RF Exposure Report

FCC ID : HQXTT03

Equipment: TPMS Trigger Brand Name: SYSGRATION

Model Name: TT03

Applicant : Sysgration Ltd.

6F.,No.1,Sec.1,Tiding Blvd.,Neihu Dist. Taipei City 114, Taiwan

Standard : FCC 47 CFR Part 2.1093

The product was received on May 14, 2024 and testing was started from Jun. 12, 2024 and completed on Jun. 12, 2024. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and has been pass the FCC requirement.

The results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

Report No.: FA440911

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 1 of 14

Report Issued Date : Jun. 24, 2024

Table of Contents

1.	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	4
	RF EXPOSURE LIMIT	
	SYSTEM DESCRIPTION AND SETUP	
	EQUIPMENT LIST	
	SYSTEM VALIDIATION	
	RF EXPOSURE RESULTS	
	6.1. Maximum Permissible Exposure Evaluation	10
	6.2. Peak Spatial-Average SAR Evaluation	10
7.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	11
8.	UNCERTAINTY	12
9.	REFERENCE	14

Appendix A. Plots of System Performance Check

Appendix B. Plots of Highest Measurement Result

Appendix C. DASY Calibration Certificate

Appendix D. Test Setup Photo

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report Issued Date : Jun. 24, 2024

Report No. : FA440911

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE			
FA440911	Rev. 01	Initial issue of report	Jun. 24, 2024			

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report Issued Date : Jun. 24, 2024

Report No. : FA440911

1. <u>Description of Equipment Under Test (EUT)</u>

	Product Feature & Specification				
FCC ID	HQXTT03				
Equipment	TPMS Trigger				
Brand Name	SYSGRATION				
Model Name	TT03				
Frequency Range	RFID: 125 kHz Tx 2440MHz Bluetooth: 2402 MHz ~ 2480 MHz				
Mode	RFID: ASK Tx 2440MHz: GFSK Bluetooth: BLE				
HW Version V4R2					
SW Version	V007				

Report No. : FA440911

SPORTON INTERNATIONAL INC. Page Number : 4 of 14

Report Issued Date : Jun. 24, 2024

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2. RF Exposure Limit

<Limits for Maximum Permissible Exposure>

§ 1.1310 The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency(RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of § 2.1093 of this chapter.

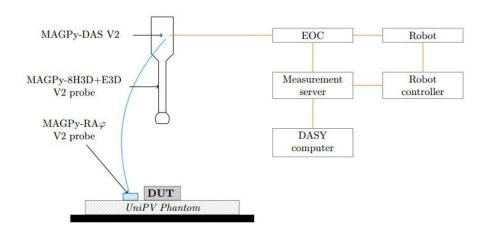
Report No.: FA440911

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for (Occupational/Controlled Expos	ure	
0.3-3.0	614	1.63	* 100	6
3.0-30	1842/f	4.89/f	* 900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000	3		5	6
	(B) Limits for Gene	eral Population/Uncontrolled Ex	posure	
0.3-1.34	614	1.63	* 100	30
1.34-30	30 824/f 2.19/f * 180/f ²		* 180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure. The phrase fully aware in the context of applying these exposure limits means that an exposed person has received written and/or verbal information fully explaining the potential for RF exposure resulting from his or her employment. With the exception of transient persons, this phrase also means that an exposed person has received appropriate training regarding work practices relating to controlling or mitigating his or her exposure. Such training is not required for transient persons, but they must receive written and/or verbal information and notification (for example, using signs) concerning their exposure potential and appropriate means available to mitigate their exposure. The phrase exercise control means that an exposed person is allowed to and knows how to reduce or avoid exposure by administrative or engineering controls and work practices, such as use of personal protective equipment or time averaging of exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

<Limit for peak spatial-average SAR>


The SAR limits for general population/uncontrolled exposure are 0.08 W/kg, as averaged over the whole body, and a peak spatial-average SAR of 1.6 W/kg, averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the parts of the human body treated as extremities, such as hands, wrists, feet, ankles, and pinnae, where the peak spatial-average SAR limit is 4 W/kg, averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). Exposure may be averaged over a time period not to exceed 30 minutes to determine compliance with general population/uncontrolled SAR limits.

SPORTON INTERNATIONAL INC. Page Number : 5 of 14

TEL: 886-3-327-3456 Report Issued Date : Jun. 24, 2024 FAX: 886-3-328-4978

^{* =} Plane-wave equivalent power density

3. System Description and Setup

General Note:

- DASY8 Module WPT v2.6+ is a special solution for high precision evaluations in the laboratory. The precision is achieved by combining the MAGPy system with the DASY robotics system and Sim4Life simulation platform. It is the fist and only fully automated system for demonstrating compliance of WPT devices.
- 2. The setup figure shows a typical setup for the measurements with DASY8 Module WPT. The MAGPy-8H3D+E3D V2 probe with MAGPy-DAS V2 is mounted on a TX-90 or TX2-90 robot allowing to scan volumes as large as 2000 x 1000 x 1500 mm with a precision of ±0.2 mm. The H-fild distributions can be analyzed directly and the values are compared to the reference level, or they are converted into Maxwell fild and used as excitations for determining the basic restriction quantities for further dosimetric analysis with the Magneto Quasi-Static (MQS) solver. This specifi solution is optimized for evaluation of H-field sources (3kHz–10MHz) and demonstration of compliance (3KHz–4 MHz)
- 3. Sicne the DASY8 Module WPT system alternatively, curve-tting techniques may be used to estimate the eld value(s) at dsep based on measurements taken at larger distances. The test equipment permits the estimation of fields at 0mm separation distance based on measurements near the surface; Maxwell total field reconstruction is employed.
- 4. The DASY8 Module WPT with MAGPy-8H3D+E3D V2 Probe is capable of measuring the H-fild in frequency and time-domain in the frequency band from 3 kHz to 10 MHz, covering a dynamic range from 0.1 to >3100 A/m.
- 5. The DASY8 Module WPT provides the relation between an externally applied H-field to each of the three sensors and the corresponding ADC reading over the frequency range from 3 kHz to 10 MHz. The frequency-dependent adjustment factors are used to determine the incident measured H-fild from an ADC reading. For the frequency range from 1 to 10 MHz, the adjustment factors are applied with fiite impulse response (FIR) fiters directly inside the MAGPy-8H3D+E3D V2 in time-domain and frequencies <1 MHz in the frequency domain in the PC-based post-processing software.</p>
- In summary, this system of DASY8 Module WPT with MAGPy-8H3D+E3D V2 Probe fully meets the requirements of SPR002 Issue2 table A2

Probe Spec

The MAGPy-8H3D+E3D V2 probe consists of eight isotropic H-field sensors and one isotropic E-field sensor: Probe design:

- · Probe length: 335 mm
- · Probe tip diameter: 60 mm
- · 8H3D: eight isotropic 1 cm3-H-field sensors, arranged at the corners of a 22 mm cube
- \cdot First isotropic H-field sensor plane: 7.5 mm from the tip
- E3D: one isotropic E-field sensor (dipole / monopole) Sensor specifications:
- · Frequency range: 3 kHz 10 MHz
- H-field dynamic range: 0.1 A/m 3200 A/m (0.12 μT 4 mT)
- · H-field extrapolation uncertainty: 0.6 dB (k = 2)
- · E-field dynamic range: 0.08 V/m 2000 V/m

Report No.: FA440911

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : 6 of 14

Report Issued Date : Jun. 24, 2024

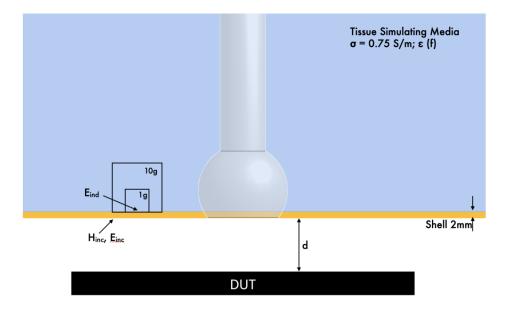
Compliance Evaluation

DASY8 Module WPT SW version v2.6+ offers compliance evaluation with respect to:

- Reference levels on the basis of the incident H- and E-fields measured from the volume scan
- Basic restrictions on the basis of the peak induced E-field, peak induced current density, and
- peak spatial-average SAR calculated from the Sim4Life simulation.

