setup Format	Format Tabletop					
Measurement Method	Radiated					
Type of Test Site	Semi-Anechoic Chamber					
Test Site Used	Room 29					
Notes	N/A					

Measurement Uncertainty	Measurement Uncertainty						
Measurement Type	Expanded Measurement Uncertainty						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4						

Procedure

- 1) Low Band Edge:
 - a) The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.
 - b) The EUT was set to transmit continuously at the channel closest to the low band-edge.
 - c) To determine the band edge compliance, the following spectrum analyzer settings were used:
 - Center Frequency = 2400MHz (low band-edge frequency).
 - Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - Resolution Bandwidth (RBW) = \geq 1% of the span.
 - 'Max-Hold' function was engaged.
 - d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.
 - e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)
 - f) The analyzer's display was then screenshot and saved.
 - 2) High Band Edge
 - a) The EUT was setup inside the test chamber on a non-conductive stand and set to transmit continuously at the channel closest to the high band-edge.
 - b) A broadband measuring antenna was placed at a test distance of 3 meters from the EUT. The antenna was connected to the input of a spectrum analyzer.
 - c) The center frequency of the analyzer was set to the high band edge (2483.5MHz).
 - d) The Resolution Bandwidth was set to 1MHz.
 - e) To ensure that the maximum or worst case emission level was measured, the following steps were taken:
 - o The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - o The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
 - o The highest measured peak reading and the highest measured average reading were recorded.

	Test Details						
Manufacturer	Astronics						
EUT	Resideo Thermostat						
Model No.	Focus Pro						
Serial No.	1378290						
Mode	802.11b						
Frequency Tested	2402MHz, 1MBPS						
Notes	Low Band Edge						

Multi¥iew 🔠 Receiver		~ (Spectrum 2 🚽	Spectrum 3	Spectrum 4	1 🔆 🕅 Spec	trum 5 🛛 🕅		
	10 dB SWT	1.08 ms	RBW 100 kHz VBW 100 kHz	Mode Auto Swee	р		Fre	equency 2.40	000000 GHz
Input 1 Frequency Swe	1 AC PS	On	Notch Off						●1Pk View
I Trequency offic	30p							M1[1]	9.99 dBm
									4109890 GHz
30 dBm									
30 uBm									
20 dBm									
							M1		
10 dBm						, MMM	WM MMA		
						MMW		MAR .	
0 dBm						- hu	<u> </u>	ww	
o dom						[M] /	W	1 1/2LA.	
					<i>س</i> , ۲۰	rv		V ~~√.	
-10-dBm	H1 -10.010 dl	Bm			- N	P.		V 1	1
					N				M
-20 dBm					N				N .
-20 uBm									4
					l V				N N
-30 dBm									<u> </u>
				hi	. ľ				h
				- Alar					1 pm/w
-40 dBm				1. A Kymper	Ϋ́				V
month	harrow	month man	www.wahan	and the second s					
-50 dBm									
				V1 2.4	30 GHz				
CF 2.4 GHz			1001 p	ots	5	.0 MHz/	I	5	pan 50.0 MHz
۲ ا][)		🚧 01.06.2 20:3		-
							20:3	D:43 🛛 🔍	

20:30:43 01.06.2021

	Test Details					
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11b					
Frequency Tested	2402MHz, 2MBPS					
Notes	Low Band Edge					

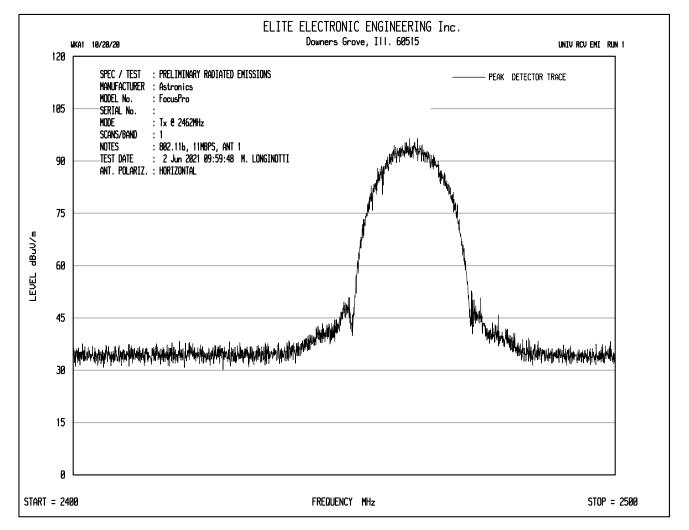
MultiView 88	Receiver		ectrum 🔆		ectrum 2 🛛 🧳	X	Spectrum 3	×x	Spectrum 4	• ¥ 🕅 •	Spectrum 5	X		▼
Ref Level Att Input	40.60 dBm 10 dB 1 AC	Offset SWT PS	40.60 dB 1.08 ms On	RBW VBW Notch	100 kHz	Mode	Auto Swee	эр				Frequ	uency 2.4	000000 GHz
1 Frequenc		15	UI	NOTCH										●1Pk Max
													M1[1]	
30 dBm														
20 dBm														
10 dBm										ment	M1	m	<u></u>	
0 dBm	_									~~	V		$\neg \uparrow$	
10-dBm	H1 -10).160 dBn								r V			\mathbb{V}	Ny .
			_						{					$\left \right\rangle$
-20 dBm														
-30 dBm							گریس	www						MM
-40 dBm	mmm	m	mm	Anna	mm	Mun	p-M-							
-50 dBm														
							V1 2.4	00 GHz						
CF 2.4 GHz	1			1	1001 p	ots		1	5	.0 MHz/	1			Span 50.0 MHz
									1easuring			01.06.202	1 Ref Leve	

20:56:14 01.06.2021

	Test Details
Manufacturer	Astronics
EUT	Resideo Thermostat
Model No.	Focus Pro
Serial No.	1378290
Mode	802.11b
Frequency Tested	2402MHz, 5.5MBPS
Notes	Low Band Edge

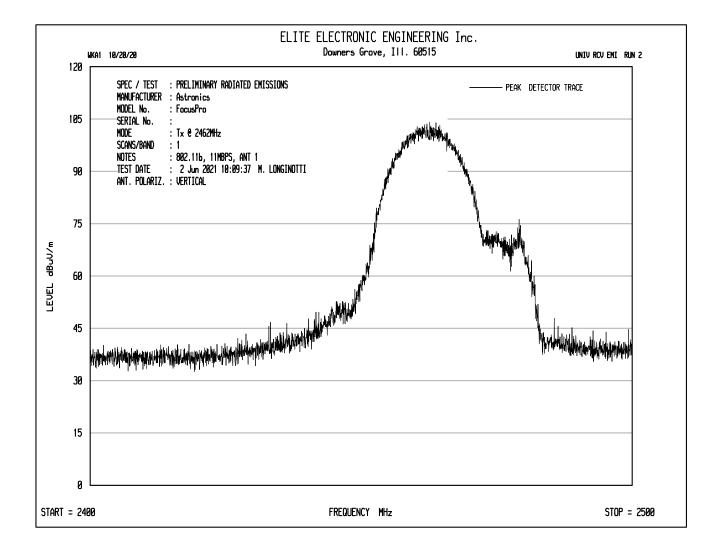
Multi¥iew 88 Receiver		Spectrum 🔆		trum 2 🛛 🔆	Spectra	um 3 🛛 🐳	Spectrum 4	، 🔆 🕅 ۹	pectrum 5	K)	
Ref Level 40.60 Att Input	0 dBm Offs 10 dB SW1 1 AC PS	et 40.60 dB 1.08 ms On			Mode Auto	o Sweep				Frequency 2.4	4000000 GHz
1 Frequency Swe	еер										⊙1Pk View
										M1[1]	10.92 dBm 2.4116880 GHz
30 dBm											
20 dBm									M1		
10 dBm								monor	montan	mung	
0 dBm								w.		- my	*
-10 dBm	— <mark>⊣1 -9.080 d</mark> i	3m									
-20 dBm							J. J				
-30 dBm					Martin	M. M.	V				
-40 dBm	mpan	Mannow	when	www.	1						
-50 dBm						V1 2.400 C	Hz				
CF 2.4 GHz		1		1001 pt	S		5	.0 MHz/	1	1	Span 50.0 MHz
							Measuring) 🚧 01.0 21	6.2021 Ref Lev	el RBW

21:16:16 01.06.2021


	Test Details
Manufacturer	Astronics
EUT	Resideo Thermostat
Model No.	Focus Pro
Serial No.	1378290
Mode	802.11b
Frequency Tested	2402MHz, 11MBPS
Notes	Low Band Edge

Multi¥iew 🔠 Receive	r 🗵	Spectrum 🐳	Spectrum 2	Spectrum 3	Spectrum -	4 🎽 🕅 Spec	trum 5 🛛 🕅		
Ref Level 40.6 Att Input	0 dBm Off 10 dB SW 1 AC PS		 RBW 100 ki VBW 100 ki Notch (100 ki) 		eep		Fre	equency 2.40	000000 GHz
1 Frequency Sw									●1Pk View
	•							M1[1]	10.00 dBm 2.4142360 GHz
30 dBm									
20 dBm							M1		
10 dBm						www	mound	M. M. Market	
0 dBm						protection and a second		- M Why	
10-dBm		dBm							M
-20 dBm									
-30 dBm				whether warm	MM				JAN
un usin	MM	mmmmm	www.A.h.	mathin					
-50 dBm					2.400 GHz				
CF 2.4 GHz			100	01 pts	5	.0 MHz/	•		Span 50.0 MHz
	J				Measuring	g (IIIIIII)	11.06.2 21:32	021 Ref Level	RBW

21:37:58 01.06.2021



	Test Details							
Manufacturer	Astronics							
Model No.	Focus Pro							
Serial No.	1378317							
Mode	802.11b							
Carrier Frequency	2462MHz							
Parameters	High Band-Edge							
Notes	None							

	Test Details						
Manufacturer	Astronics						
Model No.	Focus Pro						
Serial No.	1378317						
Mode	802.11b						
Carrier Frequency							
Parameters	High Band-Edge						
Notes	None						

	Test Details							
Manufacturer	Astronics							
Model No.	Focus Pro							
Serial No.	1378317							
Mode	802.11b- 11MBPS							
Carrier Frequency	2462MHz							
Parameters	Peak Measurements at the High Band Edge							
Notes	Antenna U7; Power Setting = 107 Duty Cycle Factor = 0.62							

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
2485.29	Н	28.0		2.7	33.1	0.0	63.8	1542.7	5000.0	-10.2
2484.50	V	36.6		2.7	33.1	0.0	72.4	4150.2	5000.0	-1.6

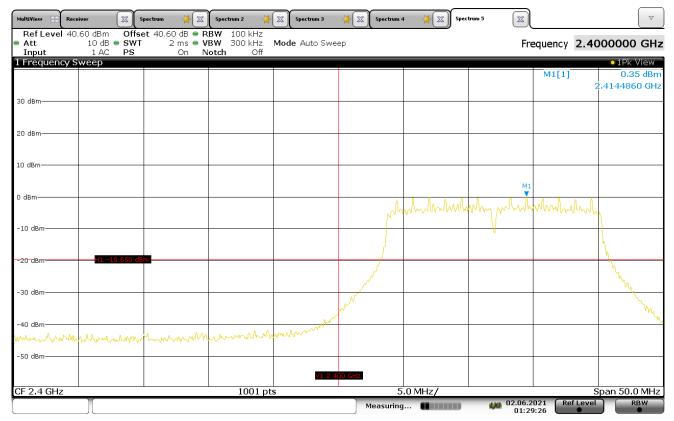
	Test Details
Manufacturer	Astronics
Model No.	Focus Pro
Serial No.	1378317
Mode	802.11b
Carrier Frequency	2462MHz
Parameters	Average Measurements at the High Band Edge
Notes	Antenna U7; Power Setting = 107
NULES	Duty Cycle Factor = 0.62

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2485.29	Н	8.4	Ambient	2.7	33.1	0.0	0.6	44.8	173.5	500.0	-9.2
2484.50	V	11.2	Ambient	2.7	33.1	0.0	0.6	47.6	239.4	500.0	-6.4

	Test Details
Manufacturer	Astronics
EUT	Resideo Thermostat
Model No.	Focus Pro
Serial No.	1378290
Mode	802.11g
Frequency Tested	2402MHz, 6MBPS
Notes	Low Band Edge

	Receiver	Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	i 🎽 🕅 Spe	trum 5 🛛 🕅		
Ref Level Att Input	40.60 dBm Of 10 dB • SV 1 AC PS			Mode Auto Swee	ep		Fre	equency 2.4	000000 GHz
1 Frequency									●1Pk View
								M1[1]	0.50 dBm
									2.4144860 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm							M1		
0 ubiii					, da	Andmohad	poliny and when h	whenhall	
					l Marin		r V i		N
-10 dBm							V		l
									ll III
-20 dBm-	H1 -19.500	dBm							- M.
					and and				Ny.
-30 dBm									- Mu
				Jul I	J ^{VA}				Mye
-40 dBm				- What was					7
mmmmm	man	Mary Mary	mohrman	www.					
-50 dBm									
				V1 2 40					
CF 2.4 GHz			1001 pt	s		.0 MHz/			Span 50.0 MHz
L					Measuring		🚧 02.06.2 01:20	5:30 Ker Level	RBW

01:26:31 02.06.2021


Test Details							
Manufacturer	Astronics						
EUT	Resideo Thermostat						
Model No.	Focus Pro						
Serial No.	1378290						
Mode	802.11g						
Frequency Tested	2402MHz, 9MBPS						
Notes	Low Band Edge						

	Receiver 🛛	Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	i 🔆 🕅 Spec	trum 5 🛛 🕅		
Ref Level 4 Att Input	40.60 dBm Of 10 dB • SV 1 AC PS			Mode Auto Swee	ер		Fre	equency 2.40	000000 GHz
1 Frequency									• 1Pk View
								M1[1]	0.37 dBm
									2.4144860 GHz
30 dBm									
SO GBII									
20 dBm									
10 dBm									
10 UBIII									
							M1		
0 dBm					A	<u> </u>	1 a a 1	8 0 4 4	
					h	Munimither	when what	whalmaling	w.
10.10					ľ		$ \rangle \langle \rangle$		
-10 dBm							V		
									5
-20 dBm	H1 -19,630	dBm			f				4
					Ň				4
					N				\sim
-30 dBm					r ⁿ				h.
				ال.	~				<u>س</u> ر ۲
-40 dBm				Mar 1					M
Marchan	mar appression	mmonor	moundary	Marmore					
-50 dBm									
				V1 2.40	DO GHZ				
CF 2.4 GHz			1001 pt		5	.0 MHz/		<u> </u>	Span 50.0 MHz
	1		1001 pt	3			110 02.06.2		
L					Measuring		01:2	3:12	

01:28:12 02.06.2021

Test Details							
Manufacturer	Astronics						
EUT	Resideo Thermostat						
Model No.	Focus Pro						
Serial No.	1378290						
Mode	802.11g						
Frequency Tested	2402MHz, 12MBPS						
Notes	Low Band Edge						

01:29:27 02.06.2021

	Test Details							
Manufacturer	Astronics							
EUT	Resideo Thermostat							
Model No.	Focus Pro							
Serial No.	1378290							
Mode	802.11g							
Frequency Tested	2402MHz, 18MBPS							
Notes	Low Band Edge							

MultiView 88	Receiver	Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	4 🎽 🕅 Spe	ctrum 5 🛛 🕅		
Ref Level Att Input	40.60 dBm Of 10 dB • SV 1 AC PS		/BW 300 kHz	Mode Auto Swe	ер		Fre	equency 2.4	000000 GHz
1 Frequence									●1Pk View
								M1[1]	0.69 dBm
									2.4144860 GHz
30 dBm									
30 UBM									
20 dBm									
10 dBm									
							M1		
0 dBm					۸	1. rolendard	mly march	alle allerade	
					r/h	Moundand	the Mail Love what i	A IN A RANK A MANY	M
-10 dBm									
							V		
					1				1
-20 dBm	H1 -19.310	dBm			1				+
					, M				<u>h</u>
					N				No.
-30 dBm					N				×4.
					M				The second se
-40 dBm				www					- m
· · · · · · · ·	under a des de	monum	and as about a	Munhum					
an menter of	m was pure way when	Call Calendar and Marca	and a Antonia a support]					
-50 dBm									
				V1 2.4					
CF 2.4 GHz			1001 pt	s	5	.0 MHz/			Span 50.0 MHz
					Measuring		🚧 02.06.2 01:3	021 Ref Level	RBW
<u> </u>							01:3	0:13	

01:30:14 02.06.2021

	Test Details							
Manufacturer	Astronics							
EUT	Resideo Thermostat							
Model No.	Focus Pro							
Serial No.	1378290							
Mode	802.11g							
Frequency Tested	2402MHz, 24MBPS							
Notes	Low Band Edge							

MultiView 88		Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	s 🔆 🕅 Spec	trum 5 🛛 🕅		
Ref Level Att Input	40.60 dBm Offs 10 dB • SWI 1 AC PS	et 40.60 dB ● R 1 2 ms ● V On N	' BW 300 kHz	Mode Auto Swe	ер		Fre	equency 2.40	000000 GHz
1 Frequence									●1Pk View
								M1[1]	0.59 dBm
									2.4144860 GHz
30 dBm									
30 abii									
20 dBm									
10 dBm									
							M1		
0 dBm							T		
					. An	Maham	Wha which	Whithmapp	v
					(v • •	M	[""" ["""	· · · · · · · · · · · · · · · · · · ·	
-10 dBm									
									1
	H1 -19,410 di	9m							
-20 dBm									la l
									× .
-30 dBm									Ny
					and the second s				The second
				مر	ſ~				M.
-40 dBm	- monte and a monte of the			a way way				1	
Mar Myrems	monomin	Maria Maria	Marthan	Chen Le					
-50 dBm								<u> </u>	
				V1 2,4	DO GHZ				
CF 2.4 GHz		· · · · · · · · · · · · · · · · · · ·	1001 pt	s	5	.0 MHz/	ı		Span 50.0 MHz
r					Measuring		1)(1 02.06.2	2021 Ref Level	RBW
L							01:3	1:20	

01:31:21 02.06.2021

	Test Details							
Manufacturer	Astronics							
EUT	Resideo Thermostat							
Model No.	Focus Pro							
Serial No.	1378290							
Mode	802.11g							
Frequency Tested	2402MHz, 36MBPS							
Notes	Low Band Edge							