Since SPEAG release a DASY8 Module WPT system (*SW Module WPT V2.6*+) for E and H-Field measurement, and also the system support Sim4Life plug-in includes the components to import the 3D H-field scan data (Hx, Hy, Hz values in the measurement volume) to the Sim4Life simulation platform. And a magneto quasi-static (MQS) simulation is automatically setup to solve for a lossy halfspace Phantom setup. The lossy half-space has muscle tissue dielectric properties ($\sigma = 0.75$ S/m, $\rho = 1000$ kg/m3,), The induced electric (E-) fields and **specific absorption rate (SAR)** are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) using only the measured data.

Report No.: FA440911


The post-processing engine determines the maximum induced E-field, current density, and SAR values in a homogeneous half-space of muscle tissue equivalent media (half-space muscle phantom) positioned at the compliance distance. In general, the compliance distance corresponds to the closest point (with respect to the exposure source) the human body (e.g., a part of the hand) can reach during the operation of the source.

The relative dielectric constant, conductivity, and mass density of the homogeneous phantom used in the simulations were 55, 0.75 S/m, and 1000 kg/m3 respectively, which correspond to the phantom.

SPORTON INTERNATIONAL INC. Page Number : 7 of 14

TEL: 886-3-327-3456 Report Issued Date : Jun. 24, 2024

Simulation Results

Report No.: FA440911

: 8 of 14

Report Issued Date : Jun. 24, 2024

The distance used in the test raw data for simulation and compliance evaluation results is defined as the spacing between the top surface of the DUT and the bottom surface of the fictive phantom shell (with a thickness of 2 mm). In this case, the evaluation is made at distance d. Typically d = 0, i.e., at the DUT surface. The evaluation locations of the incident fields (i.e., Hinc and Einc) as well as the induced fields (e.g., Eind, psSAR1g, and psSAR10g) are also illustrated.

The following settings is used in the Dasy8 module WPT v2.6 software:

Total field evaluation: ON

2. Multi-frequency: ON

3. Coverage Factor: ON

The test plots in appendix B provided by the Dasy8 module WPT software is include the following information:

- 1. The field distribution, with a clear illustration of the -20 dB boundary. It is recommended to use the auto extend mode to ensure the full -20 dB boundary is assessed.
- All three tables produced by the system including the "incident fields, and induced quantities in the standardized phantom and anatomical model", "Standard compliance evaluation, Absolute" and "Standard compliance evaluation, Relative" tables.
- 3. The test plot(s) shall clearly display the fundamental frequency, amplitude, and all emissions within the frequency range from 3 kHz to 10 MHz.

SPORTON INTERNATIONAL INC. Page Number

TEL: 886-3-327-3456 FAX: 886-3-328-4978

4. Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
Manufacturer	Name of Equipment	i ype/iviodei	Serial Nulliber	Last Cal.	Due Date
SPEAG	Near-field Electric and Megnetic Field Sensor System	MAGPy-8H3D+E3D	3059	May. 15, 2024	May. 14, 2025
SPEAG	Near-field Electric and Megnetic Field Sensor System	MAGPy-DAS	3064	May. 15, 2024	May. 14, 2025
SPEAG	Calibration Procedure for MAGPy Validation Source	V-Coil350/85	1023	May. 22, 2024	May. 21, 2025

Report No.: FA440911

5. System Validiation

SPEAG developed the evaluation system DASY8 Module WPT for small-to-large size wireless power transfer (WPT) devices that combines subsystems of DASY8, MAGPy, and Sim4Life. The IT'IS Foundation was mandated to develop the system check and validation sources for WPT evaluations.

Below table shows the target value and measured value after normalized to 1A and comparing to the Target value provided by SPEAG calibration, the verification data should be within its specification of 1.24dB.

	System Verification										
Test Date	Calibrated Distance of the Virtual Phantom from the Surface (kHz) (mm)		Peak H-field (A/m)	(A/m) 1cm^2 area avg.(A/m^2)	Induced peak E-field (V/m)			peak spatial SAR (mW/kg)			
		(11111)			cube avg.	Local	line avg.	1g avg.	10g avg.		
	2024/6/12 85 Raw Measurement 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Target	0	208	2.35	3.35	3.38	3.39	6.5	4.84	
			2	189	2.22	3.15	3.18	3.19	5.81	4.38	
2024/6/42		D M	0	195	2.36	3.34	3.37	3.38	6.56	4.91	
2024/6/12		178	2.23	3.15	3.18	3.19	5.88	4.46			
		Deviation (dB)	0	-0.56	0.04	-0.03	-0.03	-0.03	0.04	0.06	
			2	-0.52	0.04	0.00	0.00	0.00	0.05	0.08	

SPORTON INTERNATIONAL INC. Page Number : 9 of 14

TEL: 886-3-327-3456 Report Issued Date : Jun. 24, 2024 FAX: 886-3-328-4978

6. RF Exposure Results

General Note:

 The device is tire-pressure and tire-wear monitoring system and operate at 125KHz. When the device is turn on, the 125KHz transmitter will always active.

Report No.: FA440911

2. Since the device will using close to human body, RF exposure testing at 0mm distance conservatively assessed.

6.1. Maximum Permissible Exposure Evaluation

Electric field Strength Result

Plot No.	Position	Test Distance (mm)	Measured Einc (V/m)	Einc Limit (V/m)	Result
	Front	0	93.9	614	Pass
1	Back	0	114	614	Pass
	Left Side	0	40.2	614	Pass
	Right Side	0	36.3	614	Pass
	Top Side	0	94.7	614	Pass
	Bottom Side	0	50.3	614	Pass

Magnetic field Strength Result

Plot No.	Position	Test Distance (mm)	Measured Hinc (A/m)	Hinc Limit (A/m)	Result
	Front	0	64.5	1.63	Exceed ⁽¹⁾
	Back	0	56.2	1.63	Exceed ⁽¹⁾
	Left Side	0	18.8	1.63	Exceed ⁽¹⁾
	Right Side	0	2.71	1.63	Exceed ⁽¹⁾
2	Top Side	0	107	1.63	Exceed ⁽¹⁾
	Bottom Side	0	0.306	1.63	Pass

An assessment against the Limit for peak spatial-average SAR shall be performed for the EUT when the Limits for Maximum Permissible Exposure are exceeded.

6.2. Peak Spatial-Average SAR Evaluation

Peak spatial-average SAR Result

Plot No.	Position	Test Distance (mm)	Measured 1g avg. (W/kg)	1g Limit (W/kg)	Result
3	Front	0	0.000127	1.6	Pass
	Back	0	0.0000917	1.6	Pass
	Left Side	0	0.0000238	1.6	Pass
	Right Side	0	0.00000207	1.6	Pass
	Top Side	0	0.0000539	1.6	Pass
	Bottom Side	0	0.000000072	1.6	Pass

Conclusion:

Based on SPEAG DASY8 Module WPT-MAGPY system, a magneto quasi-static (MQS) simulation is automatically setup to solve for a lossy halfspace Phantom setup. The lossy half-space has muscle tissue dielectric properties (σ = 0.75 S/m, ρ = 1000 kg/m3,), The induced electric (E-) fields and specific absorption rate (SAR) are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) that the the product is compliance with Peak spatial-average SAR Result < 1.6W/kg.

SPORTON INTERNATIONAL INC. Page Number : 10 of 14

TEL: 886-3-327-3456 Report Issued Date : Jun. 24, 2024 FAX: 886-3-328-4978

7. Standalone SAR test exclusion considerations

Mode / Band	Average Power (dBm)			
	Bluetooth	TX 2440MHz		
	BLE	GFSK		
2.4 GHz	-1.5	5.5		

Wireless	Max Power (dBm)	mW	Separation Distance (mm)	Frequency (GHz)	Calculation Result	Limit Threshold
Bluetooth	-1.5	0.71	5	2.48	0.22	3
TX 2440MHz	5.5	3.55	5	2.44	1.11	3

Report No.: FA440911

Note:

1. Per KDB 447498 D01v06 the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Conclusion:

- 1. According to KDB 447498 D01 section4.3.1 as above table, the Bluetooth standalone SAR is not required. And the Bluetooth cannot transmit simultaneous with RFID 125KHz.
- According to KDB 447498 D01 section4.3.1 as above table, the TX 2440MHz standalone SAR is not required. Consider the TX 2440 MHz can transmit with RFID 125KHz, the estimated 1g SAR 0.4W/kg and the Ratio is 0.4/1.6=0.25 for TX 2440 MHz, the Peak spatial-average SAR Ratio is < 0.0001 and the combine total TER ratio is less than 1

 SPORTON INTERNATIONAL INC.
 Page Number
 : 11 of 14

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 24, 2024

FAX: 886-3-328-4978

8. Uncertainty

	Uncertainty Budget fo	r Peak Incident H-	field		
Error Description	Uncertainty Value (±dB)	Probability	Divisor	(Ci)	Standard Uncertainty (dB)
leasurement System					
Amplitude calibration uncertainty	0.35	N	1	1	0.35
Probe anisotropy	0.60	R	1.732	1	0.35
Probe dynamic linearity	0.20	R	1.732	1	0.12
Probe frequency domain response	0.30	R	1.732	1	0.17
Probe frequency linear interp. fit	0.15	R	1.732	1	0.09
Spatial averaging	0.10	R	1.732	1	0.06
Parasitic E-field sensitivity	0.10	R	1.732	1	0.06
Detection limit	0.15	R	1.732	1	0.09
Readout electronics	0.0	N	1	1	0.0
Probe positioning	0.19	N	1	1	0.19
Repeatability	0.10	N	1	1	0.10
Surface fild reconstruction	0.30	N	1	1	0.30
Combined uncertainty (k = 1)					
Expanded uncertainty (k = 2)					

Report No. : FA440911

	Uncertainty Budget fo	or Peak Incident E-	field		
Error Description	Uncertainty Value (±dB)	Probability	Divisor	(Ci)	Standard Uncertainty (dB)
Measurement System					
Amplitude calibration uncertainty	0.53	N	1	1	0.53
Probe anisotropy	0.80	R	1.732	1	0.46
Probe dynamic linearity	1.00	R	1.732	1	0.58
Probe frequency domain response	0.30	R	1.732	1	0.17
Probe frequency linear interp. fit	0.15	R	1.732	1	0.09
Parasitic H-fild sensitivity	0.20	R	1.732	1	0.12
Detection limit	0.15	R	1.732	1	0.09
Readout electronics	0	N	1	1	0
Repeatability	0.10	N	1	1	0.10
Con	nbined uncertainty (k	= 1)			0.95 dB
Ехр	anded uncertainty (k	= 2)			1.89 dB

SPORTON INTERNATIONAL INC. Page Number : 12 of 14

TEL: 886-3-327-3456 Report Issued Date : Jun. 24, 2024 FAX: 886-3-328-4978

DASY8 Uncertainty Budget for psSAR1g according to IEC/IEEE 63184 Uncertainty Standard Uncertainty (± dB) Probability Divisor (Ci) **Error Description** Value (±%) Measurement system Amplitude calibration uncertainty 0.35 Ν 0.35 1 0.60 1.732 Probe anisotropy R 1 0.35 Probe dynamic linearity 0.20 R 1.732 1 0.12 R 1.732 Probe frequency domain response 0.30 1 0.17 R Probe frequency linear interp. fit 0.15 1.732 1 0.09 R 1 Spatial averaging 0.10 1.732 0.06 Parasitic E-field sensitivity 010 R 1.732 1 0.06 **Detection limit** 0.15 R 1.732 0.09 0 Ν 0 Readout electronics 1 1 Ν Probe positioning 0.19 1 0.19 1 Ν Repeatibility 0.10 1 1 0.10 Surface fild reconstruction 0.20 Ν 1 1 0.20 **Numerical Simulations** 0.02 0.01 Grid resolution R 1.732 1 Tissue parameters 0 R 1.732 1 0 Exposure position 0 R 1.732 1 0 Model and exposure location 0.09 Ν 1.732 0.09 Convergence and power budget 0 R 1.732 1 0 R 0.10 0.06 Boundary conditions 1.732 1 Phantom loading/backscattering 0.10 R 1.732 1 0.06 Combined uncertainty (k = 1) 0.63 dB

Expanded uncertainty (k = 2)

Report No.: FA440911

1.27 dB

 SPORTON INTERNATIONAL INC.
 Page Number
 : 13 of 14

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 24, 2024

TEL: 886-3-327-3456 FAX: 886-3-328-4978

9. Reference

 Ilkka Laakso, Valerio De Santis, Silvano Cruciani, Tommaso Campi, and Mauro Feliziani, "Modelling of induced electric filds based on incompletely known magnetic filds", Physics in Medicine & Biology, vol. 62, no. 16, pp. 6567, 2017

Report No.: FA440911

- 2. Sami Gabriel, RW Lau, and Camelia Gabriel, "The dielectric properties of biological tissues: li. measurements in the frequency range 10 hz to 20 GHz", Physics in medicine & biology, vol. 41, no. 11, pp. 2251, 1996
- 3. ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic filds (up to 300 GHz)", Health Physics, vol. 74, pp. 494–522, 1998.
- 4. IEEE C95.1, IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE Standards Department, International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2019.
- 5. International Commission on Non-Ionizing Radiation Protection et al., "Guidelines for limiting exposure to electromagnetic filds (100 kHz to 300 GHz)", Health Physics, vol. 118, no. 5, pp. 483–524, 2020.
- 6. WR Smythe, "Static and dynamic electricity, 2nd edition", p. 266, 1989.
- 7. IEC/IEEE 62704-1, Recommended Practice for Determining the Spatial-Peak Specifi Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices, 30 MHz–6 GHz Part 1: General Requirements for using the Finite Diffrence Time Domain (FDTD) Method for SAR Calculations, International Electrotechnical Commission (IEC), IEC Technical Committee 106, Geneva, Switzerland, 2017.
- 8. IEC/IEEE 62704-4, Recommended Practice for Determining the Spatial-Peak Specifi Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices, 30 MHz–6 GHz Part 1: General Requirements for using the Finite-Element Method (FEM) for SAR Calculations, International Electrotechnical Commission (IEC), IEC Technical Committee 106, Geneva, Switzerland, 2020
- Assessment methods of the human exposure to electric and magnetic filds from wireless power transfer systems. Models, instrumentation, measurement and numerical methods and procedures (frequency range of 1 kHz to 30 MHz), IEC PAS 63184:2021

SPORTON INTERNATIONAL INC.Page Number: 14 of 14TEL: 886-3-327-3456Report Issued Date: Jun. 24, 2024

FAX: 886-3-328-4978

Device under test

Info:

VCoil35085

Tool info

DASY software version:
DASY8 Module WPT 2.6.0.5002

Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000211, 2024/05/16

Software version: 2.0.61, backend: 2.2.22

Scan info

Center location:

x: 60.91 mm, y: -149.23 mm, z: 36.65 mm

Dimensions:

x: 433.0 mm, y: 520.4 mm, z: 36.7 mm

Resolution:

x: 7.33 mm, y: 7.33 mm, z: 7.33 mm

Completed on: 2024/06/12

Measurement results

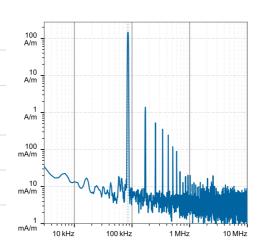
Maximum H-field [RMS]: MAGNITUDE: 128.98 A/m

x: 65.86 A/m, y: 94.50 A/m, z: 58.05 A/m

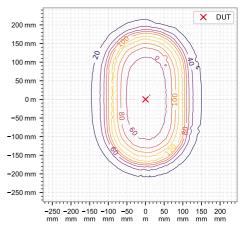
Maximum H-field location relative to DUT: x: 55.00 mm, y: -143.00 mm, z: 8.50 mm

Maximum E-field [RMS]: MAGNITUDE: 199.84 V/m

x: 9.05 V/m, y: 7.62 V/m, z: 199.49 V/m


Maximum E-field location relative to DUT: x: 88.00 mm, y: 176.00 mm, z: 0.00 m

Distance to -20.0 dB boundary: 63.08 mm


Offset relative to DUT:

x: 0.00 m, y: 0.00 m, z: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMs] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency

	Peak incide	nt fields [<i>RMS</i>]		Peak E _{ind} [V/m, _{RMS}	1	Peak J _{ind} [A/m ² ,	psSAR	mW/kg]	H-field extent
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]
0.00	195	200	3.34	3.37	3.38	2.36	6.56	4.91	184
2.00	178	183	3.15	3.18	3.19	2.23	5.88	4.46	186