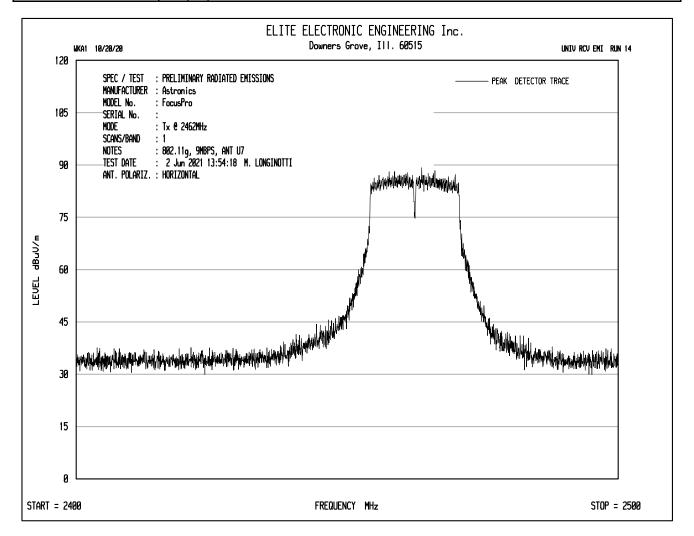
MultiView 88	Receiver	Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	4 🔆 🕅 Spec	trum 5		
Ref Level Att Input	40.60 dBm 0 10 dB • SV 1 AC PS			Mode Auto Swee	эр		Fre	equency 2.40	000000 GHz
1 Frequence									●1Pk View
								M1[1]	0.37 dBm
									2.4144860 GHz
30 dBm									
30 uBm									
20 dBm									
10 dBm									
0.40.0							M1		
0 dBm					٨	. h. shalash	why which	Astalar A. A.	
					Mh	WINNIN AND AN	and have and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŵ
-10 dBm							<u> </u>		
									$ \rangle$
-20 dBm	H1 -19.630) dBm							<u>}</u>
					N°				h h
00.40					NV.				J.
-30 dBm					ad the				No.
					NV .				"MA
-40 dBm				- Physical Contract of the second sec					/
and also and	and a second	www.manmhune	mount	mound					
rest and the	www.www.www.	A. Contraction of the second							
-50 dBm									
				V1 2.4(
CF 2.4 GHz	~		1001 pt	s	5	.0 MHz/			Span 50.0 MHz
	T T				Measuring		02.06.2 01:33	Ref Level	RBW
<u> </u>							01:33	3:43	

01:33:43 02.06.2021

	Test Details							
Manufacturer	Astronics							
EUT	Resideo Thermostat							
Model No.	Focus Pro							
Serial No.	1378290							
Mode	802.11g							
Frequency Tested	2402MHz, 48MBPS							
Notes	Low Band Edge							

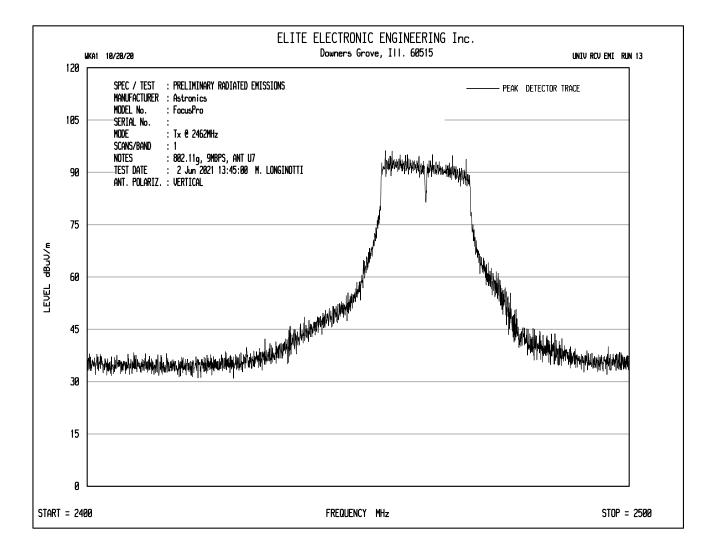
MultiView 88	Receiver	Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	4 🔆 🕅 Spec	trum 5 🛛 🕅		
Ref Level Att Input	40.60 dBm Off 10 dB • SW 1 AC PS		/BW 300 kHz	Mode Auto Swe	ер		Fre	equency 2.4	000000 GHz
1 Frequenc		0.11							⊙1Pk View
								M1[1]	0.46 dBm
									2.4144860 GHz
30 dBm									
30 0.0m									
20 dBm									
10 dBm									
0.40							M1		
0 dBm					۸.	Adverter all	My which	alles Pruber A	
					۱۳ _۸	MI MANYA AN	אישישערן איי גרון	and a second some method of	ħ l
-10 dBm									
							l I		
					l d				5
-20 dBm	H1 -19.540	dBm							4
					J. 1				N.
					N ^r				M ₁₀
-30 dBm					N				M.
					J				m.
-40 dBm				A C					~
A	1	www.www.		mmmm					
a constraint of	man warder a	and worked what the to	Agendar of the sector						
-50 dBm									
				V1 2.4	JU GHZ				
CF 2.4 GHz			1001 pt	s	5	.0 MHz/			Span 50.0 MHz
					Measuring		02.06.2 01:3	021 Ref Level	RBW
L							01:3	3:30	

01:35:56 02.06.2021


	Test Details						
Manufacturer	Astronics						
EUT	Resideo Thermostat						
Model No.	Focus Pro						
Serial No.	1378290						
Mode	802.11g						
Frequency Tested	2402MHz, 54MBPS						
Notes	Low Band Edge						

MultiView 88	Receiver		Λ ^	Spectrum 3	Spectrum 4	t 🔆 🕅 Spec	trum 5		
Ref Level Att Input	10 dB 👄 S			Mode Auto Swee	ep		Fn	equency 2.40	000000 GHz
1 Frequenc		0 00 1							⊙1Pk View
								M1[1]	-3.05 dBm 2.4144860 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm						B B A. A	M1		
-10 dBm					Mh	MUMMUMM	Man Maril	MyhMyh	4
-20 dBm							V		
-30 dBm	H1 -23.05	i dBm			المريد				A A A A A A A A A A A A A A A A A A A
40. dD				Ma.	w				N.N.N.
-40 dBm	Manyuntin	Maynowala	montingen	mmhh					and the second
-50 dBm				V1 2.40)0 GHz				
CF 2.4 GHz	I		1001 pt	s	5	.0 MHz/		<u> </u>	Span 50.0 MHz
)[1001 pt	-			🚧 02.06.2 01:3	2021 (Ref Level	

01:37:17 02.06.2021

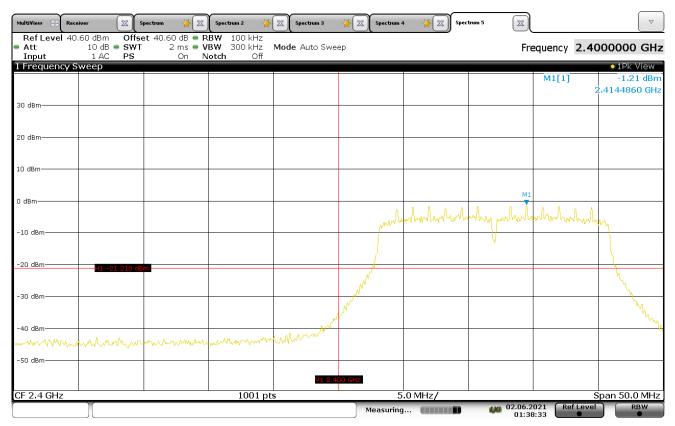


	Test Details					
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11g-9MBPS					
Carrier Frequency	2462MHz					
Parameters	Peak Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.308					

Test Details					
Manufacturer	Astronics				
Model No.	Focus Pro				
Serial No.	1378317				
Mode	802.11g- 9MBPS				
Carrier Frequency	2462MHz				
Parameters	Peak Measurements at the High Band Edge				
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.308				

	Test Details						
Manufacturer	Astronics						
Model No.	Focus Pro						
Serial No.	1378317						
Mode	802.11g-9MBPS						
Carrier Frequency	2462MHz						
Parameters	Peak Measurements at the High Band Edge						
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.308						

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
2485.04	Н	24.0		2.7	33.1	0.0	59.8	973.2	5000.0	-14.2
2483.72	V	29.7		2.7	33.1	0.0	65.5	1874.4	5000.0	-8.5

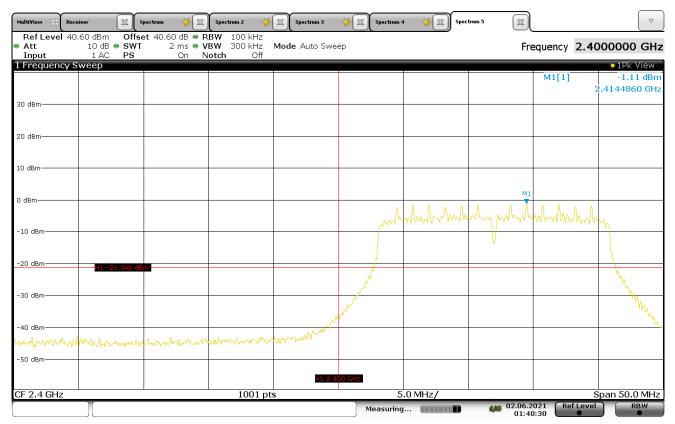


Test Details						
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11g – 9MBPS					
Carrier Frequency	2462MHz					
Parameters	Average Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87					
	Duty Cycle Factor = 0.308					

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2485.04	Н	8.4	Ambient	2.7	33.1	0.0	0.3	44.5	167.3	500.0	-9.5
2483.72	V	9.9	Ambient	2.7	33.1	0.0	0.3	46.0	198.7	500.0	-8.0

Test Details						
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11n					
Frequency Tested	2402MHz, MCS0					
Notes	Low Band Edge					

01:38:33 02.06.2021


	Test Details						
Manufacturer	Astronics						
EUT	Resideo Thermostat						
Model No.	Focus Pro						
Serial No.	1378290						
Mode	802.11n						
Frequency Tested	2402MHz, MCS1						
Notes	Low Band Edge						

MultiView 88	Receiver	Spectrum 🔆 🔀	Spectrum 2 🛛 🐥	Spectrum 3	Spectrum -	4 🔆 🕅 Spe	trum 5 🛛 🕅		
Ref Level Att Input	40.60 dBm Of 10 dB • SV 1 AC PS			Mode Auto Swe	ер		Fr	equency 2.4	000000 GHz
1 Frequence									○1Pk View
								M1[1]	-1.34 dBm 2.4144860 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm					۸.	A. A. March	mlug whom		
-10 dBm						M Mar 1 Mar 11			
-20 dBm	H1 -21.340	dBm							
-30 dBm									1. NA.
				ļ.	and the second				"WWw
-40 dBm	moment	wanter war	noundar	mmmmm					40
-50 dBm				√1 2.4	DD GHz				
CF 2.4 GHz	<u>, I</u>		1001 pt	<u>ا</u> د	5	.0 MHz/	1	<u> </u>	Span 50.0 MHz
			1001 pt	-)	(🚧 02.06.2 01:3	2021 Ref Leve	

01:39:34 02.06.2021

Test Details						
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11n					
Frequency Tested	2402MHz, MCS2					
Notes	Low Band Edge					

01:40:30 02.06.2021

Test Details					
Manufacturer	Astronics				
EUT	Resideo Thermostat				
Model No.	Focus Pro				
Serial No.	1378290				
Mode	802.11n				
Frequency Tested	2402MHz, MCS3				
Notes	Low Band Edge				

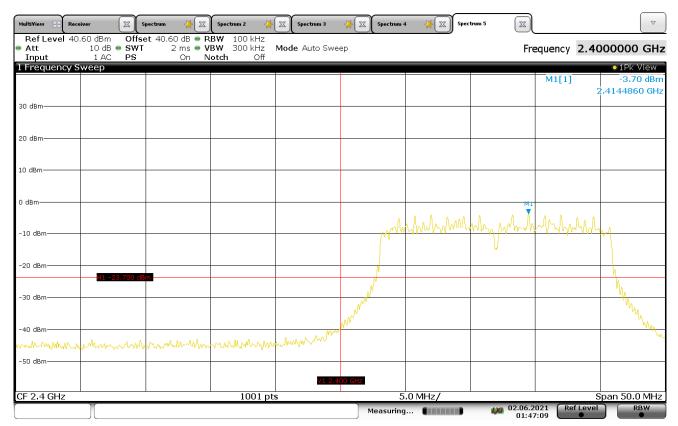
							M1[1]	• 1Pk View -1.23 dB
								2.4144850 GI
0 dBm								
0 dBm								
I dBm								
						L. L	1	
dBm					1. Nonorala	holy mh	haster to a	.l.a
LO dBm				AM AM	NVV AND		144200 AAOPAA	WWW
						V		
20 dBm	-21.000 dBm							+
				لممي ا				
30 dBm				1 Martin				1 X
10 dBm				N. C.				
Mannan	man	wand	moundance					

01:41:32 02.06.2021

Test Details					
Manufacturer	Astronics				
EUT	Resideo Thermostat				
Model No.	Focus Pro				
Serial No.	1378290				
Mode	802.11n				
Frequency Tested	2402MHz, MCS4				
Notes	Low Band Edge				

\sim	Receiver		Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	4 🔆 🕅 Spe	ctrum 5		
Ref Level Att Input	40.60 dBm O 10 dB • S 1 AC P			Mode Auto Swee	ер		Fn	equency 2.4	000000 GHz
1 Frequenc									⊙1Pk View
								M1[1]	-1.29 dBm 2.4144860 GHz
30 dBm———									
20 dBm									
10 dBm									
0 dBm					····	halland	Mm mm	Mohala	L.
-10 dBm									
-20 dBm	H1 -21,29	a dBm							
-30 dBm	11 21.23				- March				
				E	www				marken.
-40 abm-	Manan	Monandana	how when how	Markan					
-50 dBm				V1 2.40)0 GHz				
CF 2.4 GHz	1		1001 pt	l S		.0 MHz/	1	!	Span 50.0 MHz
)[]					()	🚧 02.06.2 01:4	2021 Ref Leve	

01:42:43 02.06.2021

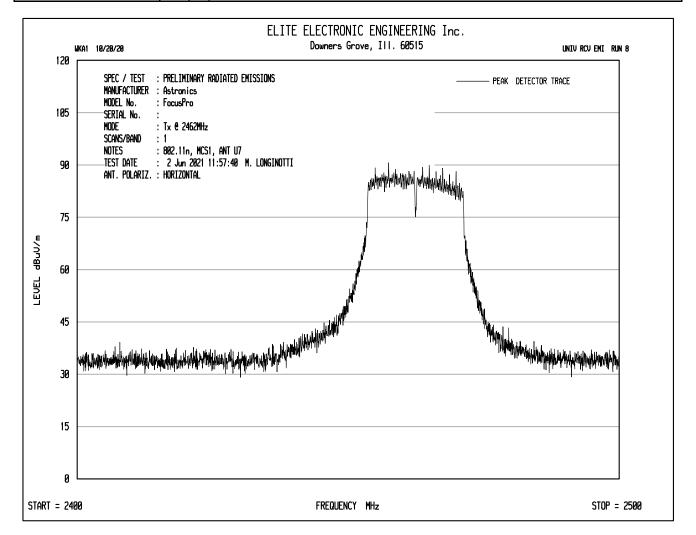

Test Details					
Manufacturer	Astronics				
EUT	Resideo Thermostat				
Model No.	Focus Pro				
Serial No.	1378290				
Mode	802.11n				
Frequency Tested	2402MHz, MCS5				
Notes	Low Band Edge				

	Receiver		Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	i 🎽 🕅 Spe	ctrum 5		
Ref Level Att Input	40.60 dBm 0 10 dB • S 1 AC P			Mode Auto Swee	ep		Fn	equency 2.40	000000 GHz
1 Frequency									⊙1Pk View
								M1[1]	-1.19 dBm 2.4144860 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm					m	hulum	nhy white	MMwhit	M.
-10 dBm							V		
-20 dBm	H1 -21,42	d dB m							1
-30 dBm									No house
				and	MM				Manal
	manam	mummum	humbard	m mm					46
-50 dBm———				V1 2.40	00 GHz				
CF 2.4 GHz	1	1	1001 pt	s	5	.0 MHz/	1	·	Span 50.0 MHz
)[🙌 02.06.2 01:4	021 (Ref Level	-

01:43:35 02.06.2021

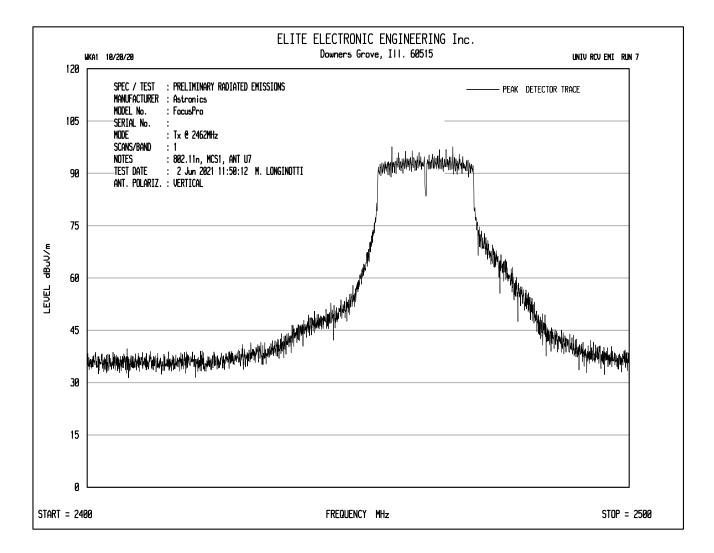
	Test Details					
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11n					
Frequency Tested	2402MHz, MCS6					
Notes	Low Band Edge					

01:47:10 02.06.2021


	Test Details					
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11n					
Frequency Tested	2402MHz, MCS7					
Notes	Low Band Edge					

		Spectrum 🔆 🔀	Spectrum 2 🛛 🔆	Spectrum 3	Spectrum 4	s 🔆 🕅 Spec	trum 5		
Ref Level 4 Att Input	0.60 dBm Offe 10 dB • SW 1 AC PS			Mode Auto Swee	p		Fn	equency 2.40	000000 GHz
1 Frequency			otten on						●1Pk Max
								M1[1]	-3.49 dBm 2.4144860 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm							M1		
-10 dBm					prob	hunder	my palad	Mr. Walnah	14g
-20 dBm							Ų		
-30 dBm	H1 -23.490 d				, All				h h
-40 dBm				Ale	MAN				March Mar
hannan	mmmmm	when have made	mount	Munhante					
-50 dBm———				√1 2.40	00 GHz				
CF 2.4 GHz	<u> </u>		1001 pt	<u> </u>	5	.0 MHz/	1	<u> </u>	Span 50.0 MHz
)[]		1001 pc	-)	(02.06.2 01:4	021 Ref Level	

01:46:21 02.06.2021



	Test Details					
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11n- MCS1					
Carrier Frequency	2462MHz					
Parameters	Peak Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.46					

	Test Details					
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11n– MCS1					
Carrier Frequency	2462MHz					
Parameters	Peak Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.46					

	Test Details					
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11n- MCS1					
Carrier Frequency	2462MHz					
Parameters	Peak Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87					
10003	Duty Cycle Factor = 0.46					

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBuV/m at 3m	Peak Total uV/m at 3 m	Peak Limit uV/m at 3 m	Margin (dB)
2484.30	Н	23.3		2.7	33.1	0.0	59.1	897.5	5000.0	-14.9
2483.90	V	31.0		2.7	33.1	0.0	66.8	2177.2	5000.0	-7.2

	Test Details					
Manufacturer	Astronics					
Model No.	Focus Pro					
Serial No.	1378317					
Mode	802.11n – MCS1					
Carrier Frequency	2462MHz					
Parameters	Average Measurements at the High Band Edge					
Notes	Antenna U7; Power Setting = 87 Duty Cycle Factor = 0.46					

Freq. MHz	Ant Pol	Meter Reading (dBuV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBuV/m at 3m	Average Total uV/m at 3 m	Average Limit uV/m at 3 m	Margin (dB)
2484.30	Н	8.5	Ambient	2.7	33.1	0.0	0.5	44.7	172.2	500.0	-9.3
2483.90	V	12.6	Ambient	2.7	33.1	0.0	0.5	48.8	276.0	500.0	-5.2

30. Power Spectral Density

EUT Information					
Manufacturer	Astronics				
Product	Resideo Thermostat				
Model No.	Focus Pro				
Serial No.	1378290				
Mode	802.11b, 802.11g, 802.11n				

Test Information					
Setup Format	Tabletop				
Measurement Method	Antenna Conducted				
Notes	None				

Requirements

The power spectral density from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Procedures

- 1) The antenna port of the EUT was connected to the spectrum analyzer through a 20dB pad.
- 2) The EUT was then placed in the normal operation mode.
- 3) To determine the power spectral density, the following spectrum analyzer settings were used:
 - a) Center Frequency = Transmit Frequency
 - b) Span = 1.5× the DTS (6dB) bandwidth
 - c) Resolution Bandwidth (RBW) = $3kHz \le RBW \le 100kHz$
 - d) Sweep time = Auto
 - e) Detector = Peak
 - f) Trace Function = Max-Hold
- 4) A display line was then placed on the corresponding +8dBm level.
- 5) The analyzers display was then screenshot and saved.