Compliance evaluation (Field values at the peak frequency)

		ICNIRP 2	2010/2020)		ICNIR	P 1998			IEEE	2019			FC	CC			HC C	ode 6	
	RL	[RMS]	BR	[RMS]	RL	[RMS]	BR	[RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL	RMS]	BR	[RMS]
Distance	_e pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	$[A/m^2]$	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]
0.00	195	200	3.35	4.91	195	200	2.36	4.91	195	200	3.39	4.91	195	200	N/A	6.56	195	200	3.38	6.56
2.00	178	183	3.16	4.46	178	183	2.23	4.46	178	183	3.19	4.46	178	183	N/A	5.88	178	183	3.19	5.88

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation)

		IC	NIRP 2	010/20	20			ICNIR	P 1998				IEEE	2019				FC	CC				HC C	ode 6		
		R	!L		ВІ	R	R	L	В	R		El	RL		DF	RL	MF	PE	В	R		R	lL.		В	R
Dista [mm		inc	рE	inc	pE _{ind}	psSAI	RpH _{inc}	pE _{inc}	pJ _{ind}	psSAF	_₹ p⊢	inc	рE	inc	pE _{ind}	psSAI	RpH _{inc}	pE _{inc}	pE _{ind}	psSAR	ү рН	inc	рE	inc	pE _{ind}	psSAR
	NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0.00	9.29	N/A	10.3	N/A	0.29	N/A	39.0	13.1	14.0	N/A	1.2	N/A	1.39	N/A	0.19	N/A	2.17	6.13	N/A	N/A	2.17	N/A	10.3	N/A	0.30	N/A
2.00	8.5	N/A	9.44	N/A	0.28	N/A	35.7	12.0	13.2	N/A	1.09	N/A	1.28	N/A	0.18	N/A	1.98	5.62	N/A	N/A	1.98	N/A	9.44	N/A	0.28	N/A

Device under test

Info:

1_Back_0mm

Tool info

DASY software version:
DASY8 Module WPT 2.6.0.5002

Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000211, 2024/05/16

Software version: 2.0.63, backend: 2.2.22

Scan info

Center location:

x: 64.24 mm, y: 15.11 mm, z: 29.03 mm

Dimensions:

x: 212.8 mm, y: 301.0 mm, z: 36.7 mm

Resolution:

x: 7.33 mm, y: 7.33 mm, z: 7.33 mm

Completed on: 2024/06/12

Measurement results

Maximum H-field [RMS]: MAGNITUDE: 28.46 A/m

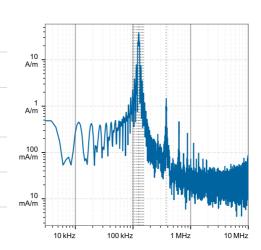
x: 1.30 A/m, y: 20.97 A/m, z: 19.19 A/m

Maximum H-field location relative to DUT: x: 18.33 mm, y: 40.33 mm, z: 8.50 mm

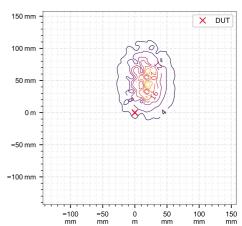
Maximum E-field [RMS]: MAGNITUDE: 113.52 V/m

x: 7.38 V/m, y: 4.53 V/m, z: 113.19 V/m

Maximum E-field location relative to DUT: x: 14.67 mm, y: 44.00 mm, z: 0.00 m


Distance to -20.0 dB boundary: 44.61 mm

44.01 111111


Offset relative to DUT:

x: 0.00 m, y: 0.00 m, z: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMs] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency

	Peak incide	nt fields [RMS]		Peak E _{ind} [V/m, _{RMS}		Peak J _{ind} [A/m ² , _{RMs}]	psSAR	[mW/kg]	H-field extent
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]
0.00	56.2	114	0.469	0.480	0.480	0.303	0.0917	0.0473	50.8

Compliance evaluation (Field values at the peak frequency)

		ICNIRP 2	2010/2020)		ICNIR	P 1998			IEEE	2019			FC	CC			HC C	ode 6	
	RL [RMS]	BR	[RMS]	RL [RMS]	BR	[RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL[RMS]	BR	[RMS]
Distance	e pH _{inc}	pE_{inc}	pE_{ind}	psSAR	рН _{іпс}	pE_{inc}	pJ_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	$[A/m^2]$	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]
0.00	56.2	114	2.61	0.0473	56.2	114	0.306	0.0473	56.2	114	1.46	0.0473	56.2	114	N/A	0.0917	56.2	114	3.78	0.0917

Coverage factors: $w_{E_{ind, \text{ cube avg.}}} = [5.56]$, $w_{E_{ind, \text{ local}}} = [7.86]$, $w_{E_{ind, \text{ line avg.}}} = [3.03]$

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

		IC	NIRP 2	010/20	20			ICNIR	1998				IEEE	2019				FC	C				HC C	ode 6		
		R	L		В	R	R	L	В	R		EF	RL		DF	RL	MF	PΕ	В	₹		R	L		В	₹
Distar [mm]		inc	рE	inc	pE _{ind}	psSAl	RpH _{inc}	pE _{inc}	pJ _{ind}	psSAF	_R pH	inc	рE	inc	pE _{ind}	psSAF	RpH _{inc}	pE _{inc}	pE _{ind}	psSAF	R pH	inc	рE	inc	pE _{ind}	psSAR
	NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0.00	2.68	1.44	5.85	0.13	0.15	<0.0	11.2	5.78	1.26	<0.01	0.35	0.19	0.79	0.18	0.06	<0.01	34.5	1.7	N/A	<0.01	0.62	9.67	5.85	1.12	0.22	<0.01

Coverage factors: $w_{E_{ind, cube avg.}} = [5.56]$, $w_{E_{ind, local}} = [7.86]$, $w_{E_{ind, line avg.}} = [3.03]$

Device under test

Info:

2_Top Side_0mm

Tool info

DASY software version: DASY8 Module WPT 2.6.0.5002

Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000211, 2024/05/16

Software version: 2.0.63, backend: 2.2.22

Scan info

Center location:

x: 31.18 mm, y: -23.48 mm, z: 176.06 mm

Dimensions:

x: 168.8 mm, **y:** 168.2 mm, **z:** 36.0 mm

Resolution:

x: 7.33 mm, y: 7.33 mm, z: 7.33 mm

Completed on: 2024/06/12

Measurement results

Maximum H-field [RMS]: MAGNITUDE: 53.36 A/m

x: 25.53 A/m, y: 7.35 A/m, z: 46.27 A/m

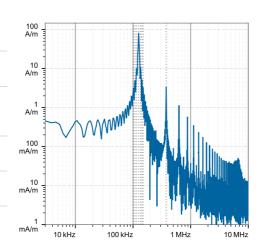
Maximum H-field location relative to DUT: x: 11.00 mm, y: -11.00 mm, z: 8.50 mm

Maximum E-field [RMS]: MAGNITUDE: 94.72 V/m

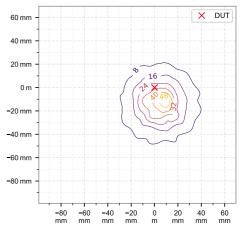
x: 3.59 V/m, y: 3.71 V/m, z: 94.58 V/m

Maximum E-field location relative to DUT:

x: 0.00 m, **y:** 0.00 m, **z:** 0.00 m


Distance to -20.0 dB boundary: 32.80 mm

02.00


Offset relative to DUT:

x: 0.00 m, y: 0.00 m, z: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMs] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency

	Peak incide	ent fields [RMS]		Peak E _{ind} [V/m, RMS		Peak J _{ind} [A/m ² , кмs]	psSAR	[mW/kg]	H-field extent
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]
0.00	107	94.7	0.364	0.372	0.372	0.234	0.0539	0.0296	34.0

Compliance evaluation (Field values at the peak frequency)

		ICNIRP 2	2010/2020	2		ICNIR	P 1998			IEEE	2019			FC	CC			HC C	ode 6	
	RL	[RMS]	BR	[RMS]	RL	[RMS]	BR	[RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL	[RMS]	BR	[RMS]
Distan	ce pH _{inc}	pE_{inc}	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pJ_{ind}	psSAR	рН _{іпс}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[A/m ²]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]
0.00	107	94.7	1.94	0.0296	107	94.7	0.236	0.0296	107	94.7	1.09	0.0296	107	94.7	N/A	0.0539	107	94.7	2.79	0.0539
Coverage	e factors: w _E	ind, cube avg.	= [5.31], w _{Ei}	ind, local = [7.5	50], w _{Eind, lir}	ne avg. = [2.9	2]	,												

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

			IC	NIRP 2	2010/20	20			ICNIR	1998				IEEE	2019				FC	C				HC C	ode 6		
İ			R	RL		В	R	R	L	В	R		EF	₹L		DF	RL	MF	PΕ	В	₹		R	L		В	R
	Distan [mm]		inc	рE	inc	pE _{ind}	psSA	RpH _{inc}	pE _{inc}	pJ _{ind}	psSAF	R pH	inc	рE	inc	pE _{ind}	psSAF	RpH _{inc}	pE _{inc}	pE _{ind}	psSAF	R pH	inc	рE	inc	pE _{ind}	psSAR
		NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
	0.00	15.1	5.01	2.4	0.04	0.34	<0.0	39.0	2.02	2.77	<0.01	1.95	0.67	0.32	0.08	0.12	<0.01	119.0	0.54	N/A	<0.01	3.53	33.6	2.4	0.45	0.49	<0.01

Coverage factors: $w_{E_{ind, cube avg.}} = [5.31], w_{E_{ind, local}} = [7.50], w_{E_{ind, line avg.}} = [2.92]$

Device under test

Info:

3_Front_0mm

Tool info

DASY software version: DASY8 Module WPT 2.6.0.5002

Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000211, 2024/05/16

Software version: 2.0.63, backend: 2.2.22

Scan info

Center location:

x: 64.29 mm, y: 7.18 mm, z: 28.92 mm

Dimensions:

x: 168.7 mm, y: 301.0 mm, z: 36.7 mm

Resolution:

x: 7.33 mm, y: 7.33 mm, z: 7.33 mm

Completed on: 2024/06/12

Measurement results

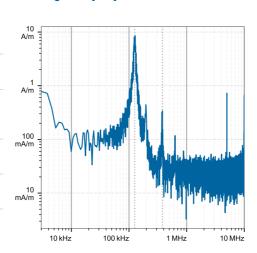
Maximum H-field [RMS]: MAGNITUDE: 33.46 A/m

x: 3.04 A/m, y: 32.50 A/m, z: 7.37 A/m

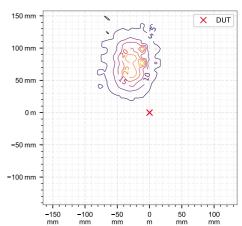
Maximum H-field location relative to DUT: x: -11.00 mm, y: 77.00 mm, z: 8.50 mm

Maximum E-field [RMS]: MAGNITUDE: 93.92 V/m

x: 1.97 V/m, y: 4.65 V/m, z: 93.78 V/m


Maximum E-field location relative to DUT: x: -36.67 mm, y: 95.33 mm, z: 0.00 m

Distance to -20.0 dB boundary: 36.67 mm


Offset relative to DUT:

x: 0.00 m, y: 0.00 m, z: 1.00 mm

H-field magnitude [RMS] at maximum location

H-field magnitude [RMs] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency

	Peak incid	ent fields [RMS]		Peak E _{ind} [V/m, RM		Peak J _{ind} [A/m ² , <i>кмs</i>]	psSAR	[mW/kg]	H-field extent	
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	
0.00	64.5	93.9	0.548	0.56	0.562	0.358	0.127	0.0629	50.0	ı

Compliance evaluation (Field values at the peak frequency)

		ICNIRP 2	2010/2020)		ICNIR	P 1998			IEEE	2019			FC	CC			HC C	ode 6	
	RL	[RMS]	BR	[RMS]	RL	[RMS]	BR	[RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL	[RMS]	BR	[RMS]
Distance	e pH _{inc}	pE_{inc}	pE_{ind}	psSAR	рН _{іпс}	pE_{inc}	pJ_{ind}	psSAR	рН _{іпс}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{inc}	pE_{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	$[A/m^2]$	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]	[A/m]	[V/m]	[V/m]	[mW/kg]
0.00	64.5	93.9	3.04	0.0629	64.5	93.9	0.360	0.0629	64.5	93.9	1.70	0.0629	64.5	93.9	N/A	0.127	64.5	93.9	4.39	0.127

Coverage factors: $W_{E_{ind, cube avg.}} = [5.55]$, $W_{E_{ind, local}} = [7.84]$, $W_{E_{ind, line avg.}} = [3.02]$

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation)

			IC	NIRP 2	010/20	20			ICNIR	1998				IEEE	2019				FC	C				HC C	ode 6		
			R	L		ВІ	R	R	L	В	R		EF	RL		DF	RL	MF	Έ	В	₹		R	L		ВІ	₹
	Distan mm]		inc	рE	inc	pE _{ind}	psSAI	₹pH _{inc}	pE _{inc}	pJ _{ind}	psSAF	_R pΗ	inc	рE	inc	pE _{ind}	psSAF	R pH _{inc}	pE _{inc}	pE _{ind}	psSAF	R pH	inc	рE	inc	pE _{ind}	psSAR
		NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	TH	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
0	.00	3.07	1.65	3.79	0.06	0.18	<0.01	12.9	3.07	1.46	<0.01	0.40	0.22	0.51	0.12	0.07	<0.01	39.6	1.0	N/A	<0.01	0.72	11.1	3.79	0.68	0.26	<0.01

Coverage factors: $w_{E_{ind, cube avg.}} = [5.55]$, $w_{E_{ind, local}} = [7.84]$, $w_{E_{ind, line avg.}} = [3.02]$

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton Taoyuan

Certificate No.

MAGPy-8H3D-3059

CALIBRATION CERTIFICATE

Object

MAGPy-8H3D+E3DV2 SN:3059

MAGPy-DASV2 SN:3064

Calibration procedure(s)

QA CAL-46.v1

Calibration Procedure for MAGPy-8H3D+E3D

Near-field Electric and Magnetic Field Sensor System

Calibration date

May 15, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Oscilloscope	SN: 112135	25-Sep-23 (No. 17A1162175)	Sep-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Network Analyzer E5061B	SN: MY49810822	In house check: Nov-23	In house check: Nov-24
TEM Cell	SN: S6029	In house check: Nov-23	In house check: Nov-24
Plate Capacitor	SN: 6028i	In house check: Nov-23	In house check: Nov-24
Resonator (160kHz)	SN: 6030I	In house check: Nov-23	In house check: Nov-24

Name Function Signature Calibrated by Aldonia Georgiadou Laboratory Engineer Sven Kühn Approved by Technical Manager

Issued: May 15, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servicio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

MAGPy-8H3D-E3D Magnetic Amplitude and Gradient Probe - Eight H-field Sensors, Single E-field sensor

MAGPy-DAS Magnetic Amplitude and Gradient Data Acquisition System

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2013, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", November 2013

Methods Applied and Interpretation of Parameters

- · Calibration has been performed after the adjustment of the device.
- Linearity: Calibration of the linearity of the field reading over the specified dynamic range at 161.75 kHz. Influence of offset voltage is included in this measurement.
- Frequency response: Calibration of the field reading over the specified frequency range from 3.0kHz to 10.0MHz.
- Receiving Pattern: Assessed for H-field polarizations θ, and φ = 0° ...360°; θ = 90°, and φ = 0° ...360°; for the XYZ sensors (in TEM-Cell at 4 kHz, 40 kHz, 400 kHz and 4 MHz).
- Receiving Pattern: Assessed for E-field polarizations θ, and φ = 0° ...360°; θ = 90°, and φ = 0° ...360°; for the XYZ sensor (in parallel plate capacitor at 4 kHz, 40 kHz, 400 kHz and 4 MHz).