	Test Details					
Manufacturer	Astronics					
EUT	Resideo Thermostat					
Model No.	Focus Pro					
Serial No.	1378290					
Mode	802.11b					
Notes	Measured in a 3kHz bandwidth					

Protocol	Freq. (MHz)	Data Rate (Mbps)	Power (dBm)
	2412		-3.4
	2437	1	-3.56
	2462		-3.35
	2412		-3.59
	2437	2	-3.74
802.11b	2462		-3.78
002.110	2412		-4.63
	2437	5.5	-3.32
	2462		-2.87
	2412		-4.44
	2437	11	-3.94
	2462		-4.01

Test Details							
Manufacturer	Astronics						
Model	Focus Pro						
S/N	1378290						
Mode	802.11b – 1Mbps						
Carrier Frequency	2412MHz						
Parameters	PSD = -3.4dBm						
Notes	N/A						

MultiView 8	Receiver	x s	Spectrum	Spectrum	12 🕱				
Ref Level 40.6 Att Input	50 dBm Offs 10 dB SWT 1 AC PS			lode Sweep			Fred	quency 2.41	20000 GHz
1 Frequency Sv	veep								⊙1Pk Max
								M1[1]	-3.40 dBm
								2	.4127190 GHz
30 dBm									
20 dBm									
10 dBm	H1 8,000 dBn								
0 dBm									
U UBM					M1 V				
				who when he	Marmingh				
-10 dBm			- while the with the second second	whenther	Museum	Mar Martin			
		diar	And I	1		$ \uparrow \rangle_{\ell}$	more have		
-20 dBm		a de contra de	V			Y	and when the		
-30 dBm	M	<u>ar</u>					* ***		
	Mark							No.	
-40 dBm	Vm.							Υ.	
-50 dBm	\mathbb{V}								where the second se
CF 2.412 GHz			1001 p	ots	9	1 3.0 MHz/	II		pan 30.0 MHz
			1001 p	/03			01.06.20		
					Measuring	g ()))	20:19:4	49	

20:19:50 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11b – 2Mbps							
Carrier Frequency	2412MHz							
Parameters	PSD = -3.59dBm							
Notes	N/A							

MultiView 88	eceiver	Spec	trum	X	Spectrum 2	X	Spectrum 3	Spectrum -	4 🔆 🔀 Spec	trum 5 🛛 🔆 🔀	l		
Ref Level 4 Att Input		SWT	40.60 dB 223 ms On		🛛 10 kHz	Mode	: Sweep			F	requency	2.41	20000 GHz
1 Frequency													●1Pk View
											M	1[1]	-3.59 dBm
													.4126390 GHz
30 dBm													
SU UBIII													
20 dBm													
20 0011													
10 dBm						_							
	H1 8.000) dBm —											
0 dBm								M1			-		
							e e babe	And in					
					menteradure	"Worky"	And M. Con and M.	A NAME AND A DAY OF A	Mmphallyyyhandy				
-10 dBm			North	Way of				1		W.			
	MANN	MM	h M				\	/		$ \land \downarrow$	when when	w.	
-20 dBm	Marina		t.							1		WW P	4
	100		м							P			month
-30 dBm													. card
all a													N.
∽≁ -40 dBm———													<u>^∖</u>
40 abiii													
-50 dBm													
CF 2.412 GH	z				1001 p	ots		2	.0 MHz/	1		S	pan 20.0 MHz
						_) (IIIIII)	1106.	.2021 Ref	Level	RBW
								Measuring		20:	50:33	•	

20:50:34 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11b – 5.5Mbps							
Carrier Frequency	2412MHz							
Parameters	PSD = -4.63dBm							
Notes	N/A							

MultiView 88	Receiver	XX s	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum	4 🔆 🖾	Spectrum 5 🛛 🦂	*			
Ref Level Att Input	40.60 dBm 10 dB 1 AC	SWT	t 40.60 dB 223 ms On	VB		۸ode	e Sweep					Fre	quency	2.41	20000 GHz
1 Frequence		10	011	140											●1Pk View
													M	1[1]	-4.63 dBm
															.4125790 GHz
30 dBm															
00 00.															
20 dBm						_									
10 dBm	H1 8.0	000 dBm													
0 dBm						_									
								M1							
					mar how	month	monthemal	MANN	Windows	Marahan 10					
-10 dBm				which	All and a construction of the construction of	-					* Vall Www. myh.				
		. M	when W									moun	My		
-20 dBm	Mod	W ^{RXXII}			Ages and the And								1. when	line.	
20 0011	Wanter													" My	6.1
11	WW T														Mr.
-30 dBm						_									144
N.															"My
J															M.
, [⊈] 40 dBm——															1
-50 dBm						_									
CF 2.412 G	Hz				1001 p	ts			2	.0 MHz/				S	pan 20.0 MHz
ſ								1	leasuring	g	D ()()	01.06.2	D21 Ref	Level	RBW
L												21:11	:45		

21:11:45 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11b – 11Mbps							
Carrier Frequency	2412MHz							
Parameters	PSD = -4.44dBm							
Notes	N/A							

MultiView 88	Receiver	S SF	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum	4 🛛 🕅 SI	pectrum 5 🛛 🔆 🔀)		
Ref Level Att Input	40.60 dBm 10 dB 1 AC	SWT	t 40.60 dB 223 ms On	VB		Mode	Sweep				F	requency	2.41	20000 GHz
1 Frequenc		10	011	140										●1Pk View
	<u> </u>											M	1[1]	-4.44 dBm
														.4128590 GHz
30 dBm														
30 UBIII														
20 dBm						_								
10 dBm		00 dBm -				_								
	H1 0.0	00 0811												
0 dBm								M						
						. are	Austria Australia	. washing	well have	. h				
-10 dBm				بارين .	upper shall when the		International Lines	and a state	W Y Y	and the second second for	m			
		1	aluthar	la de la				1			the second se			
		Juppople	1 W .									mary have		
-20 dBm	- which Mr	Y											ma	
	Aller												my	White
M	AM													WW A
-30 dBm														Thy .
MARINA														SAM
10 4011														
-50 dBm						+								
CF 2.412 G	Hz				1001 p	ts			2	2.0 MHz/			S	pan 20.0 MHz
	T T							1	leasurind	g 	🔰 01.06	.2021 Ref 32:24	Level	RBW

21:32:25 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11b – 1Mbps							
Carrier Frequency	2437MHz							
Parameters	PSD = -3.56dBm							
Notes	N/A							

Multi¥iew 🔠 Ree	eiver 🛛	Spectrum	Spectrum 2	Spectrum 3	🔆 🕅 Spectrum	4 🔆 🕅 Spec	:trum 5 🛛 🎽 🕱		
Ref Level 40 Att Input	0.60 dBm Of 10 dB SW 1 AC PS			Mode Sweep			Fr	equency 2.4	370000 GHz
1 Frequency S	Sweep								⊙1Pk View
								M1[1]	-3.56 dBm
									2.4375190 GHz
30 dBm									
20 dBm									
10 dBm									
TO dBm	H1 8.000 d	Bm							
0 dBm									
U UBIII					M1				
				William and Mar	A Markan in the rich	March 11			
-10 dBm			and water and the	Mention dans	N. abhilte de	manutations	When the second		
10 0011		Value Mand	- Marine -		1		ACACOMMANN'		
	. A Walt	[™] Ni I ^r		4	1		1 V J	Mar at	
-20 dBm	Hrad Why with	<u> </u>					L d	And Marken Marken	
	h-ha	1 V			1		I V	[MA	were where a
JULIAN CONTRACT									Wu .
-30 dBm									141
J ^{AC}									
W.M.									Ny.
-40 dBm									۶۷V
-50 dBm									
CF 2.437 GHz	1		1001	nts		2.0 MHz/	Í.	1	Span 20.0 MHz
			1001	p.co			110 01.06.2		· · · · · · · · · · · · · · · · · · ·
					Measuring	g 	20:3	8:56	

20:38:57 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11b – 2Mbps							
Carrier Frequency	2437MHz							
Parameters	PSD = -3.74dBm							
Notes	N/A							

MultiView 88	Receiver	X	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum	4 🔆 🕅 Spe	ectrum 5 🛛 🔆 🔀			
Ref Level Att Input	40.60 dBm 10 dB 1 AC		t 40.60 dB 223 ms On	● VBV	V 10 kHz	Mode	Sweep			-	F	requency	2.43	370000 GHz
1 Frequence														⊙1Pk View
												N	11[1]	-3.74 dBm
														.4360410 GHz
aa daw														
30 dBm														
20 dBm														
20 0011														
10 dBm														
	H18	.000 dBm												
0 dBm							M							
							I I TAK	1000	a state of					
			6.5	. 6	and and so that My My	Strate	your my	- All the	MANANA	mulhudown	Ali ar			
-10 dBm		h		Abor	malyalarval		1	1			Mr. M.			
	M	howww	Ν/ –					1				MMMM	M	
-20 dBm	. all Marthe										+		- Profestory	A
	on the second se										V			M. W. Way
-30 dBm														~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
N														M.
140 dBm														<u> </u>
10 dBill														·
-50 dBm												_		
CF 2.437 G	Hz		1		1001	pts		1	2	.0 MHz/		1	S	pan 20.0 MHz
r										(100 01.00		f Level	
L									casaning		20	:59:37	•	

20:59:37 01.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11b – 5.5Mbps								
Carrier Frequency	2437MHz								
Parameters	PSD = -3.32dBm								
Notes	N/A								

MultiView 88	Receiver	X	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🖾	Spectrum 5	×X			
Ref Level Att Input	40.60 dBm 10 dB 1 AC	SWT	t 40.60 dB 223 ms On	🗢 VB'	W 10 kHz	Mode	Sweep					Fn	equency	2.43	370000 GHz
1 Frequence		10	011	140											●1Pk View
· · · ·	<u> </u>												M	1[1]	-3.32 dBm
															.4380990 GHz
aa daw															
30 dBm															
20 dBm															
10 dBm		.000 dBm													
	110	.000 ubm													
0 dBm									M1 ▼						
						and -	an an ar bhan sha ar A	a Marchale	Aller	de la color					
-10 dBm				لاستيسيع	AMAMANA	vvr	Achd	and a second	Maran	and worth Annual	WAA ANA				
			achyman	101 F							· • • • •	Mary and			
		WWWAR											moun.		
-20 dBm	ANWARA					_							- My	welly Alma	
. Lw	NV				Amerikanika										Mar .
-30 dBm															~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
. Jan															WW.
-40 dBm															
TO GBII															
-50 dBm															
CF 2.437 G	Hz				1001	ots			2	.0 MHz/				S	pan 20.0 MHz
								N	leasuring	j (******		01.06.2	2021 Re	f Level	RBW
<u> </u>												21:2	0:32		

21:20:33 01.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11b – 11Mbps								
Carrier Frequency	2437MHz								
Parameters	PSD = -3.94dBm								
Notes	N/A								

MultiView 🔠 Rece	iver 🛛 🕅	Spectrum 2	Spectrum 2	Spectrum 3	Spectrum -	4 🦂 🕅 Spec	:trum 5 🛛 🔆 🔀		▽)
Ref Level 40. Att	.60 dBm Offs 10 dB SW	set 40.60 dB ● T 223 ms ● '		Mode Sweep			Fn	equency 2.4	370000 GHz
Input	1 AC PS		Notch Off						
1 Frequency S	weep								●1Pk View
								M1[1]	-3.94 dBm
									2.4367800 GHz
30 dBm									
20 dBm									
10 dBm									
10 0611	H1 8.000 dB	m							
0 dBm									
				Ţ					
				Mannanan	Merrinahan	Albertonderingen	L.		
-10 dBm		up the Walk of the general second sec	Mar Maria S. 10	and the second sec		- ALCO AN ADDREAM	Mon White way a way		
	Mark .	And Walkery					- TANK	WW.	
-20 dBm	- Annthe							myhula	
20 0011	Martin								Wand Longer
L. WINNE									Munk
-30 dBm									- mt
Nº.									N. W.
Mar									Nu Nu
№40 dBm									ų, su
-50 dBm									
So dbin									
CF 2.437 GHz	I		1001 p	ots	2	L.0 MHz/	<u> </u>	<u> </u>	Span 20.0 MHz
	Υ		1001)		1106.2		· · · · · · · · · · · · · · · · · · ·
L					measuring	j	21:4	0:19	

21:40:19 01.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11b – 1Mbps								
Carrier Frequency	2462MHz								
Parameters	PSD = -3.35dBm								
Notes	N/A								

MultiView 88	Receiver	X	Spectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🖾 SI	ectrum 5 🛛 🔆 🛛	Z		
Ref Level Att Input	10	Bm Offs dB SW1 AC PS	et 40.60 df 223 m Oi	s 🖷 VB	W 10 kHz	Mode	sweep			-		Frequency	2.46	520000 GHz
1 Frequence														●1Pk View
												N	11[1]	-3.35 dBm
														2.4613210 GHz
30 dBm														
30 dBm-														
20 dBm														
20 0011														
10 dBm														
		1 8.000 dBi	n											
0 dBm							M1							
							1	de.						
					- he washing	month	Mr. Marine M.	الاستقار	Manut	annound	N. L. N. I.			
-10 dBm			Nº Nº	1 th degraph of the	anter anter and a second		<u>1</u>			0.00 () [[]	ma wand			
		MARINA	m /					1			N N	MANNALTH	Mary	
-20 dBm	M										1			M.
20 JOHN WWW	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										u			Month March
-30 dBm														here .
Jaw														N.
-40 dBm														~
10 0.011														
-50 dBm														
CF 2.462 G	iHz				1001	pts			2	.0 MHz/				pan 20.0 MHz
											1)(01.0		f Level	
L	Л							M	easuring		2	0:44:52	•	

20:44:53 01.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11b – 2Mbps								
Carrier Frequency	2462MHz								
Parameters	PSD = -3.78dBm								
Notes	N/A								

MultiView 88	Receiver	X	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum	4 🔆 🕅 S	pectrum 5 🛛 🔆			
Ref Level Att Input	40.60 dBm 10 dB 1 AC		t 40.60 dB 223 ms On	VBV	🛿 10 kHz	Mode	sweep					Frequency	2.46	520000 GHz
1 Frequence														●1Pk View
												Ň	41[1]	-3.78 dBm
														2.4611210 GHz
00 d0														
30 dBm														
20 dBm														
20 0011														
10 dBm														
	HIE	.000 dBm												
0 dBm							MI							
						an 1		المديد ا						
					hersterner	Why	Mr. Alan and	North March	walnut	Muluhan	6			
-10 dBm			/^*	April April	002-00-1			1			- Marth - Alerthan			
	where the part of the los	handlin	M/					1			No No	particular and the second	٨.	
-20 dBm	J. Mayour		\square								- Y	/	- June	As a
1444	AND CONTRACT		V V								\ \			Mulunday
-30 dBm														
X														Y.
40 dBm														1
to abiii														
-50 dBm														
CF 2.462 G	Hz				1001	ots			2	.0 MHz/	1		5	Span 20.0 MHz
										j (1X 01.	06.2021 R	ef Level	
L									casaring		2	1:05:33	•	

21:05:33 01.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11b – 5.5Mbps									
Carrier Frequency	2462MHz									
Parameters	PSD = -2.87dBm									
Notes	N/A									

MultiView 88	Receiver	X s	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🕅 S	pectrum 5 🔹	×x			
Att	40.60 dBm 10 dB	S₩T	t 40.60 dB 223 ms	🗢 VB	W 10 kHz	Mode	Sweep					Fre	equency	2.46	520000 GHz
Input 1 Frequend	1 AC V Sweep	PS	On	INC	otch Off										●1Pk View
													M	1[1]	-2.87 dBm
															2.4621000 GHz
30 dBm															
20 dBm															
10 dBm															
	H1 8.0	000 dBm													
0 dBm								V							
						duran	Marynuthistry	Mapleville	and haven	underes Alexan					
-10 dBm			A. Market	Anton	WWW wand in other	•				and the second of the state	Month and the second second	and a			
		1. Durchal	Munimum							Window Neighende		where where	Mulling		
-20 dBm	have	Week 1											. JARAM	Martin	
	have when													-own	M
-30 dBm															- MAN
-30 ubm															er al
Jul 1															JN N
√-40 dBm															\
-50 dBm															
50 dbm															
CF 2.462 G	Hz		1		1001	ots		1	2	.0 MHz/			1	5	pan 20.0 MHz
								M	1easuring	j (111111	1,0	01.06.2	021 Re	f Level	RBW

21:26:12 01.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11b – 11Mbps								
Carrier Frequency	2462MHz								
Parameters	PSD = -4.01dBm								
Notes	N/A								

MultiView 88 Receiver	r 🖾 s	pectrum 🛛	Spectrum 2	Spectrum 3	Spectrum 4	4 🔆 🕅 Spec	trum 5 🛛 🔆 🔀		
	0 dBm Offse 10 dB SWT 1 AC PS	t 40.60 dB ● RI 223 ms ● VI On N		lode Sweep			Fre	equency 2.46	520000 GHz
1 Frequency Swo									●1Pk View
								M1[1]	-4.01 dBm
									2.4614210 GHz
30 dBm									
30 ubm									
20 dBm									
20 00.0									
10 dBm									
	H1 8.000 dBm								
0 dBm				M1					
				have been					
10.10			a month half and	on all states and a second states and a	WHEN NO VENER	Martholomente			
-10 dBm		La Laborary happened					White White and a second second		
	. Walter	How we are						they a	
-20 dBm	A BOT STOL			MI				W. Why	
Lo doni	ηγ.vr.							- and the second	testa
Nº4									"Why
-30 dBm									"allow
and the second se									Nr.
June 1									"hos
^V -40 dBm									
-50 dBm									
			1001	-				ļ	
CF 2.462 GHz			1001 pt	S		.0 MHz/	04.06.0		Span 20.0 MHz
	Л				Measuring	J ()	1.06.2 21:5	2021 Ref Level 7:18	

21:57:19 01.06.2021

	Test Details							
Manufacturer	Astronics							
Model	Focus Pro							
S/N	1378290							
Mode	802.11g							
Notes	Measured in a 3kHz bandwidth							

Protocol	Freq. (MHz)	Data Rate (Mbps)	Power (dBm)
	2412 2437	6	-13.35 -12.88
	2462 2412		-13.44 -13.42
	2437	9	-12.15
	2462 2412		-13.19 -14.52
	2437 2462	12	-13.57 -12.96
	2412		-13.46
000.44	2437 2462	18	-14.11 -12.52
802.11g	2412	24	-13.32
	2437 2462	24	-12.45 -13.19
	<u>2412</u> 2437	36	-12.89 -13.06
	2462		-12.32
	2412 2437	48	-13.24 -12.04
	2462		-13.51
	2412 2437	54	-17.01 -17.29
	2462		-16.72

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11g – 6Mbps								
Carrier Frequency	2412MHz								
Parameters	PSD = -13.35dBm								
Notes	N/A								

MultiView 88	Receiver	SX SI	pectrum	¥X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	×x				▽
Ref Level Att Input	40.60 dBm 10 dB 1 AC	S₩T		ns 🗢 VE		Mode	Sweep					Fre	equency	2.41	20000	GHz
1 Frequency					in the second										⊙1Pk V	/iew
													M1[1]		-13.35	
														2	.4166950	
														Ĩ		0.0112
30 dBm																
20 dBm																
10 dBm																
TO UBIII	H1 8.0	00 dBm														
0 dBm																
0 ubiii																
-10 dBm											w					
10 0.011																
	u ha ta		N.M. M. D.	MNW	MAMAA	a the s	MAMA	Alus	MAA	LI AND.	not the A	nMhr	AN	на в		
-20 dBm	P4 / 1. M. / M. / M.	$\Delta \Delta \mu$	<u>M N N N</u>	<u>1 M M.</u>	<u>Y Y Y Y Y Y</u>	ANV.	VVVV	JW Y	<u> vvvr</u>	A MARINE	<u> 2 W W Y I</u>	<u>NYYY</u>	VAA	ዮንፖኒ	Δ	
	1 1 1 1 1		· •	10			1 - N			[`	P P	1 I. I. I.		· • •		
								/								
-30 dBm							*	· · · · · ·							M	
1															U.	
K (* M															Nº Mad	
-40 dBm															·	1 Mar
Mal A																work.
-50 dBm																-
CF 2.412 GH	z				1001	ots			2	.0 MHz/			·	S	pan 20.0	MHz
ſ									leasuring		n (02.06.2	2021 Re	f Level		3W
L	Л										-	00:23	2:56	•		

00:22:57 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11g – 9Mbps								
Carrier Frequency	2412MHz								
Parameters	PSD = -13.42dBm								
Notes	N/A								

MultiView 88	Receiver	X	Spectrum		Spectrum 2	X	Spectrum 3	***	Spectrum 4	4 🔆 🖾	Spectrum 5	*			
Ref Level Att Input	10 c		et 40.60 223	ms 🖷 V		Mode	e Sweep					Fre	equency	2.41	.20000 GHz
1 Frequence					oten on										●1Pk View
													M1[1]		-13.42 dBm
														2	.4138580 GHz
30 dBm			_												
20 dBm			-												
10 dBm															
10 ubiii	HI	8.000 dBr	n												
0 dBm															
-10 dBm									M1 V						
		k iM		A M H .	N an A B M A	. Is h	nulana	6 16 16 1	uhh A	. 6 1 6. 6	All de a	m de 18 M	Δ	10 M	
-20 dBm	AAN	YmyAll		ANYA	<u>MUWW</u>	M.M.M.	<u>wantuk ta</u>	LAW.	<u>₩'₩₩</u>	han and	MUY VV	my ynyr	1/1AM	$\gamma\gamma\gamma$	<u>M</u>
	11.				1 1			\{ \{		1 1 1 1	· · · ·	1.1	a e de e	Y ' '	1
							1								
-30 dBm	w/							1							Δ.
N/	ч														MAA
-40 dBm															I MA
WWW T															i v vv
1															T
-50 dBm															
CF 2.412 G	iHz				1001	pts				.0 MHz/		00.06.0			pan 20.0 MHz
l	Л							N	1easuring		•	02.06.2 00:34	1:13 Re	f Level	RBW

00:34:13 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11g – 12Mbps								
Carrier Frequency	2412MHz								
Parameters	PSD = -14.52dBm								
Notes	N/A								

MultiView 88	Receiver	X	Spectrum		Spectrum 2	X	Spectrum 3	***	Spectrum 4	4 🔆 🖾	Spectrum 5	× 🕅			
Ref Level Att	40.60 dB 10 d		et 40.60) dB 🖷 R ms 🖷 V		Mode	Sweep					Fn	equency	2.41	20000 GHz
Input	1 A	AC PS			lotch Off								oquene,		
1 Frequence	sy Sweep)											_		●1Pk View
													M1[1]		-14.52 dBm
														2	.4179140 GHz
30 dBm															
20 dBm															
10 dBm															
		L 8.000 dBr	n —												
0 dBm			-												
-10 dBm															
-10 uBm												м	1		
		11 JL A	A M. M.	A no dia	A A L L L I	<u>х</u> и.	a ha h na na	Sec. A. A	LA A M	Non MA	A Numb	. In he that	Ma	ا د ه ا	
-20 dBm	-N/14-14-	MM AM	MAA	<u>AMMA</u>	(\mathcal{W})	4 May May 1	WVVV	L WY	<u>WWW</u>	LAYACV V	4 Y VY	VVV₩	MAAM	WAA	Δ
	- p y v m	i pi vi ri	1.6	en y	p • • • •		11.1	11 1 1	1		1 F - 1	11.	1 ° Y - 1	וייי	
								N I							
-30 dBm			-												N
m	¥														Ma
-40,dBm															The second
MW															1 Min
N															
-50 dBm					+										
CF 2.412 G	Hz				100	l pts			2	.0 MHz/					pan 20.0 MHz
[N	1easuring	(02.06.2	2021 Re 7:04	f Level	RBW

00:37:05 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11g – 18Mbps								
Carrier Frequency	2412MHz								
Parameters	PSD = -16.72dBm								
Notes	N/A								

MultiView 88	Receiver	X	Spectrum	× 🕅	Spectrum 2	X	Spectrum 3	***	Spectrum 4	4 🔆 🕅 SI	ectrum 5 🛛 🐳	X		
Att	40.60 dBr 10 d	3 SWI		ms 👄 VE	3W 10 kHz	Mode	Sweep			-		Freque	ency 2.4	120000 GHz
Input 1 Frequence		C PS		On No	otch Off									o1Pk View
	., e											M	11[1]	-16.72 dBm
														2.4169750 GHz
30 dBm			_											
oo dhuu														
20 dBm														
10 dBm		8.000 dBr	1											
0 dBm														
-10 dBm														
											M1			
	1001	MAA	his in an i	N.M.M.A	MMMM	AM1	MARIA	Jack		M. M. M. M. M.	(Autura)	1 M.M.M.	1 Ano to	h n
-20 dBm	J MM V	<u>₩₩₩</u>	Milli Mi A	- In Int Arr	n dur h ha d	19 - V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 10	₩ 0 L# :	<u> </u>	M ALM M +	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	~~~~	W)
							' I	w/					·)	
-30 dBm								Ψ						1
														When.
-40 dBm														TWM
AWV V														1 MA
• -50 dBm														
co abiii														
CF 2.412 G	Hz				1001	pts			2	.0 MHz/				Span 20.0 MHz
[N	1easuring	(i iya 0	2.06.2021 00:39:52	Ref Leve	

00:39:52 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11g – 24Mbps								
Carrier Frequency	2412MHz								
Parameters	PSD = -13.32dBm								
Notes	N/A								

MultiView 88	Receiver	X s	pectrum 👌	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🕅 s	pectrum 5 🛛 🦂	*				▽
Ref Level Att Input	40.60 dBm 10 dB 1 AC	SWT	t 40.60 dB 223 ms On	 VB 	W 10 kHz I	Mode	Sweep					Fre	equency	2.41	.20000 (GHz
1 Frequenc		13	OII	NO											●1Pk Vie	ew
	<u> </u>												M1[1]		-13.32 (
														2	.4091230	GHz
30 dBm																
50 dbm																
20 dBm						_										
10 dBm	H1 8.	000 dBm														
0 dBm																
o ubm																
-10 dBm					Mi	_										
			1.									8.				
	W M M W	A A A	n M M Ann	I. M. M.	MARKE	n N. I	MAA AVA	Asher	A. An As	しょうれんかん	A Materia A. A.	A Iu ti	LA MAL	A A	6	
-20 dBm	MIVYW	$\forall \forall b$	1444.	7 1	<u> </u>	17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 / M	$\mathbb{A},\mathbb{A},\mathbb{A}$	<u> </u>	- ^/ W W W [/	147	1011	1111	Υ.	
	11 11		'''			1	· · · · · · · · · · · · · · · · · · ·	∐ ' `			1		r 1 '			
-30 dBm						_	k	<u>/</u>								
1															M.J.	
i hN															March	
-40 dBm																Ann
Malau															· · · · ·	1999
50 JD																
-50 dBm																
CF 2.412 G	-17				1001 p	te			· · ·	.0 MHz/				c	pan 20.0 N	ЛНZ
GF 2,412 G					1001 μ	1.3						02.06.2	021 Ref	Level		
l	Л							N N	leasuring		LXI	00:42	2:54	•		

00:42:55 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11g – 36Mbps										
Carrier Frequency	2412MHz										
Parameters	PSD = -12.89dBm										
Notes	N/A										

Multi¥iew 88	Receiver	Σ	Spec	trum 👌	×X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	ı 🎽 🖾 sı	oectrum 5 🛛 🔆	X			▽
Ref Leve Att Input	1		WT	40.60 dB 223 ms On	: 🗢 VB		Mode	Sweep					Frequency	2.41	.20000 (GHz
1 Frequen			0	011	1 140										⊙1Pk Vi	ew
	· ·												M1[1]		-12.89	
															.4156960	GHz
30 dBm																
30 dBm																
20 dBm																
10 dBm																
		AT 8.000	asm													
0 dBm																
-10 dBm											м	1				
10 0.000												F				
		~ 0	A	λλ	1 I.a	h Jul	. N. 1	CILL N. K. J.	1.1.2	A	. ha	K.A.	Mr. Jan Ja	1.1.4		
-20 dBm	AA	4.AA	WW	<u>MARIAN</u>	4 _e β₁M	MAALMA	W.		LA A.	بالالميرالان	M.M. MWA MAP	∖∦∖/∖/∖/∖/∖	AAMAAN	<u>AAA</u>	<u> </u>	
	- (W Y	N N V	1 1 1	hu Al M	"" ¥	Andmaa.	THE R	1. u.kľ	/ V "		e e pi ny	al a a de a l	. v h 4. v A	i v Y m	ή	
-30 dBm																
MA	N I								,						MAN	
-40 dBm+															*. M	MM
FO dDay																· · · ·
-50 dBm																
CF 2.412 (20-2					1001 p					.0 MHz/				pan 20.0 M	
	2112	-				1001	115						06.2021 Re	5 of Level		
l									I N	leasuring) 4/0 02.	00:45:17	•		

00:45:18 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11g – 48Mbps									
Carrier Frequency	2412MHz									
Parameters	PSD = -13.24dBm									
Notes	N/A									

MultiView 88	Receiver	X	Spectrum	*	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🕅 Spi	ectrum 5 🛛 🔆 🔀			
Ref Level Att Input	10			ns 🗢 VE		Mode	Sweep			-		Frequency	2.41	20000 GHz
1 Frequence														⊙1Pk View
												M1[1]		-13.24 dBm
													2	.4079440 GHz
30 dBm														
20 dBm														
10 dBm		1 8.000 dBr	n											
0 dBm														
0 0.011														
-10 dBm				M		-								
					a.									
	- 1 M	cal at a Mi	W. K. Maltu	A A M	A sult Miller	Uh.M	A. Land	L.A.A. A	i di Aimi		A MAKAN	IN B WAR	nd A	n
-20 dBm	AM	ከለውለኪ		4 M V.	V 1/10 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/	400.4	. Willing	1111	V TV		47 7 7 7 7 M	1 W W W W	WWW	1
	1 1 1 1 1			1.15	.0.0.4	1	· · · ·	$\Gamma $	1.1.1	r e - J a r	1 1	r ()		N .
-30 dBm														
	N I							ř						(A
M	"													'YUHLA
-40, dBm	·					-								WWW.
WW 1														1 N N
-50 dBm														I I
-30 ubm		-												
CF 2.412 G	Hz				1001 p			1	2	.0 MHz/			<	pan 20.0 MHz
) [1001 p						🙌 02.0	6.2021 (Re	f Level	
	. П							1	reasuring			:48:09	•	

00:48:10 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11g – 54Mbps										
Carrier Frequency	2412MHz										
Parameters	PSD = -17.01dBm										
Notes	N/A										

MultiView 88	Receiver	X	Spectrum 🐳	X	Spectrum 2	Spectrum 3	× 🕅	Spectrum	4 🤆 🕅 Sp	ectrum 5 🛛 🔆 🛛	K			▽
Ref Level Att	40.60 dBn 10 df		et 40.60 dB 223 ms			ode Sweep					Frequency	2 41	20000	GH7
Input	1 A0	PS	On		tch Off	oue oncep					requency	2.71	20000	UIIZ
1 Frequence	y Sweep												⊙1Pk V	iew
											M1[1]		-17.01	dBm
												2	.4107210) GHz
30 dBm														
20 dBm											_			
10 dBm		8.000 dBm												
			1											
0 dBm														
0 uBm														
-10 dBm														
						M1								
						T								
-20 dBm	11 11 1		L . d d t	to to	at a sector to	1 h H Harr	1 6	M x M	and I all		40 1 - 0	1. 1	k	
	- M A AM	MJM.	AWAJNJ M	MN"	PANANA	EWAY MENENYA	- ANAAN	17 40 1011	111111111111111111	N 1920 DA WINGLI	ATT WAANT	MAX U		
	- <u>7 4</u> 17 M	n Mirv ()	1.1.6.16.1	r p	, 1. J. J. L. H.	i kirikiri (TUNE	i j r	י אורך	Nullander	. N 14 M V	'Y V V	l M	
-30 dBm					1							+		
	w l						rr -						14	
-40 dBm	N												19 Male	
	·												- 19 Ma	dl
J. WY													1 1144	Mila
150 dBm														- id
CF 2.412 G	Hz		1		1001 pt	S		2	.0 MHz/	I		S	pan 20.0	MHz
							N	1easuring		1/1 02.0	6.2021 Re	f Level	RB	w

00:51:16 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11g – 6Mbps										
Carrier Frequency	2437MHz										
Parameters	PSD = -12.88dBm										
Notes	N/A										

MultiView 😷 Receiver 🛛 Spectrum 🦂 🖾 Spectrum 2 💢 Spectrum 3 🔆 🖾 Spectrum 4 🔆 🖾 Spectrum 5 🔆 🛣	
Ref Level 40.60 dBm Offset 40.60 dB RBW 3 kHz Att 10 dB SWT 223 ms VBW 10 kHz Mode Sweep Frequency	2.4370000 GHz
Input 1 AC PS On Notch Off 1 Frequency Sweep	●1Pk View
M1[1]	-12.88 dBm 2.4428540 GHz
30 dBm	
20 dBm	
10 dBm	
0 dBm	
-20 dBm ANAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA	VAM
-30 dBm	
when he was a second	Mymm
χ ^{40[°]äβň}	, mm
-50 dBm	
CF 2.437 GHz 1001 pts 2.0 MHz/	Span 20.0 MHz
	f Level RBW

00:20:48 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11g – 9Mbps										
Carrier Frequency	2437MHz										
Parameters	PSD = -12.15dBm										
Notes	N/A										