Calibration Uncertainty

The calibration uncertainty is 0.7dB for the H-field readings and 1.06dB for the E-field readings. The calibration uncertainty is specified over the frequency range from 3.0kHz to 10.0MHz and a dynamic range from 0.1 A/m to 3200 A/m and from 0.08 V/m to 2000 V/m respectively.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: MAGPy-8H3D-3059

Page 2 of 26

Measurement Conditions

Unit Type	MAGPy-8H3D+E3DV2 (SP MGY 303 AA)	3059
	MAGPy-DASV2 (SE UMS 303 AC)	3064
	MAGPy FPGA Board	WP000211
Adjustment Date	Last MAGPy Adjustment	May 15, 2024
Firmware SW Version	MAGPy Firmware	Ver. 1.00
Backend SW Version	MAGPy Backend	Ver. 1.0.2
Calibration SW Version	MAGACAP	Ver. 1.0

Dynamic Range

Dynamic Range, H-field, Channel 0

H-fie	ld/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	z	- x	У	z	x	у	z	Tolerance/(dB
0.370	0.360	0.350	0.390	0.380	0.350	0.46	0.47	0.00	±1.00
0.510	0.490	0.470	0.500	0.510	0.480	-0.17	0.35	0.18	±1.00
0.700	0.670	0.650	0.690	0.680	0.650	-0.12	0.13	0.00	±1.00
0,910	0.880	0.850	0.910	0.870	0.850	0.00	-0.10	0.00	±1.00
1.23	1.19	1.15	1.25	1.18	1,16	0.14	-0.07	0.08	±1.00
1,69	1.63	1,57	1.69	1.64	1.59	0.00	0.05	0.11	±1.00
2.25	2.17	2.09	2.25	2.19	2.12	0.00	0.08	0.12	±0.20
3.01	2.91	2.80	3.01	2.92	2.82	0.00	0.03	0.06	±0.20
4.08	3.95	3.81	4,08	3.95	3.82	0.00	0.00	0.02	±0.20
5.53	5.34	5.15	5.53	5.35	5.16	0.00	0.02	0.02	±0.20
7.44	7.19	6.93	7.46	7.20	6.95	0.02	0.01	0.03	±0.20
9.94	9.60	9.26	9.95	9.61	9.26	0.01	0.01	0.00	±0.20
13.4	13.0	12.5	13.4	13.0	12.5	0.00	0.00	0.00	±0.20
18.1	17.5	16.9	18.1	17.5	16.9	0.00	0.00	0.00	±0.20
24.4	23.6	22.8	24.5	23.6	22.8	0.04	0.00	0.00	±0.20
32.6	31.5	30.4	32.8	31.7	30.6	0.05	0.05	0.06	±0.20
44.1	42.6	41.1	44.3	42.8	41.2	0.04	0.04	0.02	±0.20
59.6	57.6	55.6	60.0	58.1	56.0	0.06	0.08	0.06	±0.20
82.2	79.4	76.6	81.8	79.1	76.2	-0.04	-0.03	-0.05	±0.20
108	104	100	107	104	99.9	-0.08	0.00	-0.01	±0.20
148	143	138	147	142	137	-0.06	-0.06	-0.06	±0.20
206	199	192	205	198	191	-0.04	-0.04	-0.05	±0.20
286	276	266	287	271	267	0.03	-0.16	0.03	±0.20
424	410	395	416	404	388	-0.17	-0.13	-0.16	±0.20
588	568	548	582	565	542	-0.09	-0.05	-0.10	±0,20
884	854	823	885	858	823	0.01	0.04	0.00	±0.20
1350	1300	1250	1370	1330	1270	0.13	0.20	0.14	±0.30
1850	1790	1720	1890	1840	1760	0.19	0.24	0.20	±0.30
3030	2930	2820	3140	3050	2920	0.31	0.35	0.30	±0.50
3630	3500	3370	3780	3660	3510	0.35	0.39	0.35	±0.50

SPEAG H-field linearity tolerance criteria1:

^{±1.0}dB for applied H-fields < 2.0 A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

^{±0.3}dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%).

H-fie	id/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	ading	Ditt	erence/(dB)		
x	У	Z	x	у	z	x	у	Z	Tolerance/(dB	
0.370	0.360	0.360	0.400	0.380	0.380	0.68	0.47	0.47	±1.00	
0.510	0.490	0.490	0.540	0.520	0.490	0.50	0.52	0.00	±1.00	
0.700	0.680	0.670	0.710	0.710	0.660	0.12	0.37	-0.13	±1.00	
0.910	0.880	0.870	0.920	0.900	0.870	0.09	0.20	0.00	±1.00	
1.23	1.20	1.18	1.26	1.20	1.18	0.21	0.00	0.00	±1.00	
1.69	1.65	1,63	1.70	1.65	1.64	0.05	0.00	0.05	±1.00	
2.25	2.19	2.17	2.28	2.21	2.19	0.12	0.08	0.08	±0.20	
3.01	2.93	2.90	3.03	2.94	2.91	0.06	0.03	0.03	±0.20	
4.09	3.98	3.94	4.10	4.01	3.96	0.02	0.07	0.04	±0.20	
5.53	5.39	5.33	5,54	5.42	5.36	0.02	0.05	0.05	±0.20	
7.44	7.25	7.17	7.46	7.27	7.20	0.02	0.02	0.04	±0.20	
9.94	9.68	9.58	9,95	9.69	9.62	0.01	0.01	0.04	±0.20	
13.4	13.1	12.9	13,4	13,1	13.0	0.00	0.00	0.07	±0.20	
18.1	17.6	17.4	18.1	17.6	17.5	0.00	0.00	0.05	±0.20	
24.4	23.8	23.6	24.5	23.8	23.6	0.04	0.00	0.00	±0.20	
32.6	31.8	31.4	32.8	31.9	31.6	0.05	0.03	0.06	±0.20	
44.1	42.9	42.5	44.3	43.1	42.7	0.04	0.04	0.04	±0.20	
59.6	58.1	57,5	60.0	58.5	57.9	0.06	0.06	0.06	±0.20	
82.2	80.0	79.2	81.9	79.7	78.8	-0.03	-0.03	-0.04	±0.20	
108	105	104	107	104	103	-0.08	-0.08	-0.08	±0.20	
148	144	143	148	144	142	0.00	0.00	-0.06	±0.20	
206	200	198	205	200	198	-0.04	0.00	0.00	±0.20	
286	278	275	287	273	276	0.03	-0.16	0.03	±0.20	
424	413	409	417	407	401	-0.14	-0.13	-0.17	±0.20	
588	573	567	582	569	560	-0.09	-0.06	-0.11	±0.20	
884	861	851	885	865	852	0.01	0.04	0.01	±0.20	
1350	1310	1300	1370	1340	1320	0.13	0.20	0.13	±0.30	
1850	1800	1780	1890	1850	1820	0.19	0.24	0.19	±0.30	
3030	2950	2920	3140	3070	3020	0.31	0.35	0,29	±0.50	
3630	3530	3490	3780	3690	3640	0.35	0.39	0.37	±0.50	

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%)

H-fie	ld/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	ading	Diff	erence/(dB)	PALATE OFFICE
X	У	Z	X	y	z	X	y	z	Tolerance/(dB)
0.370	0.370	0.360	0.400	0.380	0.380	0.68	0.23	0.47	±1.00
0.510	0.500	0.490	0.510	0.520	0.510	0.00	0.34	0.35	±1.00
0.700	0.680	0.680	0.690	0.700	0.690	-0.12	0.25	0.13	±1.00
0.910	0.890	0.880	0.900	0.910	0.880	-0.10	0.19	0.00	±1.00
1.23	1,20	1.20	1.25	1.21	1.18	0.14	0.07	-0.15	±1.00
1.68	1.65	1.64	1.68	1.64	1.63	0.00	-0.05	-0.05	±1.00
2.24	2.20	2.19	2.25	2.21	2.20	0.04	0.04	0.04	±0.20
3.00	2.94	2.93	3.00	2.95	2.92	0.00	0.03	-0.03	±0.20
4.07	4.00	3.97	4.08	3.99	3.97	0.02	-0.02	0.00	±0.20
5.52	5.41	5.38	5.53	5.42	5.39	0.02	0.02	0.02	±0.20
7.42	7.28	7.23	7.44	7.28	7.23	0.02	0.00	0.00	±0.20
9.91	9.72	9.67	9.91	9.71	9.66	0.00	-0.01	-0.01	±0.20
13.4	13.1	13.1	13.4	13.1	13.1	0.00	0.00	0.00	±0.20
18.1	17.7	17.6	18.1	17.7	17.6	0.00	0.00	0.00	±0.20
24.4	23.9	23.8	24.4	23.9	23.9	0.00	0.00	0.04	±0.20
32.5	31.9	31.8	32.7	32.0	31.9	0.05	0.03	0.03	±0.20
43.9	43.1	42.9	44.1	43.3	43.0	0.04	0.04	0.02	±0.20
59.5	58.3	58.0	59.9	58.8	58.4	0.06	0.07	0.06	±0.20
81.9	80.3	79.9	81.6	80.0	79.6	-0.03	-0.03	-0.03	±0.20
107	105	105	107	105	104	0.00	0.00	-0.08	±0.20
148	145	144	147	144	143	-0.06	-0.06	-0.06	±0.20
205	201	200	205	201	200	0.00	0.00	0.00	±0.20
285	279	278	286	274	279	0.03	-0.16	0.03	±0.20
423	415	413	415	409	405	-0.17	-0.13	-0.17	±0.20
587	575	572	580	572	566	-0.10	-0.05	-0.09	±0.20
882	864	859	882	869	860	0.00	0.05	0.01	±0.20
1340	1320	1310	1360	1340	1330	0.13	0.13	0.13	±0.30
1840	1810	1800	1890	1860	1840	0.23	0.24	0.19	±0.30
3020	2960	2940	3140	3090	3050	0.34	0.37	0.32	±0.50
3620	3540	3520	3770	3710	3670	0.35	0.41	0.36	±0.50