Multi¥iew 88	Receiver		Spectrum	×x	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	×x			
Att	40.60 dBm 10 dE	SWT		ns 👄 VB	W 10 kHz	Mode	Sweep					Fre	equency	2.43	70000 GHz
Input 1 Frequence		PS	(Dn No	otch Off								· ·	_	●1Pk View
Triequenc	у эмеер												M1[1]		-12.15 dBm
														2	4335830 GHz
30 dBm															
55 dbm															
20 dBm															
10 dBm						_									
	H18	3.000 dBm													
0 dBm															
-10 dBm					M1										
			h in a	. k s	a ha i m		she and a	1 A 1	1.	a here bet	Lann a	a hara			
-20 dBm	NAAA	MAM	MMA I	11 mm	\mathcal{M}	$\sqrt{\Lambda}$	<u>MMAAMA</u>	MAG	MAA	M^{γ}		MAMW	MAN	M	M
20 0011	/ V # W	4 - 4 -	1. I W	V I				1/ ' '	W a c	с <u>і</u> р		к. (*	Y Y X Y	V V V	
							1	V							
-30 dBm	Y					-									M
L.M.	1														ĭV\ ≬
-40 dBm						_									· · · · ·
(m)															r ×γ
FO dow															
-50 dBm															
CF 2.437 G	Hz				1001	ots			2	.0 MHz/				S	pan 20.0 MHz
								N	leasuring		. 4	02.06.2 00:3	021 Re	f Level	

00:35:26 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11g – 12Mbps										
Carrier Frequency	2437MHz										
Parameters	PSD = -13.57dBm										
Notes	N/A										

MultiView 🔠	Receiv	rer	2	spectrum	× 🕅	Spectrum	2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	×x				▼
Ref Leve Att Input	el 40.6	50 dBm 10 dB 1 AC	SWT	223	∣dB ● R ms ● V On N		kHz kHz N Off	1ode	Sweep					Fr	equency	2.43	370000) GHz
1 Frequer	ncy Sv				011 11	0.001	011										O1Pk	View
															M1[1]			7 dBm
																2	.440716	
30 dBm																		
30 dBm-																		
20 dBm																		
10 dBm																		
		H1 8.	UUU dBm															
0 dBm																		
-10 dBm																		
-10 dBm-													M1					
				L	h. h. h. h	Sec 1 A		h. a	A. J. M. a.	AL ON A	A same	. A to be so	A. L. A.	h. d. a. d. d	<u>с.</u> к.,	L. I		
-20 dBm	M	M A A L	<u> 4 A A</u>	A MA	עשער	VVV	V W V'	MY.	<u>rivin</u>	L MWW	$\sqrt{2}$			<u>"WWW</u>	MAAN	h March	M	
	- 1 ľ	A h k	2.67	`	P • 1	4 m 4	Y T	1	* • • 1	17	× ()	a di A			1 1 1 1			
										J)								
-30 dBm	A																	
M	/ I																l Y∖j ,	
AN AN	·																WWW I	ulit .
-40.dBm										<u> </u>							ų	Mr.
or 1																		. A n W
-50 dBm																		
-30 ubm																		
CF 2.437							1001 pi					.0 MHz/					pan 20.0	
UF 2,437 U	υΠΖ						1001 p	เร					-	110 02.06.2	2021 CBa	5 f Level		U MHZ
l		Д								. ►	leasuring			02.06.2 00:3	8:09	ever		• •

00:38:09 02.06.2021

	Test Details												
Manufacturer	Astronics												
Model	Focus Pro												
S/N	1378290												
Mode	802.11g – 18Mbps												
Carrier Frequency	2437MHz												
Parameters	PSD = -14.11dBm												
Notes	N/A												

Multi¥iew 88	Receiver	X	Spectrun	• 🔆	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	×x				▼
Ref Leve Att Input	1		WT 23	.60 dB ● 23 ms ● On		VIO kHz N	1ode	Sweep					Fre	equency	2.43	370000) GHz
1 Frequen																⊙1Pk	View
		· · · · · · · · · · · · · · · · · · ·												M1[1]			1 dBm
															2	.431985	
30 dBm																	
20 dBm																	
20 0011																	
10 dBm																	
		H1 8.000	dBm														
0 dBm							_										
-10 dBm				M1													
											1 N						
	A Bar	M.M. N. A	MMA	A.A. N.N	۱AI	na han ha a	Mad	h Mi Ali Ali Ali	MAA	W.M.A	A M.A.A.	MAAA	MANI	ALAS	1.1.1	a l	
-20 dBm	MV	M. M. M.	 	1 W W W W	- W	~~₩₩₩₩₩ ₩	ᠮ	ᡩ᠉ᠬᢂ	1 18 19 1	* 7 /*** 1	╔┟┙┟┈┙	⊢ nd h. dt ×	- 10 -	n <u>n h h</u>	WY	ή	
	11.	Y	1					1	1				1	1	1		
-30 dBm								Ŋ	1								
-30 ubiii	N															- Ma	
n (W	$(\cdot \mid \cdot $															- Wiki	1
-40,d8m																VI	Aller .
1 Martin																	** Y W
1																	1.0
-50 dBm																	
CF 2.437 0	GHz					1001 p	ts			2	.0 MHz/			1	S	pan 20.	0 MHz
ſ)									leasuring			02.06.2	021 Re	f Level		RBW
L		l										-	00:40	0:36			•

00:40:36 02.06.2021

	Test Details												
Manufacturer	Astronics												
Model	Focus Pro												
S/N	1378290												
Mode	802.11g – 24Mbps												
Carrier Frequency	2437MHz												
Parameters	PSD = -12.45dBm												
Notes	N/A												

MultiView 88	Receiver	X	Spectrum	*	Spectrum 2	X	Spectrum 3	**	Spectrum 4	4 🔆 🖾	Spectrum 5	×x			
Ref Level Att Input	40.60 dBm 10 dB 1 AC			ns 😑 VE		/lode	Sweep					Fre	equency	2.43	70000 GHz
1 Frequence															●1Pk View
													M1[1]		-12.45 dBm
														2	.4419750 GHz
30 dBm															
30 dbm															
20 dBm						_									
10 dBm		.000 dBm													
		.000 0011													
0 dBm															
-10 dBm						_						M1			
				1								T.			
	1110	A . A	A. M. to Me	1. 4.1	LAND A DUN	. A A	word what	N. K. I	N. W.	a treat in the	A & A &	Andred	1	a la	al.
-20 dBm	<u>_Aby^\Aby</u> ^by	<u>AW</u>	ur nu h	halla	₩₩₩₽₩₩₩	ųųų	ⅈ₩₩₩₽	1144	Ar Mark t	1741/17/PAPA	୲ୄ୲୰ୄ୲୶		Ŋ″₩Ŋ ₩₩₽	Y MY M	Δ
		1 / "	1.0.00	N V V	1 - 1 1 - 1	1 "	(1)))	11 1 1	¥ 1	, , , , ,	1.1.1.1.1	A A	1 Y '	N Y Y	
								V							A
-30 dBm								p							M.,
. h.	1														1 M.a.
-40 dBm	·														1 Million
NO VIA															" MMMA
ω.,															·
-50 dBm															
CF 2.437 G	Hz		<u> </u>		1001 p	ts			2	.0 MHz/				S	pan 20.0 MHz
	T T								leasuring	j 🗰 💷 💷	0 4	02.06.2 M	2021 Ref	fLevel	RBW

00:43:40 02.06.2021

	Test Details												
Manufacturer	Astronics												
Model	Focus Pro												
S/N	1378290												
Mode	802.11g – 36Mbps												
Carrier Frequency	2437MHz												
Parameters	PSD = -13.06dBm												
Notes	N/A												

Multi¥iew 🗧	Recei	ver	X s	spectrum	*	Spect	rum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🖾	Spectrum	s 🔆 🕅				▼
Ref Lev Att Input	/el 40.	50 dBm 10 dB 1 AC	SWT	223	dB • R ms • VI On N		3 kHz L0 kHz 1 Off	Mode	Sweep					Fre	equency	2.43	370000	GHz
1 Freque	ency Sv		РЭ		ON N	σταπ	Oli										⊙1Pk	View
															M1[1]			6 dBm
																2	.438259	
30 dBm																		
oo abiii																		
20 dBm																		
10 dBm																		
TO UBIN		H1 8.0	000 dBm					_										
0 dBm										-								
-10 dBm											64.1							
-10 dBm-											Y							
		1.11		a . 16	had a s	Ann	the sector	с И –	the work	1	And	6 16 16 18 1	dhi	i la Aliki i 👘	A U	a t		
-20 dBm-	<u> </u>	⋈₩₩₩	4 <u>A</u> A	<u>AM</u>	I¶M,A¶°	L M M M	HWH	hhr	HAMA M	L M C W	∖/<mark>\</mark>∕\/II	<u> APANAM</u>	<u>r vi v</u>	\mathcal{M}	() AAA	MANG	Μ	
]	VYW	·γγ	1 6	1.1.1		. J . W	1 "	איזיא	17 1.) " " '	a di la second	11.	Mar winers	ካ ግ ነ ከ	' 1 I		
										. · · ·							N	
-30 dBm—	N									Ţ							W.,	
5 M	N°																M	
-40 dBm								_									`M /	h the second
What I																		. Antwo
· .																		т (
-50 dBm—																		
CF 2.437	' GHz						1001 p	uts .			2	L 2.0 MHz/				5	pan 20.0	0 MHz
01 21 107	5112	1					1001	/13				.		02.06.2	2021 Re	f Level		RBW
l		Л									reasaring	.		00:4	6:13	•		•

00:46:13 02.06.2021

	Test Details												
Manufacturer	Astronics												
Model	Focus Pro												
S/N	1378290												
Mode	802.11g – 48Mbps												
Carrier Frequency	2437MHz												
Parameters	PSD = -12.04dBm												
Notes	N/A												

Ref Level 40.60 dbm Offset 40.60 db BBW 3 kHz Mode Sweep Trequency 2.4370000 GHz 10 db 98 0 m Notch 0 ff 10 kHz 0 m 10 kHz 0 m 10 kHz 0 m 10 kHz 10 kHz 0 m 10 kHz	MultiView 88	Receiver	Spec	trum 🔆	X	Spectrum 2	X	Spectrum 3	*	Spectrum 4	• ≱ ⊠(Spectrum	n 5 🛛 🔆 🔀				▼
1 Frequency Sweep 1 Plc View 30 dbm M1[1] -12.04 dbm 20 dbm 2.4423350 GHz -12.04 dbm 20 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm	Att	10 dB	SWT	223 ms 🖷	VBV	VI 10 kHz M	lode	Sweep					Fr	equency	2.43	370000) GHz
30 dBm			P3	UI	NUU	un on										O1Pk	View
30 dBm 2.4423350 GHz 20 dBm 20 dBm 10 dBm 20 dBm 10 dBm 20 dBm 20 dBm 20 dBm 10 dBm 20 dBm														M1[1]			
20 dBm Image: Second Secon															2		
20 dBm Image: Second Secon	30 dBm																
10 dBm Image: stand stan	30 uBili																
10 dBm Image: state of the																	
Bit Exception Ma 0 dBm	20 dBm																
Bit Exception Ma 0 dBm																	
Bit Exception Ma 0 dBm																	
-10 dBm -20 dBm -30 dBm -40 dB	10 dBm	H1 8.00	0 dBm														
-10 dBm -20 dBm -30 dBm -40 dB																	
-10 dBm -20 dBm -30 dBm -40 dB	0 dBm																
-20 dBm	0 0.0																
-20 dBm																	
	-10 dBm												M1				
								N . 1 .				1.					
		til as his	n M.M.	in to Artha	l, rW	6 A M A A A	MA	A.K.K.	. and	M. M. M	m Aust drilled	Mille	n A. K. ale del	kn mah l	лМ IN	1	
-40 dBhAN	-20 dBm	TWWWW	1 V V 1	AN IC P P	14 11	A Mar Ward	101		NV V	<u> </u>	1 M W. L. M.	r hjih	C. M. M. Market	VVVV	W W Y	rh.	
-40 dBhAN		//** 1	1 I I '			· v	יו	1.1			er til	- T	* * 1 * *	1 1 3	1.1		
	-30 dBm							\	 							<u> </u>	
	Λ.								ľ							11.	
	LA AN															L ͶN.	ia –
-50 dBm	-40 dBm																MH
-50 dBm	A AV WY																~ V (M
So dam	-50 dBm																
	CO UDIT																
CF 2.437 GHz 1001 pts 2.0 MHz/ Span 20.0 MHz	CF 2.437 GH	lz				1001 pt	S.		I	2	.0 MHz/			1	S	pan 20.0	0 MHz
Measuring 02.06.2021 Ref Level RBW 00:48:55	ſ								M				UM 02.06.2	2021 Re			

00:48:55 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 54Mbps											
Carrier Frequency	2437MHz											
Parameters	PSD = -12.88dBm											
Notes	N/A											

MultiView 88	Receiver	X	Spectrum 🔆		Spectrum 2	Spe Spe	ectrum 3	*	Spectrum 4	• ≱⊠ (́	Spectrum 5	× 🕅			\bigtriangledown
Ref Level Att Input	10 d		et 40.60 dB (223 ms (On	VB'	W 10 kHz M	ode Sw	eep					Fre	equency	2.43	70000 GHz
1 Frequenc															●1Pk View
													M1[1]		-17.29 dBm
														2	.4316850 GHz
30 dBm															
So abii															
20 dBm															
10 dBm		8.000 dBm													
		6.000 UBN													
0 dBm															
-10 dBm															
			M1												
			V												
-20 dBm		t d with	to the A star A	<u>k k</u>	to the state to be	Ant	h h m	1.00	the st	. 8 10 1 10	the back	A			1
	- NIMU	MAJAM	WWWWWWWWW	ЛЛ	MUMMUNA	' WWA	ANNA -	MN	l MANA	Մահելի հանդ	PATYA, A	Nun M	il Markal And	YMA.	AL.
	TKAM	i k k k j	The LAI	ין אין	ייין אייאי ו	(p, h)	Cale II	J T V	h i h	idd for first o	אי ארי ען א	ի հերին	A A ALM	y n y	Ψ <u>(</u>
-30 dBm			++ ++						1						
hs															\k
-40 dBm															N.A.
															19Mil
IL MAY 1	·														Y Y Million
50 dBm															<u> </u>
															1
CF 2.437 GF					1001 pt	5 5			2	.0 MHz/			1	S	pan 20.0 MHz
	Ì										n <i>1</i> /	02.06.2	2021 Re	f Level	

00:51:55 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 6Mbps											
Carrier Frequency	2462MHz											
Parameters	PSD = -12.88dBm											
Notes	N/A											

Multi¥iew 🔠 R	eceiver	Spect	rum 🔆	x) s	spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔌 🖾	Spectrur	n 5 🛛 🔆 🕅				▽
Ref Level 4 Att Input		SWT	Ю.60 dB ● 223 ms ● On		/ 10 kHz /	Mode	Sweep					F	requency	2.46	520000 (GHz
1 Frequency		Fð	UI	Note											⊙1Pk Vi	ew
													M1[1]		-13.44	
														2	.4636180	GHz
30 dBm																
oo abiii																
20 dBm						_										
10 dBm	H1 8.00	0 dBm														
0 dBm																
-10 dBm									M1							
	6.8.4		a da la la la	اسا م	ka seste de s	in the	Abol		A day	1. 17 8. 1	di di		A 1 J	1		
-20 dBm	MMAMA	NW	WWVV	'W	M M M M	UU.	VYVVA.	L WW	\mathbb{W}	MEV VIV	V V W	W V V V V	WWW	VM	M	
-20 uBm-			1		@ H · · ·											
								V								
-30 dBm — 👫						_	P.	1								
. A ^{r v}															' W.,	
. ANV																at .
-40/d8m																MM.
141																
-50 dBm																
CF 2.462 GH	Z				1001 p	ts			2	.0 MHz/				S	pan 20.0 M	MHz
								N	leasuring			102.06	.2021 Re 23:42 Re	f Level	RBV	W

00:23:43 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 9Mbps											
Carrier Frequency	2462MHz											
Parameters	PSD = -13.19dBm											
Notes	N/A											

Multi¥iew 88	Receiver	X	Spectrum	***	Spectrum 2	X	Spectrum 3	**	Spectrum 4	• 🔆 🖾	Spectrum 5	×x			
Ref Level Att Input	40.60 dBm 10 dE 1 AC			ms 👄 VE		Mode	Sweep			-		Fre	equency	2.46	20000 GHz
1 Frequence															●1Pk View
													M1[1]		-13.19 dBm
														2	.4638780 GHz
30 dBm															
30 ubm															
20 dBm															
20 45															
10 dBm															
	H1 8	8.000 dBm													
0 dBm															
-10 dBm															
	L	ы. X	6.0 7	C. M	. La n	A	N 10 14		he . A	and a	1 And	A 16			
oo dhuu	- ALIAN M	MAN	NMM/	\mathcal{M}	፤ ለ ምክለግ እ	ΔľΨ	MMM	IMN	W 4M/1	1. N. W.	WWW	MAN	MAMY	h/hAl	M
-20 dBm	14.44	Y 14			v	, 1 , 1					· · · · ·	,	1 V 1 V	W	
							۱. ۱	J							
-30 dBm							1	4							
oo abiii	YI														Mu -
\sim	·														WA.
-40/dBm															NA
ANCA .															"My
															· · · · · · · · · · · · · · · · · · ·
-50 dBm															
CF 2.462 G	Hz				1001	pts			2	.0 MHz/				S	pan 20.0 MHz
								N	leasuring		• •	02.06.2	2021 Re	f Level	RBW

00:36:07 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 12Mbps											
Carrier Frequency	2462MHz											
Parameters	PSD = -12.96dBm											
Notes	N/A											

MultiView 88	Receiver	X	Spectrum	×x	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾 📢	pectrum 5	×X				▼
Ref Level Att Input	10	Bm Offe I dB SW ⁻ AC PS		ms 👄 VE		Mode	Sweep					Fre	equency	2.46	20000	GHz
1 Frequence	y Swee	p													01Pk \	View
													M1[1]		-12.96	
														2	.458244	
30 dBm																
20 dBm																
20 ubiii-																
10 dBm																
		H1 8.000 dB	m ———													
0 dBm			_			_										
-10 dBm			-		141	-										
					A started				1	s bee						
	- In And	IN A AN	H MAU). Autoria	เมาสุญญา	MA)	MAAN.	MAA	MMA	IN MARKAY	ላለሌለ	N.M.M.	A. a. M.	AM	1	
-20 dBm	- M A	$\Lambda \Lambda \Lambda \Lambda$	A m. M w	M x. h	╕ᆥᄴᅛᆠᄿᆎ	- " "	 	/ / *	\ \ \ \	┡ ╸╢╫╟╫╓┢	* *~~~~	₩ ₩ ₩	h.J.J.A.M	VI W Y	4	
								1					· ·			
-30 dBm							<u>ار</u>	1							0	
-30 dBm-	V							•							W.	
. Wi	'														Mrd.	
-40 dBm															Y 44	Val .
A A A A A A A A A A A A A A A A A A A																TYP
10 C																
-50 dBm			_													
CF 2.462 G	Hz				1001 p	ots			2	.0 MHz/			1	S	pan 20.0	MHz
01 21 102 0) (1001 p						DO	02.06.2	021 Rei	f Level		BW
l	Л							, N	leasuring		1 ,XI	00:38	B:57	•		•

00:38:58 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 18Mbps											
Carrier Frequency	2462MHz											
Parameters	PSD = -12.52dBm											
Notes	N/A											

Multi¥iew 88	Receiver	(XX (s)	pectrum	- \} [X	Spec	ctrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🕱	Spectrum	s 🔆 🕅	l			▼
Ref Leve • Att	1	l0 dB	SWT	223	dB 🖷 R ms 🖷 V	B₩	3 kHz 10 kHz	Mode	Sweep					Fr	equency	2.46	520000	GHz
Input 1 Frequen		1 AC	PS		On N	otch	Off										⊙1Pk '	View
THOQUON	cy o n c	-op													M1[1]		-12.52	
																2	.463179	0 GHz
30 dBm								_										
20 dBm																		
20 uBm-																		
10 dBm		H1 8.00	00 dBm															
0 dBm								_										
-10 dBm											_M1							
			1		N .				1.5		Τ.							
	AA	ANA	лħ	nnA.	NMM	1/1/1	ባለሉለ	AM	how MMM.	LAM	UM MM	AN AM	WW	1 M A AM	MM A.A.S	MAA	A.	
-20 dBm	141	14.44	4 Y X			Y	<u> </u>	1 1 1	4.4.4.1	1 P	1.0.1	1 4 10 4 4	,	<u> </u>	1.4.2.4	AN		
										W.								
-30 dBm	\mathbb{W}^{+}									,							W.	
1. 1. MAN	(11																'MU	λ.
-40 dBm								_									~~	White 1
MM																		" Why
-50 dBm																		
CF 2.462 C	GHz	_					1001	pts			2	.0 MHz/			_		ipan 20.0	
]									N	1easuring	j (02.06. 00:4	2021 Re	f Level		BW

00:41:31 02.06.2021

	Test Details											
Manufacturer	Astronics											
Model	Focus Pro											
S/N	1378290											
Mode	802.11g – 24Mbps											
Carrier Frequency	2462MHz											
Parameters	PSD = -13.19dBm											
Notes	N/A											

Multi¥iew 88	Receiver	X	Spectrum	***	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	*				▼
Ref Leve Att Input	10 (ms 👄 VE		Mode	Sweep					Fre	equency	2.46	20000	GHz
1 Frequen															⊙1Pk	View
													M1[1]			9 dBm
														2	.466056	
30 dBm																
30 dBm																
20 dBm																
10 dBm	_					_										
		1 8.000 081														
0 dBm																
-10 dBm											0.1					
10 0.011											T					
	A ALL IN	he i wh	han H	h A return	As a here the		Mund	JAM D	A. K. W.	Alexa	Alana	all in	And	ا م ال		
-20 dBm	AMA	AMAP	ներա	<u>44477</u>	╟Ű┝╈╨┦╞┉ᡘ╲╟╶╻╸	MV4		I /V ₩	X V M	מאייעימ	ℍℿℿ	<u>WW MU</u>		MM	<u> </u>	
	11	1.1.2.2	" ' ≬ `	1.4.5	k i constru	ΥY.	7 T T T	$V \rightarrow$	1.60			4 I	7 Y Y Y	V Y M	- F	
-30 dBm	M							1							1	
hold .															- MA	
-40 dBm	· .														- "W	ø.
MUNUPIN-															. 1	"Malu
N -																- P. Wo
-50 dBm																
CF 2.462 C	Hz				1001 p	ots		1	2	.0 MHz/	1		1	S	pan 20.0) MHz
(•							02.06.2	021 Re	f Level	·	BW
L	JL											00:44	4:27	•		•

00:44:28 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11g – 36Mbps									
Carrier Frequency	2462MHz									
Parameters	PSD = -12.32dBm									
Notes	N/A									

MultiView 88	Receiver	X	Spectrum	×x	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 💥 Sp	ectrum 5 🛛 🔆 🔀			▽)
Att	40.60 dBm 10 dE			ms 🖷 VE		Mode	Sweep				I	Frequency	2.46	20000 GHz
Input 1 Frequence		, PS		Un Na	oten on									●1Pk View
												M1[1]		-12.32 dBm
													2.	4600820 GHz
30 dBm														
20 dBm														
10 dBm														
	H18	3.000 dBm	1											
0 dBm														
-10 dBm						- 11						_		
		×		,		ľ.	har a b	1.11			1 1 1			
00.40.0	LANA MAN	MAAN	A also had	气佩测力	MAN A MARI	AM	MAAA.	L M M M	W. A.M	IN MAAAA	A ALMANA AVAN	NAAAA	n A Ala	
-20 dBm	1111	h w A I	a hund ad	11 Y Y	<u>1. de c. Mare d</u>	- Y Y -	MARM	111	* W V 1	<u>lu kh kh k</u>	1017 PV	A N KIA W	1 1 1	l I
							1	II '				· · ·	1	
-30 dBm								<u> </u>				_		W
ь. M														Mar.
-40.08m	¥													M Mullet
AN IT IT														" PMu
, vî														n hi
-50 dBm												-		
CF 2.462 G					1001	nte				.0 MHz/			6.5	an 20.0 MHz
UF 2,402 G					1001	pts					100 02.00	5.2021 Rei	5p f Level	
l	Л							N	leasuring		00	:47:02	•	

00:47:03 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11g – 48Mbps									
Carrier Frequency	2462MHz									
Parameters	PSD = -13.51dBm									
Notes	N/A									

Multi¥iew 8	Receive	r	S s	pectrum	¥ 🛛	Spec	ctrum 2	X	Spectrum 3	¥2	3 Spectrum	4 🔆 🕅	Spect	trum 5 🛛 🔆 🔀)			▼
Ref Lev Att Input		0 dBm 10 dB 1 AC	SWT		∣dB ● R ms ● V On N		3 kHz 10 kHz Off	Mode	Sweep					F	requency	2.46	520000	GHz
1 Freque	ncv Sw		гð			ottin	01										⊙1Pk	View
															M1[1]			1 dBm
																2	463878	
30 dBm																		
00 00.																		
20 dBm								-							-			
10 dBm																		
TO UBIII		H1 8.0	000 dBm					_										
0 dBm								_		_								
-10 dBm											M	7						
	1	1.	K.	e ha	A. S. M.	1.			et alle a	1.1	. 14 1 1	Ante	ll a	undha	1 1	N 1.		
-20 dBm	<u> </u>	_AAA	4.4.414.	A.A.	ЩА.М/	444	<u>l RAAA</u> A	1.1.1	M M M M	<u>/</u> /	5./K./K./K./	<u>IN MAM</u>	փղ,	<u>դ Բախի Այեթե</u>	AAAA	A.A.M	M	
	- (W)	9 Y P	as Mal.	עיין	(1.4	in hin h	ry v	1111		had d	1 V V V V	17	dh an Ann	1 1 1 1 1 1	(((11	
					X					W.					- r - r			
-30 dBm	1							-		7							1.8	
	14																YMM .	
-40 dBm	۲																H'NN,	wh.
																	11	MMr.
Mutai .																		1.4.1
-50 dBm								-										
												<u> </u>						
CF 2.462	GHz						1001 p	ots				2.0 MHz/	_				Span 20.0	
		Л								J	Measurin	g 💶 💷		🚧 02.06 00:	.2021 Re 49:47	f Level		RB₩

00:49:47 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11g – 54Mbps									
Carrier Frequency	2462MHz									
Parameters	PSD = -16.72dBm									
Notes	N/A									

Multi¥iew 88	Receiver	Spectru	m 🔆 🔀	Spectrum 2	Spectrum 3	Spectrum -	4 🔆 🕅 Spec	:trum 5 🛛 🔆 🔀		▽)
Ref Level Att Input	40.60 dBm 40.60 dBm 40.60 dBm 40.60 dBm 40.50	SWT 2	.60 dB ● RI 23 ms ● VI On No	3W 10 kHz M	lode Sweep			Fre	equency 2.4	620000 GHz
1 Frequenc										⊙1Pk Max
									M1[1]	-16.72 dBm
										2.4613810 GHz
00 d0										
30 dBm										
20 dBm										
20 0011										
10 dBm										
	H1 8.00) dBm								
0 dBm										
-10 dBm										
					M1					
00 dB		. 6		also a second	I I.	11.1	A. A. A.	1	A 4	
-20 dBm	M. A. M. M. K.	A NUUM	从八版 (41)	A Multiple Augusta	Low Arna A.	MALA AND	A MAX MANA	ald Arth Malka	A hadred at	al as
	₩WW V'₩V	" V VIWP	() () () (V) ()A	የ የማለግ እን	4 M AV WY Y A	በ እስስ እስ እስ እስ እስ	ለ ህጊዮ ህገጥ ጋር ዛ	1°Y V Y V WW.	1Y 'Y W W W W '	M.
-30 dBm		1	1	1 1 1			1111	- 1 B	Les des altres de	
					L V					1
I I A										M. I
-40 dBm										
1 la M										Mh.C.
h MY W 1										THINK
450 dBm									-	
CF 2.462 GI	lz			1001 pt	S	2	.0 MHz/			Span 20.0 MHz
	T T					Measuring	()	02.06.2 00:52	2021 Ref Level	RBW

00:52:51 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n									
Notes	Measured in a 3kHz bandwidth									

Drata sel	Freq.	Data Rate	Power
Protocol	(MHz)	(Mbps)	(dBm)
	2412		-15.56
	2437	MCS0	-15.26
	2462		-15.87
	2412		-16.05
	2437	MCS1	-15.45
	2462		-15.73
	2412		-14.89
	2437	MCS2	-15.09
	2462		-14.75
	2412		-14.68
	2437	MCS3	-13.37
802.11n	2462		-14.54
002.1111	2412		-16.6
	2437	MCS4	-16.31
	2462		-15.23
	2412		-15.6
	2437	MCS5	-15.5
	2462		-15.61
	2412		-16.64
	2437	MCS6	-17.64
	2462		-17.83
	2412		-16.99
	2437	MCS7	-17.23
	2462		-15.82

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC0									
Carrier Frequency	2412MHz									
Parameters	PSD = -15.56dBm									
Notes	N/A									

Multi¥iew 🔠 Rece	iver 🕅	Spectrum 🔆 🔀	Spectrum 2	Spectrum 3	Spectrum -	4 🔆 🕅 Spec	trum 5 🛛 🔆 🔀		▽
Ref Level 40. Att Input	.60 dBm Offse 10 dB SWT 1 AC PS	et 40.60 dB ● RI 223 ms ● VI On N		lode Sweep			Fre	equency 2.4	120000 GHz
1 Frequency S									●1Pk View
	·							M1[1]	-15.56 dBm
									2.4082440 GHz
00 ID									
30 dBm									
20 dBm									
20 UBIII									
10 dBm									
	H1 8.000 dBm								
0 dBm									
-10 dBm									
			M1						
	a constant.	. haarna	Jun to Maria	a seal of A	A LA A DA A IA	A a dia a	hin n. Karata	A	1.1
-20 dBm	ᢔᡛᢦᡳᡃᢉᡃᠮᡃᠮᠮ	᠕᠕ᢉ᠕ᠰᢉᡀᠮ	╊╋ ╋ ╔╔╖╝╝╱╕		<u> </u>	ᢞ᠋ᡰᡗ᠊ᡀᡃᡀᡀᡃᢑ	╔┢╋┲┲╄╋┹┟╒	᠋ᡰᢧᡟᡃᡰ᠕ᠰᠧᢪᡀᡯᠧᢞᡆᢞᡟ	ግ ለአለ
/ "V" "N			L & M , L I			- 4 - W		a s s s b s	(~ Y (
-30 dBm-				1	l I				
-30 dBm-									1.
<i>I</i> V									N N
-40 dBm									UN.
Notabili									r vy
,									V
-50 dBm									
CF 2.412 GHz	1	1	1001 pt	S	2	2.0 MHz/	1	۱ ۲	Span 20.0 MHz
	Υ					g (02.06.2 00:54		
					measuring		00:54	4:11	

00:54:12 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC1									
Carrier Frequency	2412MHz									
Parameters	PSD = -16.05dBm									
Notes	N/A									

Multi¥iew 88	Receive	r	X s	pectrum		x) s	ipectrum 2	X	Spectrum 3	***	Spectrum 4	4 🔆 🖾	Spectrum	s 🔆 🕱			(▽
Ref Leve Att Input		0 dBm 10 dB 1 AC	SWT	t 40.60 223	ms 🖷 🔪		' 10 kHz M	Mode	Sweep					Fn	equency	2.41	20000	GHz
1 Frequen	icy Sw																○1Pk	Мах
															M1[1]		-16.05	i dBm
																2	.4170150) GHz
30 dBm						_												
20 dBm						_												
10 dBm		H1 8.0	000 dBm															
0 dBm																		
o ubiii																		
-10 dBm						_		_										
														M1				
		1.1.			Mark	1 6	خد المنات		A set o		Anna	يقدان المراقد و	1	and in the	A	. 1		
-20 dBm	MAN	ᡰᡒᡃᡳᡗᡰᡗ	ներություն	代八州	ԻԽՐՆՈՒ	1 d	WWW VIV	WWW.	∇		₩₩₩₩	┢┶ᡣᢦᡟᡧᢪ₩	11111	ᢦᠲᡗᠯᢂᡃᠰᡁ	ฬฬฬ	MA	MAA	
$\Gamma \cap O$	γwγ.	Lua	YEY	A M. A	Ψ. Ψ.	· / ·	na d na d ai		1, 1, 1	11 .	11 Y Y		· · · ·		8 V W W	Y Y 4	i W W V	
-30 dBm	`									J.								
So dbiii										Y							11	
. N																	N	nu.
-40 dBm						_											Į į	MACK.
WWW .																		M
-																		
-50 dBm						+				1								
												L						
CF 2.412 (GHz	2					1001 p	ts		<u>,</u>	2	.0 MHz/	_				pan 20.0	
		1								N	leasuring	g 🔳 💷 💷		02.06.2 00:5	2021 Re 6:42	f Level	R	∎w

00:56:43 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11n – MSC2								
Carrier Frequency	2412MHz								
Parameters	PSD = -14.89dBm								
Notes	N/A								

MultiView 88	Receiv	/er	SX S	pectrum	X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🕅 s	pectrum 5	×X				▼
Ref Leve Att	el 40.6	50 dBm 10 dB	Offse SWT	t 40.60 223 r	dB 🖷 RI ms 🖷 VI	BW 3 kHz BW 10 kHz	Mode	Sweep					Fra	equency	2.41	20000	GHz
Input 1 Eroquor		1 AC	PS		On No	otch Off								,		●1Pk	
1 Frequer	ICY SV	veep												M1[1]			9 dBm
														mili	2	.415397	
30 dBm																	
So abiii																	
20 dBm																	
10 dBm																	
		H1 8.0	100 dBm														
0 dBm																	
-10 dBm							_				M1						
											Ť						
-20 dBm					ب المر من ا	M. W. w. A. M.	n a v	La Mar 1	AAN	Lik Hil	s mar all	A A.A.A.	A. L. Nr. A	A.M.	1.1	۸.,	
Lo doni M	MAN	NY W	V, A M	VVV	M.H. M.	N. M. M. M. M. M.	WW	M. M. M. M. V.	INW	huhuhu	ትሎ ለ አሳሌላ	MINNIN	WWWV	MANM	777	(WYM) -	
	V Y I	1			1 1		1	· · · · · ·	1		1		1.1.1		• • ·	11	
-30 dBm									ų –								
M																1	\
-40 dBm																	Www.
AVV I																	i "W
-50 dBm																	
-30 ubm																	
CF 2.412	GHz					1001 p	ots		1	2	.0 MHz/			1	S	pan 20.0) MHz
									N	leasuring		4 X	02.06.2	021 Ref	Level		BW

00:58:55 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11n – MSC3								
Carrier Frequency	2412MHz								
Parameters	PSD = -14.68dBm								
Notes	N/A								

MultiView 8	Receiver	2	Sp.	ectrum 🧳		Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	×X				
Ref Lev Att	vel 40.60		Offset SWT	40.60 dB 223 ms			ode	Sweep					Fra	equency	2 41	20000	GHz
Input		1 AC F		On		tch Off								equency	2.13		
1 Freque	ency Swe	еер														O1Pk ∖	
														M1[1]		-14.68	
															2	.405726	0 GHz
30 dBm																	
20 dBm																	
10 dBm																	
		H1 8.000) dBm														
0 dBm																	
-10 dBm—																	
			M1														
							8	λ		and a							
-20 dBm-	ai in Alak	<u>A 14 M</u> .	o Ad	ta A Ad	• M.h	And R. M. K. M.	Pr the	MAAA	╏╋╋	ҝӍӤѨ	RAMAN	M. H. Au	kah. Mahar	Mr. March	ᠳ᠘ᡰᡅ	Charles also	
(MM V V V	l A A a	' Y 19	A.A.A.M	MAL	M M M M A A A	10,	2 Y W II (/ M V.	•• Ψ.Ψ.I	r y y p v	r y w r	a. h. h. a.	N V W V	vvv	VW	
-30 dBm-			Y			1						1					
So abiii									1							10	
UNV.																L VI	а — Г
-40 dBm—																· · ·	MA-
Mar .																	2 (M)
-50 dBm—																	
CF 2.412	P GHz					1001 pt	s S			2	.0 MHz/				S	pan 20.0) MHz
						1001 pt							02.06.2	021 <u>Re</u> i	f Level		BW
L										reasuring			01:0	1:27	•		•

01:01:28 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11n – MSC4								
Carrier Frequency	2412MHz								
Parameters	PSD = -16.60dBm								
Notes	N/A								