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Dif	ference/(dB)	
X	У	Z	x	У	Z	x	У	z	Tolerance/(dB)
0.370	0.360	0.350	0.370	0.380	0.370	0.00	0.47	0.48	±1.00
0.500	0.490	0.480	0,490	0.520	0.490	-0.18	0.52	0.18	±1.00
0.680	0.680	0.660	0.680	0.680	0.670	0.00	0.00	0.13	±1.00
0.890	0.890	0.860	0.900	0.880	0.870	0.10	-0.10	0.10	±1.00
1.21	1.20	1.17	1.24	1.21	1.18	0.21	0.07	0.07	±1.00
1.66	1.65	1.60	1.68	1.67	1.62	0.10	0.10	0.11	±1.00
2.21	2.19	2.13	2.24	2.20	2.17	0.12	0.04	0.16	±0.20
2.95	2,93	2.85	2.98	2.93	2,89	0.09	0.00	0.12	±0.20
4.01	3.98	3.88	4.02	3.99	3.89	0.02	0.02	0.02	±0.20
5.43	5.39	5.24	5.43	5.37	5.27	0.00	-0.03	0.05	±0.20
7,31	7.25	7.05	7,31	7,27	7,11	0.00	0.02	0.07	±0.20
9.77	9.68	9.43	9.75	9.72	9.49	-0.02	0.04	0.06	±0.20
13.2	13.1	12.7	13.2	13.1	12.8	0.00	0.00	0.07	±0.20
17.8	17.6	17.2	17.8	17.6	17.2	0.00	0.00	0.00	±0.20
24.0	23.8	23.2	24.0	23.8	23.2	0.00	0.00	0.00	±0.20
32.0	31.8	31.0	32.2	31.9	31.1	0.05	0.03	0.03	±0.20
43.3	43.0	41.8	43.4	43.2	42.0	0.02	0.04	0.04	±0.20
58.6	58.1	56.6	59.0	58.6	57.0	0.06	0.07	0.06	±0.20
80.7	80.1	78.0	80.4	79.8	77.7	-0.03	-0.03	-0.03	±0.20
106	105	102	105	104	102	-0.08	-0.08	0.00	±0.20
145	144	141	145	144	140	0.00	0.00	-0.06	±0.20
202	201	195	202	200	195	0.00	-0.04	0.00	±0.20
281	278	271	282	273	272	0.03	-0.16	0.03	±0.20
416	413	402	409	408	395	-0.15	-0.11	-0.15	±0.20
578	573	558	571	570	552	-0.11	-0.05	-0.09	±0.20
868	861	838	869	865	839	0.01	0.04	0.01	±0.20
1320	1310	1280	1340	1340	1300	0.13	0.20	0.13	±0.30
1820	1800	1750	1860	1850	1800	0.19	0.24	0.24	±0.30
2980	2950	2870	3090	3050	2980	0.31	0.29	0.33	±0.40
3560	3530	3440	3710	3640	3580	0.36	0.27	0.35	±0.50

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

H-fie	ld/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	ading	Dif	erence/(dB)	
X	У	z	×	у	z	x	у	z	Tolerance/(dB
0.370	0.370	0.360	0.390	0.390	0.370	0.46	0.46	0.24	±1.00
0.500	0.500	0.490	0.520	0.520	0.500	0.34	0.34	0.18	±1.00
0.690	0.690	0.680	0.700	0.710	0.680	0.12	0.25	0.00	±1.00
0.890	0.900	0.880	0.890	0.910	0.880	0.00	0.10	0.00	±1.00
1.21	1.22	1,19	1.21	1.22	1,20	0.00	0.00	0.07	±1.00
1.66	1.68	1.64	1.67	1.68	1.66	0.05	0.00	0.11	±1.00
2.22	2.23	2.18	2.22	2.24	2.20	0.00	0.04	0.08	±0.20
2.96	2.99	2.91	2.97	2.98	2.93	0.03	-0.03	0.06	±0.20
4.02	4.05	3,96	4.02	4.06	3.99	0.00	0.02	0.07	±0.20
5.44	5.49	5.36	5.44	5.49	5.39	0.00	0.00	0.05	±0.20
7.32	7.38	7.21	7.32	7.38	7.24	0.00	0.00	0.04	±0.20
9.79	9.85	9.63	9.77	9.86	9.66	-0.02	0.01	0.03	±0.20
13.2	13.3	13.0	13.2	13.3	13.0	0.00	0.00	0.00	±0.20
17.8	17.9	17.6	17.8	18.0	17.5	0.00	0.05	-0.05	±0.20
24.1	24.2	23.7	24.1	24.2	23.7	0.00	0.00	0.00	±0.20
32.1	32.4	31.6	32.3	32.5	31.8	0.05	0.03	0.05	±0.20
43.4	43.7	42.7	43.6	43.9	42.9	0.04	0.04	0.04	±0.20
58.7	59.2	57.8	59.1	59.6	58.2	0.06	0.06	0.06	±0.20
80.9	81.5	79.6	80.6	81.2	79.3	-0.03	-0.03	-0.03	±0.20
106	107	104	105	106	104	-0.08	-0.08	0.00	±0.20
146	147	144	145	146	143	-0.06	-0.06	-0.06	±0.20
203	204	199	202	204	199	-0.04	0.00	0.00	±0.20
281	283	277	282	278	278	0.03	-0.15	0.03	±0.20
417	421	411	410	415	404	-0.15	-0.12	-0.15	±0.20
579	584	570	572	581	564	-0.11	-0.04	-0.09	±0.20
870	877	856	870	882	856	0.00	0.05	0.00	±0.20
1330	1340	1310	1350	1360	1320	0.13	0.13	0.07	±0.30
1820	1830	1790	1860	1890	1830	0.19	0.28	0.19	±0.30
2980	3010	2930	3100	3140	3040	0.34	0.37	0.32	±0.50
3570	3590	3510	3720	3760	3660	0.36	0.40	0.36	±0.50

SPEAG H-field linearity tolerance criteria!:

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

Certificate No: MAGPy-8H3D-3059 Page 7 of 26

[†]Calibration uncertainty not taken into account (shared risk 50%).