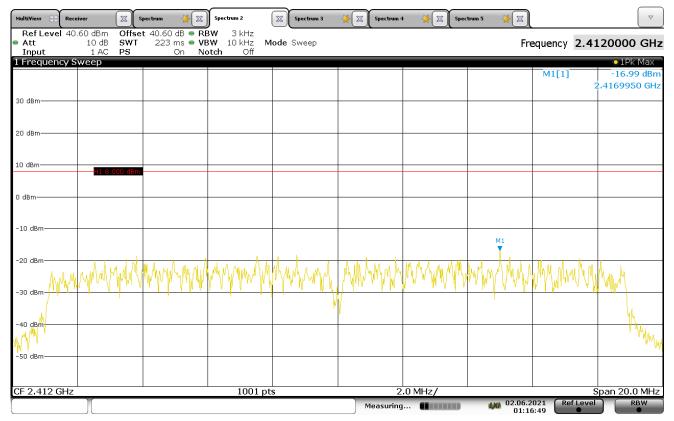
Multi¥iew 88	Receiver	X	Spectrum	*	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	•	pectrum 5 🛛 🔆	X		
Ref Leve Att		dBm Offe DdB SW	set 40.60 T 223) dB 🖷 RI ms 🖷 VI		Mode	Sweep					Frequenc	v 2.4	120000 GH
Input	1	AC PS			otch Off								,	
1 Frequen	cy Swee	ep											17	• 1Pk View
												M1[-16.60 dBr 2.4101220 GH
														2,4101220 GH
30 dBm														
20 dBm														
10 dBm														
TO UBIN		H1 8.000 dE	m			_								
0 dBm						_								
-10 dBm														
10 0.011						М1								
						1.	A		and the	the	1 1 1 1 1	ALL.		
-20 dBm	h nhr	WAAT	1.1.MM	MAAA	<u> የ</u> ለሰራ ለአስዲዮሌ	۳///	ttth And	MAM	UMALA.	ሌሌሌሌ		HAMA I	n M M M	Mary A
L M	1. M. M. M.	N.N. M. W.	WEY WA	h nha nan an	w huw w v v	γv	11111	1 X X	W C WY I	h de la serie a	M. J. W. M. W.	ARAIN	(Y & V 4	(10 V V
-30 dBm						_	<u> </u>							
							r	•						<u>امل</u>
N AND AND AND AND AND AND AND AND AND AN														V Pust
-40 dBm														1 MW
W														ניי ן
-50 dBm			_			_								
05.0.440.6					1001	_								
CF 2.412 C	iHz Y				1001 p	ots				.0 MHz/	· · · · · · · · · · · · · · · · · · ·	2.06.2021	Ref Level	Span 20.0 MH
l								M	leasuring			01:04:01	er Level	RBW

01:04:01 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC5									
Carrier Frequency	2412MHz									
Parameters	PSD = -15.60dBm									
Notes	N/A									

Multi¥iew 8	Receiv	er	X s	pectrum	- \} [X	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🕅	pectrum 5	×X				▼
Ref Lev Att	el 40.6	10 dB	SWT		ms 🖷 VI	3W 10 kH:	z Mode	e Sweep					Fre	equency	2.41	20000	GHz
Input 1 Frequer	ncv Sw	1 AC	PS		On N	otch Of	†									o1Pk	View
11100400		oop												M1[1]			0 dBm
															2	408244	O GHz
30 dBm																	
20 dBm																	
20 0011																	
10 dBm		H1 8.0	000 dBm														
0 dBm																	
-10 dBm									_								
						M1											
-20 dBm		11	a i h	l a h	14.00	Aun	d al	1.0.0.0		A.	L. L. uk	6. 16	d. un	here			
20 0011	11/11/	VM/	WMA),	NW	VWY	N WWW	MANY	"Y V MA	I MANN	WIM	INNMAN	WWW	1.m/W	WM/174M	MA	AA.A.	
	γvų	W IT W	''' Y V	11.1	2 Y Y	n la mur i	- i V				, "' ' " "	10.1 10.1	÷γ,	1.1.1	Y " Y	i y my	
-30 dBm	+								N								
M									V								1
-40 dBm																Ч	MM
M) (M)
-50 dBm																	
05.0.410							<u></u>										
CF 2.412	GHZ	1				100)1 pts				.0 MHz/		02.06.2	2021 Re	S f Level	pan 20.0	D MHZ
l		Л							P.	leasuring	J		01:02	7:55	•		•

01:07:56 02.06.2021


	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC6									
Carrier Frequency	2412MHz									
Parameters	PSD = -16.64dBm									
Notes	N/A									

Multi¥iew 🔠 Red	eiver 🛛	Spectrum 🔆 🔀	Spectrum 2	Spectrum 3	Spectrum 4	4 🔆 🕅 Spec	trum 5 🛛 🔆 🔀		~
RefLevel 40 Att	10 dB SWT	et 40.60 dB ● RI 223 ms ● VI	3W 10 kHz M	ode Sweep			Fre	equency 2.4	L20000 GHz
Input 1 Frequency S	1 AC PS	On No	otch Off						●1Pk View
1 mequency t								M1[1]	-16.64 dBm
									2.4132790 GHz
30 dBm									
20 dBm									
20 0011									
10 dBm	H1 8.000 dBm								
0 dBm									
-10 dBm									
					M1				
-20 dBm									
20 abii	ANN ANNA	ALA MARANA	I an an da h.A. A.	MAALMAA -	hell soul A de	KAMA AA	ል ለሌርሳ ለ ሌ	A.A. Merry Mr. A.	B I A M
- MIV	ለዚህ ነት ለወት ነል ነ	Aloun Marita Ala Al	N. A.M. M. A. A.	11 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WAR WIN N Y	N Y W WIN Y V	1 \{ \!/ \!/ \!/ \!/ \!/ \!/	A A MAR A MI	MANA MAR
-30 dBm				, 1			₩ <u>'</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
al a				,	M				hi
-40 dBm									
MAY									"Mul
-50 dBm									·
CE 2 412 CU-			1001 -+					ļ	Prop 20,0 Milita
CF 2.412 GHz	1		1001 pt	5	2	.0 MHz/	102.06.2		Span 20.0 MHz
l	Л				Measuring		01:10	0:49	

01:10:49 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11n – MSC7								
Carrier Frequency	2412MHz								
Parameters	PSD = -16.99dBm								
Notes	N/A								

01:16:50 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC0									
Carrier Frequency	2437MHz									
Parameters	PSD = -15.26dBm									
Notes	N/A									

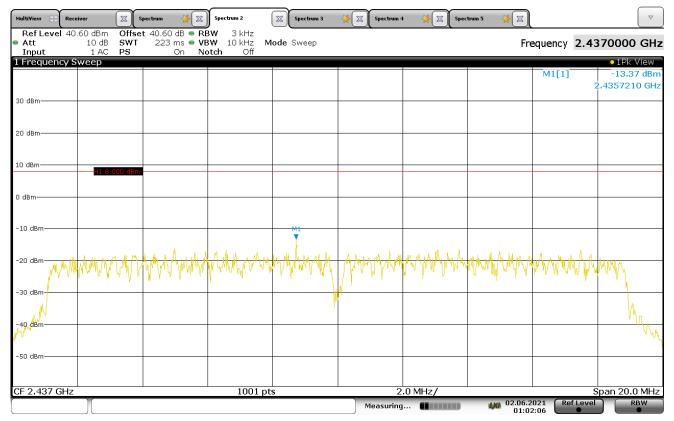
MultiView 88	Receive	r	X s	pectrum	¥ 🛙	Spe	ectrum 2	X	Spectrum 3	×x	Spectrum 4	4 🔆 🖾	Spectrur	m 5 🛛 💥 🖾	l			▼
Ref Leve Att Input		0 dBm 10 dB 1 AC	SWT		idB ● P ms ● V On N			Mode	Sweep					Fr	equency	2.43	370000) GHz
1 Frequen	icv Sw		гJ			otten	Oli										⊙1Pk	View
		<u> </u>													M1[1]	5		6 dBm
30 dBm																		
20 dBm																		
20 UBM																		
10 dBm		H1 8.0)00 dBm			_												
0 dBm																		
-10 dBm											M1							
-20 dBm	mh	WW	WA	my h	AMA.	AA	AApph	n Myr	hand	MAY	WAAAA	MAMAA	γ	ALAMAN	A CAR	WA/A	And	
-30 dBm-	() ľ		1 . 1									,					- " (
N																	Y	M.
, 40 dBm																		1 11 M
-50 dBm						+		_										
CF 2.437 0	GHz						1001 p	ots			2	.0 MHz/					pan 20.	
										N	leasuring	j (111111)	D	02.06.2 00:5	2021 Re 5:09	f Level		RBW

00:55:10 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC1										
Carrier Frequency	2437MHz										
Parameters	PSD = -15.45dBm										
Notes	N/A										

Multi¥iew 8	Recei	ver	X s	pectrum	*	Spectrum 2	2	X	Spectrum 3	×x	Spectrum	4 🎽 🕱	Spectru	m 5 🛛 🔆 🖾				▼
Ref Lev Att	rel 40.0	10 dB	SWT		ms 🖷 VI	BW 10 k	Hz M	lode	Sweep					F	requency	2.43	370000) GHz
Input 1 Freque	ncv Sv	1 AC	PS		On N	otch	Off	_									⊙1Pk	View
1110440															M1[1]			5 dBm
																2	.439458	30 GHz
30 dBm																		
20 dBm																		
20 0.011																		
10 dBm		H1 8.0	000 dBm															
0 dBm																		
-10 dBm																		
												M1						
-20 dBm		<u></u>	h a d	h.h.h.	h her (1 A dia	AAA	11	March de	how	Ma.	a h s A l	nd at	LA LAL	I A M A J	1	h a c	
20 000	\p^Y/4	rwww	WV V	17 V V	WWW	W Y 194	ry V	(W)	h deserved the f	L) YW	Y YW"	ኯዀኯዾጚ	™ ₩ \	(N.N.M.M.M.	(W V V V	A. Maril	M	
	V V				1	,									1	T	'`	
-30 dBm										۳							6	
. NA																	P	N.
-40 dBm-																		M
4 ×																		. M
-50 dBm								<u> </u>										
05.0.407						L .												
CF 2.437	GHZ					1	001 pt	S				2.0 MHz/		02.06	2021 Re	f Level	5pan 20.0	O MHZ
l		Л								r	leasuring	g 🚺 📰 📰		W 02.06	57:21 Ke	ever		•

00:57:22 02.06.2021

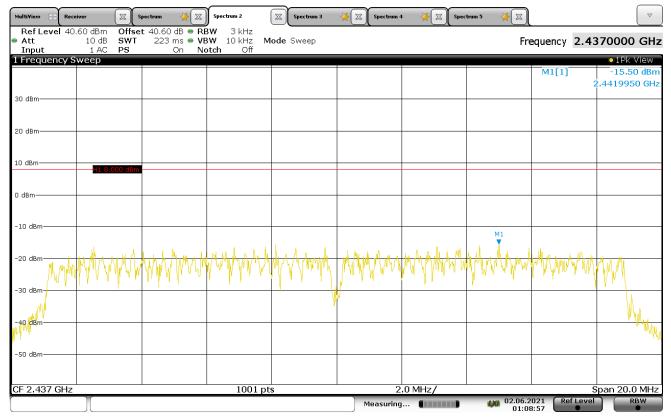

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC2										
Carrier Frequency	2437MHz										
Parameters	PSD = -15.09dBm										
Notes	N/A										

MultiView 🔠	Receive	r	XX S	pectrum	*	Spectrum	12	X	Spectrum 3		Spectrum	4 🔆 🕱	Spectrun	n 5 🛛 🔆 🕱	l			▼
Ref Leve Att		10 dB	SWT	223	dB 🖷 R ms 🖷 VI	3W 10	kHz kHz N	/lode	Sweep					Fr	equency	2.43	370000) GHz
Input 1 Frequer	icv Sw	1 AC	PS		On N	otch	Off										⊙1Pk	View
															M1[1]			9 dBm
																2	.441995	50 GHz
30 dBm																		
20 dBm																		
20 0011																		
10 dBm		H1 8.0	00 dBm															
0 dBm																		
-10 dBm																		
														M1				
		N 14	a 1	6 .k. 6	N JE BEA	M. A. a	. 11. 1	6.4.	And		al d as a	no de la de la	M	dal ha	N 10	. N .	1.1.	
-20 dBm	JUN/	ሞፍትፖ	WVW	YV	WW	יעייק	WWY	A.M	<u> </u>	- Mary	WYW	1 Y V V Y	V W V	$\gamma \gamma \gamma \gamma \gamma \gamma$	WWW	WVV	MAN N	
[] []	a e e		1 Y .		1				,	W - 1			1.1		U .	1.4		
-30 dBm										₩								
,N∕																	V	۱ _۸
-40 dBm								_										VIA
NY X																		V١
-50 dBm																		
SS abiii																		
CF 2.437 (GHz						1001 p	ts			2	2.0 MHz/					pan 20.0	
[Measuring	g (******		02.06. 00:5	2021 Re i9:57	f Level) F	RBW

00:59:58 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC3										
Carrier Frequency	2437MHz										
Parameters	PSD = -13.37dBm										
Notes	N/A										

01:02:07 02.06.2021


	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC4									
Carrier Frequency	2437MHz									
Parameters	PSD = -21.74dBm									
Notes	N/A									

MultiView 8	Receiv	rer	X s	spectrum	¥ 🕱	Spectrum 2	Σ	Spectrum 3	×x	Spectrum 4	4 🔆 🕅	Spectrum 5	×X				
Ref Leve Att	el 40.6	10 dB	SWT	223	dB 🖷 R ms 🖷 V	3W 10 kH	lz Mo	de Sweep					Fre	equency	2.43	70000	GHz
Input 1 Frequer	ncv Sv	1 AC	PS		On N	otch (Off									⊙1Pk \	View
														M1[1]		-21.74	
															2	432085	0 GHz
30 dBm																	
20 dBm																	
10 dBm																	
		H1 8.	000 dBm														
0 dBm——																	
-10 dBm																	
		. h	له ، ،		1						N IL N		a				
-20 dBm	Lu Ma	MAA	hAA	to Make	N A	Mound	MA	\sqrt{h}	MAL	al datate	th Millath A.	Mart Al	17LM	AAN	Mak	h.mir	
p p	/"¥],	i y ma yi	YVY	l M k. A	ի կի դի թ	YUYY	ųτų	a Ward	$ \langle V^{\prime} \rangle $	h. when	L. I. II A	A A N. W.	M M at	የየምም	W W W	n A Mal	
-30 dBm-			-					1	₩ <u>'</u>							<u> </u>	
8.0									γj								
-40 dBm																પુષ	h
NU																	* Y%M
-50 dBm																	
-30 ubm																	
CF 2.437	GHz	2.6				10	01 pts			2	.0 MHz/					pan 20.0	
		J.							N	leasuring	j () (X	02.06.2	021 Ret	f Level	R	B₩

01:05:13 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC5										
Carrier Frequency	2437MHz										
Parameters	PSD = -15.50dBm										
Notes	N/A										

01:08:57 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC6										
Carrier Frequency	2437MHz										
Parameters	PSD = -17.64dBm										
Notes	N/A										

MultiView 🔠	Receiu	rer	X s	pectrum	*	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	*				▼
Ref Leve	el 40.6	50 dBm 10 dB	Offse SWT	t 40.60 223		SW 3 kHz SW 10 kHz	Mode	sweep					Fre	equency	2.43	70000	GHz
Input		1 AC				otch Off								oquene,			
1 Frequer	ncy Sv	veep												_		●1Pk	
														M1[1]			4 dBm
															2	.437939	0 GHz
30 dBm																	
20 dBm																	
20 00111																	
10 dBm		U1 0 1	000 dBm														
		H1 0.															
0. 40																	
0 dBm																	
-10 dBm																	
									м	1							
									1 1								
-20 dBm	1 4	u la aru		a h had	A.A.	Arlal	N No.	A MAN A MA		i A is lu	A AL A INLA.	<u>MAJA (</u>	l l n i	MM 1 A	A. 8	તે કો	
Δ.	J.M	<u>ዓ/ዓ/ዓ/</u>	WM	MWW	YYW ₩4	ℕ⋎₩₩₩	MANN	ov w www.	17WW	YI\	V V V WW	I MANY V	VWW.	VV VMM	N NY N	∩n×M –	
-30 dBm	21 Y. Y	111	<u>4</u> . u	111	1.1		P	1 1 1 1		y uj	1		(1)	<u> </u>	7 . 7	V W	
								7	N							<u> </u>	
M									1							- M	
-40 dBm																, i i	Make .
MV1 -																1	INV
-50 dBm																	_!!\\
																	· · · · · · ·
CF 2.437 (GHz					1001	pts			2	.0 MHz/	1			S	pan 20.0) MHz
									M	easuring	(111111)		02.06.2 01:1	2021 Ref	f Level		RBW

01:11:46 02.06.2021

	Test Details										
Manufacturer	Astronics										
Model	Focus Pro										
S/N	1378290										
Mode	802.11n – MSC7										
Carrier Frequency	2437MHz										
Parameters	PSD = -24.76dBm										
Notes	N/A										

Multi¥iew 88	Receiver		Spectrum 🔾	X	Spectrum 2	×X	Spectrum 3	×x	Spectrum 4	• 🔆 🖾	Spectrum 5	*				•
Ref Level Att Input	40.60 dBm 10 dB		et 40.60 dB 223 ms On		🖊 10 kHz	Mode	Sweep					Fre	equency	2.43	72000 GH	١z
1 Frequent		Pð	UI	NOT	un on										⊙1Pk View	
· · · ·													M1[1]		-24.76 dB	
														2	.4395770 GI	Ηz
30 dBm						_										
20 dBm																
10 dBm						_										
	H1 8	.000 dBm														_
0 dBm																
-10 dBm						_										_
										1.	. J		1			
-20 dBm	. I & NI	1.1	LAN. AA	AL A	AN JA MAK	h h h	A An	a ha	W. A. M.	M h.L.L	had the	As Level	. II	I AL N	h .	_
1M	LMAAN I	MAA	MAMA'N.	MM N	N (M) / N (M) / N	nrv.	V NMMMA .	I /WW	MANN.	MAL MARA	I NAMUN	°'104°'10	~\{`_M	W W	MAA	
-30 dBm-	<u> </u>	ⁿ t in bit i	1 1 V. V	· ·	A AL MALE	<u>' 14 4</u>	<u>, , , 1 (</u>		1	L. M. L. d.	א איז אין א	<u> </u>			<u> </u>	
5	 			·		11	1	N							· ' \	
								4							ll.	
-40 dBm															100	_
AM ^a Y ^y															יאי	M
-50 dBm																1
CF 2.4372	GHz				1001 թ	ots			2	.0 MHz/					pan 20.0 M⊦	Ιz
								N	leasuring		• •	02.06.2 (0) 01:1	2021 Re 7:36	f Level	RBW	

01:17:36 02.06.2021

	Test Details
Manufacturer	Astronics
Model	Focus Pro
S/N	1378290
Mode	802.11n – MSC0
Carrier Frequency	2462MHz
Parameters	PSD = -15.87dBm
Notes	N/A

MultiView 🔠 Rec	eiver 🕅	Spectrum 🔆 🔀	Spectrum 2	Spectrum 3	Spectrum 4	4 🔆 🔀 Spec	trum 5 🛛 🔆 🔀		
Ref Level 40 Att Input	.60 dBm Offse 10 dB SWT 1 AC PS	t 40.60 dB ● RI 223 ms ● VE On No		ode Sweep			Fre	equency 2.40	520000 GHz
1 Frequency S									●1Pk View
								M1[1]	-15.87 dBm 2.4639180 GHz
30 dBm									
20 dBm									
10 dBm	H1 8,000 dBm	-							
0 dBm	HI 8.000 UBM								
-10 dBm	1.1				м			1	
-20 dBm	ψ			hwww.	-ppr/hangyd		www	MMMM	MM
-30 dBm					1				MM
, <mark>,,,40\dB</mark> m									(1 7)M
-50 dBm									
CF 2.462 GHz	1	1	1001 pt	s	2	.0 MHz/	I	5	Span 20.0 MHz
)[Measuring	(02.06.2 00:55	021 Ref Level	RBW

00:55:50 02.06.2021

	Test Details
Manufacturer	Astronics
Model	Focus Pro
S/N	1378290
Mode	802.11n – MSC1
Carrier Frequency	2462MHz
Parameters	PSD = -15.73dBm
Notes	N/A

Multi¥iew 88	Receiver	X	Spectrum	¥ 🛛	Spectrum 2	X	Spectrum 3	×x	Spectrum 4	•	pectrum 5 🛛 🔆	X		
Ref Level Att Input	10	Bm Offs dB SW AC PS		ms 🖷 VE		Mode	Sweep					Frequency	2.46	520000 GHz
1 Frequent														●1Pk View
· · · ·	<u> </u>											M1[1]	-15.73 dBm
														.4594430 GHz
30 dBm			_											
20 dBm														
10 dBm														
		11 8.000 de	m											
0 dBm														
-10 dBm			_											
					M1									
		a b a b	1. 6	0.15.06.6	. M. L A L.		Marchan	la ha	N K an	a Karabi	14.66.8	AND A SHOP		A &
-20 dBm	ᡃ᠋ᡶ᠕ᡃᡰᠺᡟ	d d d d d	ᡃᡁᠯᢑᡃᢦᡗᢧ	╎∖∖∕°∖∕° レ/	V V M V V V	<u>∖</u> ¶¶	$\nabla \nabla \nabla \nabla \nabla$	1707	$\sqrt{W}\sqrt{1}$	▛╲ᡐᡭᡟᡃᢥᠺ	᠊ᠮᢪᡛᢪᡟᢪᠮᡃᠺᡃᠯ	ᢦᡃᡃᡃᡅᠯᠵᡃᡀᡘᡃᠺᡟᡃᡕ	AM	ለሌላ
Į į v		y, w i i	1	¥ í	1 N N N			∫ [*] '		r i r			Y . A J	
-30 dBm-								V						
M.								ľ						l M.
														l MAL
-40 dBm														Y W
7 W														
-50 dBm			_			_								
CF 2.462 C	Hz				1001 թ	ots			2	.0 MHz/				pan 20.0 MHz
								N	leasuring		i 400 00	2.06.2021 R 00:58:05	ef Level	RBW

00:58:05 02.06.2021

	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC2									
Carrier Frequency	2462MHz									
Parameters	PSD = -14.75dBm									
Notes	N/A									

Ref Level 40.60 dBm Offset 40.60 dB RBW 3 kHz Mode Sweep Prequency 2.4620000 GH Input 14 C PS On Notch Off 10 kHz Mode Sweep 10 kHz	Multi¥iew 🔠 Receiv	ver 🛛
1 Frequency Sweep • 1Pk View 30 dBm 2.4632390 GH 20 dBm 10 dBm 10 dBm 10 dBm	Att	10 dB SW1
30 dBm 10 dBm 11 8000 dBm 11 8000 dBm -10 dBm -10 dBm -11 4,75 dB		
30 dBm 2.4632390 GH 20 dBm 10 dBm 10 dBm 10 dBm	, í	-
20 dBm- 10 dBm- -10 dBm-		
20 dBm- 10 dBm- -10 dBm-	30. dBm	
10 dBm BI BICIO dom Image: Second dom Image: Second dom Image: Second dom 0 dBm Image: Second dom Image: Second dom Image: Second dom Image: Second dom -10 dBm Image: Second dom Image: Second dom Image: Second dom Image: Second dom	50 UBII	
10 dBm BI BICIO dom Image: Second dom Image: Second dom Image: Second dom 0 dBm Image: Second dom Image: Second dom Image: Second dom Image: Second dom -10 dBm Image: Second dom Image: Second dom Image: Second dom Image: Second dom		
	20 dBm	
	10 dBm-	H1 8.000 dB
	0 dBm	
	-10 dBm	
-20 dBm Jan Augurt Warder Ward		
-so apu ta catala a la aliana a la aliana a la aliana a a aliana a a a a a a a a a a a a a a a a a a		A. J. N. N. J. A.
	-20 dBm	เพางหม
	4 VV	
-30 dBm	-30 dBm	
	. M	
	M^{\times}	
k94,d8m	+40,dBm	
	y y	
-50 dBm	-50 dBm	
CF 2.462 GHz 1001 pts 2.0 MHz/ Span 20.0 MH	CF 2.462 GHz	
Measuring (02.06.2021 01:00:43 (Ref Level) RBW	ſ	Υ

01:00:43 02.06.2021

	Test Details								
Manufacturer	Astronics								
Model	Focus Pro								
S/N	1378290								
Mode	802.11n – MSC3								
Carrier Frequency	2462MHz								
Parameters	PSD = -19.08dBm								
Notes	N/A								

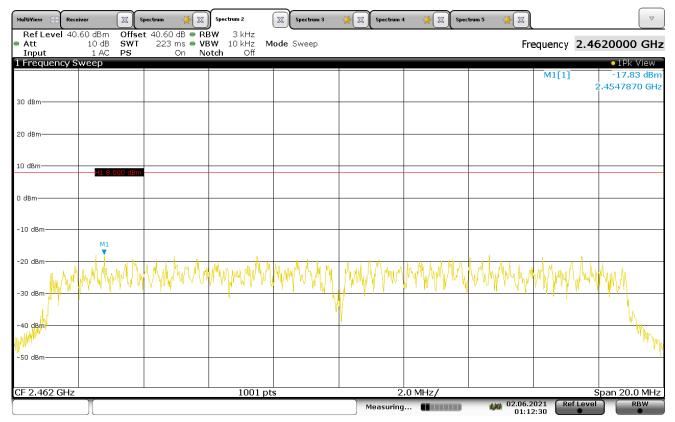
Multi¥iew 88	Receiver	X	Spectrum	*	X) :	Spectrum 2 👌	• 🖾	Spectrum 3	*	Spectrum 4	• 🔆 🕅 🕅	pectrum 5	×X				 ▼
Ref Leve • Att			ffset 40. WT 22	60 dB 🖷 23 ms 🖷			Mode	Sweep					Fn	equency	2.46	522000) GHz
Input	1	AC P			Note									oquene,			
1 Frequen	cy Swee	ep														●1Pk	
														M1[1]			8 dBm
															2	.461640	00 GHz
30 dBm							_										
20 dBm																	
10 dBm							_		ļ								
		H1 8.000	dBm														
0 dBm																	
-10 dBm																	
		i .		цк	. ni .	tin a.			4.8	J. N. N.		h		۸	1		
-20 dBm	A.M. A.J	lmm 1	Autono	ᡰᡁᠲᢧᠣ	WW	Ŋ,᠕᠗ᠰᡗ᠘ᢞᡰ ᢦ	4	WWW.M	MAN	tr tr the state	t h (William)	thhu	$\frac{1}{2}$	MALALIC	Mit.	Michal	
(¹ /1)	an in la	ni y v.	w Hell N	411	V	WU Y U	N 4	W 4.16	l v v	A.A.A.	i Vite - v	MANA	V Y Y	A 1.X.M	. I J	· * \/Y	
-30 dBm							_		<u> </u>								
N																0	4
Les Mart																	1.00
-40 dBm																	MAN
1 N 1																	- 1 M
-50 dBm							_										
CF 2.4622	GHz					1001 p	ots			2	.0 MHz/				S	pan 20.	0 MHz
									N	leasuring) <i>U</i> X	02.06.2	2:50 Re	f Level		RBW)

01:02:50 02.06.2021

	Test Details
Manufacturer	Astronics
Model	Focus Pro
S/N	1378290
Mode	802.11n – MSC4
Carrier Frequency	2462MHz
Parameters	PSD = -15.23dBm
Notes	N/A

Multi¥iew 88	Receiv	er	X s	pectrum	¥ 🛙	Spe	ectrum 2	X	Spectrum 3	×x	Spectrum 4	• 🔌 🖾	Spectrum 5	×x				▼
Ref Leve Att Input	el 40.6	0 dBm 10 dB 1 AC	SWT	223	∣dB ● P ms ● V On N			Mode	Sweep					Fr	equency	2.46	520000) GHz
1 Frequen	icv Sv		13			loten	011										o1Pk	View
															M1[1]			23 dBm
																2	.46323	90 GHz
30 dBm						_												
20 dBm																		
10 dBm						_												
		H1 8.0	000 dBm															
0 dBm																		
-10 dBm																		
											M1							
		1			ALA		and the	11		. 11	d Nh	14.1	NUT		4			
-20 dBm	1.11	ኬዮስቲ	1.01/1.	RAN	han tu	λM	1444	ᢂᡟᠧᢔ	hruma		htatii	ለካለክለስ	JWW	*//////	MARIA	A IN IN	NA A	
- YY	V V V	" W Y	u la se	mhið	- Y '	1	W P	۹V.	A A A A A	1	A. K. C.	1 Y U W V	"	V A	r vγ⊽	WVV	"Y V \	
-30 dBm-	1					_				1								
N.										1								
. M ¹¹																	V V	Jan
-40 dBm																		Mad
Man, 1																		- 1944 1944
-50 dBm						_		_										
CF 2.462 (GHz						1001 p	ots			2	.0 MHz/					pan 20.	
											leasuring			02.06.2 01:0	2021 Re 6:24	f Level		RBW

01:06:24 02.06.2021


	Test Details									
Manufacturer	Astronics									
Model	Focus Pro									
S/N	1378290									
Mode	802.11n – MSC5									
Carrier Frequency	2462MHz									
Parameters	PSD = -15.61dBm									
Notes	N/A									

Multi¥iew 88	Receiver	(X s	pectrum	- \} [X) st	pectrum 2	X	Spectrum 3	*	Spectrum 4	• 🔆 🖾	Spectrun	n 5 🛛 🔆 🕅)			
Ref Leve • Att		dBm .0 dB	Offse SWT		dB 🖷 R ms 🖷 V			ode	Sweep					F	requency	2.40	520000) GHz
Input		1 AC	PS			otcl									requeitey	2. 1		
1 Frequen	icy Swe	ер															⊙1Pk	
															M1[1]			51 dBm
																2	2.460741	10 GHz
30 dBm						+		<u> </u>										
20 dBm																-		
10 dBm						_												
		H1 8.00	00 dBm															
0 dBm																-		
-10 dBm																		
									м1									
					1. 6						0	h in	6		1			
-20 dBm	h sh he	Ashin	AA.	holds.	\mathbb{A}	1A	A RUA Auto	Mt	ah mite A-	Alla	MA N	Antaka	ML	ՠՠֈֈֈՠ	ANALAN	will h	10 AM	
.Mu	/\/M\\	`\W.	4 V V	WW Y	' V Y Y	(Y)	A ALE MENT A L	[₩'	W W W V L] W 78	የጥህነ	u. Al Anal a 7	- UN	an NU ANA I	(Y Y W	יוע איי	@ W WN	
-30 dBm	14			·					· · · ·	/						<u> </u>	1.1.1	
00 0.0																		
L N																	V	4
-40 dBm						+												Ma
JMN'																		1 M.A
FO dBm																		. V .
-50 dBm																		
CF 2,462 C	GHz			I			1001 pt	s S			2	.0 MHz/					Span 20.	0 MHz
	١	ſ												100 02.06	.2021 Re 09:36	ef Level		RBW
L														01:	09:36 🕒			

01:09:37 02.06.2021

	Test Details
Manufacturer	Astronics
Model	Focus Pro
S/N	1378290
Mode	802.11n – MSC6
Carrier Frequency	2462MHz
Parameters	PSD = -17.83dBm
Notes	N/A

01:12:31 02.06.2021

	Test Details
Manufacturer	Astronics
Model	Focus Pro
S/N	1378290
Mode	802.11n – MSC7
Carrier Frequency	2462MHz
Parameters	PSD = -15.82dBm
Notes	N/A

MultiView 🔠 Receiver	SI SI	pectrum 🔆 🔀	Spectrum 2	Spectrum 3	Spectrum 4	4 🔆 🔀 Spec	trum 5 🛛 🔆 🔀		
	lodb SWT	t 40.60 dB • RE 223 ms • VE	3WI 10 kHz M	ode Sweep			Fre	equency 2.40	520000 GHz
	1 AC PS	On No	otch Off	-					
1 Frequency Swe	ep							M1[1]	●1Pk View -15.82 dBm
									2.4604020 GHz
30 dBm									
00 00.									
20 dBm									
10 dBm	H1 8.000 dBm								
	H1 8.000 UBM								
0 dBm									
o ubiii									
-10 dBm				M1					
				Ţ					
-20 dBm	See Fill	the Maria	a. J. s. M	N PAJA	A A A A A A	bet in the		ald c Aa	()
A Andrew	MMMM MA	N MANANANA	14. A AN AN AN AN	1. WWWWWWW	111111111111111111111111111111111111111	NA WANA 🛛 🕅	i Manana Katana	የየየትዲሞት እስከ የነ	M.A.A.
-30 dBm	1 4 M 1 1 1	1 4 1 11 1 41		1 1 1 1 1 1	hill have the	ern try t	A.D. I. W. W.	<u>, , , , , , , , , , , , , , , , , , , </u>	r yrwy
		· · · ·		প	V			(11
									M.
-40 dBm									Man.
M ^r 1									1410
-50 dBm									
CF 2.462 GHz			1001 pt	 s	2	.0 MHz/		(Span 20.0 MHz
	ſ		1001 pt	5		I	1/1 02.06.2 01:19	021 Ref Level	

01:19:01 02.06.2021

31. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: blugo@elitetest.com Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Valid to: June 30, 2021

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

Test Technology:	Test Method(s) 1:				
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3;				
	ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;				
	CS-11979, Section 6.4; CS.00054, Section 5.9;				
	EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);				
	GMW 3097, Section 3.5;				
	SAE J1113-11; SAE J1113-12;				
	ECE Regulation 10.06 Annex 10				
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008);				
•••	CS-11979 Section 7.0; CS.00054, Section 5.10;				
	EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;				
	GMW 3097 Section 3.6				
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3;				
	CISPR 25 (2016), Sections 6.3 and 6.4;				
	CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2;				
	EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)				

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Test Technology:	Test Method(s) ¹ :
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310); ECE Regulation 10.06 Annex 7 (Broadband) ECE Regulation 10.06 Annex 8 (Narrowband)
Vehicle Radiated Emissions	CISPR 12; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BCI)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Bulk Current Injections (BCI) (Closed Loop Method)	ISO 11452-4; SAE J1113-4
Radiated Immunity Anechoic (Including Radar Pulse)	ISO 11452-2; ISO 11452-5; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Electrical Loads	ISO 16750-2, Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12
Dielectric Withstand Voltage	MIL-STD-202, Method 301; EIA-364-20D
Insulation Resistance	MIL-STD-202, Method 302; SAE/USCAR-2, Revision 6, Section 5.5.1; EIA-364-21D
Contact Resistance	MIL-STD-202, Method 307; SAE/USCAR-2, Revision 6, Section 5.3.1; EIA-364-23C; USCAR21-3 Section 4.5.3
(A2LA Cert. No. 1786.01) Revised 12/02/2	

Test Technology:	Test Method(s) ¹ :
DC Resistance	MIL-STD-202, Method 303
Contact Chatter	MIL-STD-202, Method 310;
	SAE/USCAR-2, Revision 6, Section 5.1.9
Voltage Drop	SAE/USCAR-2, Revision 6, Section 5.3.2; USCAR21-3 Section 4.5.6
Emissions Radiated and Conducted (3m Semi-anechoic chamber, up to 40 GHz)	47 CFR, FCC Part 15 B (using ANSI C63.4:2014); 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KN 11; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);
	CISPR 32; EN 55032; KN 32; ECE Regulation 10.06 Annex 14
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3; ECE Regulation 10.06 Annex 12
Immunity	
Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; IEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; IEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; ECE Regulation 10.06 Annex 15
(A2LA Cert. No. 1786.01) Revised 12/0	2/2020 / Page 3 of 8

Page 3 of 8

Test Technology:	Test Method(s) 1:
Immunity (cont'd) Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6
Power Frequency Magnetic Field Immunity	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; EN 50130-4; EN 61326-1; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2;
(A)I. A. Cost. No. 1796 (1) Davised 12/02/20	no An partice

(A2LA Cert. No. 1786.01) Revised 12/02/2020

in -

Page 4 of 8

Test Technology:	Test Method(s) 1:
European Radio Test Standards (cont'd)	ETSI EN 300 328; ETSI EN 301 893; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502
Canadian Radio Tests	RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101; ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015;
OTA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 5 of 8

Test Technology:	Test Method(s) ¹ :
Electrical Measurements and	

Simulation	
AC Voltage / Current	FAA AC 150/5345-10H
(1mV to 5kV) 60 Hz	FAA AC 150/5345-43J
(0.1V to 250V) up to 500 MHz	FAA AC 150/5345-44K
(1µA to 150A) 60 Hz	FAA AC 150/5345-46E
DC Voltage / Current	FAA AC 150/5345-47C
(1mV to 15-kV) / (1µA to 10A)	FAA EB 67D
Power Factor / Efficiency / Crest Factor	
(Power to 30kW)	
Resistance	
(1mΩ to 4000MΩ)	
Surge	
(Up to 10 kV / 5 kA) (Combination	
Wave and Ring Wave)	

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA *R101* - *General Requirements* - *Accreditation of ISO-IEC* 17025 Laboratories.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators Part 15C	ANSI C63.10:2013	40000
<u>Unlicensed Personal Communication</u> <u>Systems Devices</u> Part 15D	ANSI C63.17:2013	40000
(A2LA Cert. No. 1786.01) Revised 12/02/2020	hu	Page 6 of

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Page 6 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed</u> <u>Radio Service Equipment)</u> Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96 <u>Maritime and Aviation Radio Services</u>	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio</u> <u>Services</u> Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Ann Page 7 of 8

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Signal Boosters</u> Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

²Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

(A2LA Cert. No. 1786.01) Revised 12/02/2020

Ann Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of August 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.