H-fie	ld/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	Z	×	У	z	X	у	Z	Tolerance/(dB
0.370	0.370	0.370	0.380	0.380	0.380	0.23	0.23	0.23	±1.00
0.500	0.500	0,510	0.510	0.520	0.520	0.17	0.34	0.17	±1.00
0.690	0.690	0.690	0.690	0.710	0.700	0.00	0.25	0.12	±1.00
0.890	0.900	0.900	0.890	0.920	0.920	0.00	0.19	0.19	±1.00
1.21	1.22	1.22	1,23	1.24	1.25	0.14	0.14	0.21	±1.00
1.66	1.68	1.68	1.68	1.70	1.71	0.10	0.10	0.15	±1.00
2.21	2.24	2.24	2.24	2.27	2.28	0.12	0.12	0.15	±0.20
2.96	2.99	3.00	2.98	3.04	3.03	0.06	0.14	0.09	±0.20
4.02	4.06	4.07	4.04	4.10	4.09	0.04	0.09	0.04	±0.20
5.44	5,50	5.51	5.47	5.53	5.53	0.05	0.05	0.03	±0.20
7.32	7.40	7,41	7.35	7.44	7.43	0.04	0.05	0.02	±0.20
9.78	9.88	9.90	9.79	9.93	9.92	0.01	0.04	0.02	±0.20
13.2	13.3	13.4	13.2	13.4	13.4	0.00	0.07	0.00	±0.20
17.8	18.0	18.0	17.8	18.1	18.1	0.00	0.05	0.05	±0.20
24.0	24.3	24.3	24.1	24.4	24.4	0.04	0.04	0.04	±0.20
32.1	32.4	32.5	32.2	32.6	32,7	0.03	0.05	0.05	±0.20
43.3	43.8	43.9	43.5	44.1	44.1	0.04	0.06	0.04	±0.20
58.6	59.3	59.5	59.0	59.8	59.9	0.06	0.07	0.06	±0.20
80.8	81.7	81.9	80.5	81.4	81.5	-0.03	-0.03	-0.04	±0.20
106	107	107	105	107	107	-0.08	0.00	0.00	±0.20
146	147	148	145	147	147	-0.06	0.00	-0.06	±0.20
202	205	205	202	204	204	0.00	-0.04	~0.04	±0.20
281	284	284	282	279	286	0.03	-0.15	0.06	±0.20
417	422	423	410	416	415	-0.15	-0.12	-0.17	±0.20
578	585	586	572	581	579	-0.09	-0.06	-0.10	±0.20
869	879	880	870	883	880	0.01	0.04	0.00	±0.20
1330	1340	1340	1350	1360	1360	0.13	0.13	0.13	±0.30
1820	1840	1840	1860	1890	1880	0.19	0.23	0.19	±0.30
2980	3010	3010	3090	3140	3130	0.31	0.37	0.34	±0.50
3570	3600	3610	3720	3760	3760	0.36	0.38	0.35	±0.50

SPEAG H-field linearity tolerance criteria1:

±1.0dB for applied H-fields < 2.0 A/m

±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

±0.5dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	Z	×	У	Z	x	У	Z	Tolerance/(dB)
0.370	0.370	0.370	0.380	0.390	0.380	0.23	0.46	0.23	±1.00
0.510	0.510	0.500	0.520	0.530	0.500	0.17	0.33	0.00	±1.00
0.690	0.690	0.680	0.710	0.720	0.680	0.25	0.37	0.00	±1.00
0.910	0.900	0.890	0.920	0.930	0.880	0.09	0.28	-0.10	±1.00
1.22	1.22	1.20	1.25	1.22	1.19	0.21	0.00	-0.07	±1.00
1.68	1.68	1.65	1.68	1.68	1.63	0.00	0.00	-0.11	±1.00
2.24	2.24	2.20	2.23	2.27	2.19	-0.04	0.12	-0.04	±0.20
2.99	3.00	2.94	2.99	3.00	2.92	0.00	0.00	-0.06	±0.20
4.07	4.07	4.00	4.08	4.09	3.97	0.02	0.04	-0.07	±0.20
5,51	5.51	5,41	5.51	5.52	5.39	0.00	0.02	-0.03	±0.20
7.41	7.41	7,27	7.43	7.42	7,26	0.02	0.01	-0.01	±0.20
9.90	9.89	9.72	9.91	9,91	9,72	0.01	0.02	0.00	±0.20
13.4	13.4	13.1	13.4	13.4	13.1	0.00	0.00	0.00	±0.20
18.0	18.0	17.7	18.0	18.0	17.7	0.00	0.00	0.00	±0.20
24.3	24.3	23.9	24.4	24.3	23.9	0.04	0.00	0.00	±0.20
32.5	32.5	31.9	32.6	32.6	32.1	0.03	0.03	0.05	±0.20
43.9	43.9	43.1	44.0	44.1	43.3	0.02	0.04	0.04	±0.20
59.4	59.4	58.4	59.8	59.8	58.8	0.06	0.06	0.06	±0.20
81.8	81.8	80.4	81.5	81.5	80.1	-0.03	+0.03	-0.03	±0.20
107	107	105	107	107	105	0.00	0.00	0.00	±0.20
147	147	145	147	147	144	0.00	0.00	-0.06	±0.20
205	205	201	204	204	201	-0.04	-0.04	0.00	±0.20
284	284	279	286	279	281	0.06	-0.15	0.06	±0.20
422	422	415	414	417	407	-0.17	-0.10	-0.17	±0.20
586	586	575	579	582	569	-0.10	-0.06	-0.09	±0.20
880	880	864	881	885	865	0.01	0.05	0.01	±0.20
1340	1340	1320	1360	1370	1340	0.13	0.19	0.13	±0.30
1840	1840	1810	1890	1890	1850	0.23	0.23	0.19	±0.30
3020	3020	2960	3130	3140	3070	0.31	0.34	0.32	±0.50
3610	3610	3540	3760	3770	3700	0.35	0.38	0.38	±0.50

SPEAG H-field linearity tolerance criteria1:

Certificate No: MAGPy-8H3D-3059 Page 9 of 26

^{±1.0}dB for applied H-fields < 2.0A/m

^{±0.2}dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m

^{±0.3}dB for applied H-fields ≥ 1000 A/m and < 2000 A/m

^{±0.4}dB for applied H-fields ≥ 2000 A/m and < 3000 A/m

^{±0.5}dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%).

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ding	Diff	erence/(dB)	
x	у	z	×	У	z	×	у	z	Tolerance/(dB)
0.370	0.370	0.350	0.400	0,390	0.360	0.68	0.46	0.24	±1.00
0,510	0.500	0.480	0.540	0.520	0.490	0.50	0.34	0.18	±1.00
0.700	0.680	0.660	0.710	0.690	0.640	0.12	0.13	-0.27	±1,00
0.910	0.890	0.860	0.910	0.900	0.850	0.00	0.10	-0.10	±1,00
1.23	1.20	1.16	1.22	1.22	1,16	-0.07	0.14	0.00	±1.00
1.69	1.65	1.60	1.69	1.67	1.62	0.00	0.10	0.11	±1.00
2.26	2.20	2.13	2.27	2.25	2.14	0.04	0.20	0.04	±0.20
3.02	2.95	2.85	3.01	2.97	2.85	-0.03	0.06	0.00	±0.20
4.10	4.00	3.87	4.09	4.03	3.89	-0.02	0.06	0.04	±0.20
5.55	5.41	5.23	5.55	5.45	5.25	0.00	0.06	0.03	±0.20
7.46	7.28	7,04	7.46	7.32	7.07	0.00	0.05	0.04	±0.20
9.97	9,72	9.41	9.97	9.76	9.46	0.00	0.04	0.05	±0.20
13.5	13.1	12.7	13.5	13.2	12.8	0.00	0.07	0.07	±0.20
18.2	17.7	17.1	18.2	17.7	17.2	0.00	0.00	0.05	±0.20
24.5	23.9	23.1	24.6	24.0	23.2	0.04	0.04	0.04	±0.20
32.7	31.9	30.9	32.9	32.1	31.1	0.05	0.05	0.06	±0.20
44.2	43.1	41.8	44.4	43.4	41,9	0.04	0.06	0.02	±0.20
59.8	58.4	56.5	60.2	58.8	56.9	0.06	0.06	0.06	±0.20
82.4	80.4	77.8	82.1	80.1	77,5	-0.03	+0.03	-0.03	±0.20
108	105	102	107	105	101	-0.08	0.00	-0.09	±0.20
148	145	140	148	144	140	0.00	-0.06	0.00	±0.20
206	201	195	206	201	194	0.00	0.00	-0.04	±0.20
286	280	270	288	275	272	0.06	-0.16	0.06	±0.20
425	415	402	418	409	394	-0.14	-0.13	-0.17	±0.20
590	576	557	583	572	551	-0.10	-0.06	-0.09	±0.20
886	865	837	887	869	837	0.01	0.04	0.00	±0.20
1350	1320	1280	1370	1340	1290	0.13	0.13	0.07	±0.30
1850	1810	1750	1900	1860	1790	0.23	0.24	0.20	±0.30
3040	2970	2870	3150	3090	2970	0.31	0.34	0.30	±0.50
3640	3540	3430	3790	3710	3580	0.35	0.41	0.37	±0.50

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0 A/m
- ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
- ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

Certificate No: MAGPy-8H3D-3059 Page 10 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).

E-fie	eld/(V/m) App	olied	E-fie	ld/(V/m) Rea	ding	Dif	ference/(dB)	Tol	erance/(d	B)
×	У	Z	x	У	2	×	У	z	×	У	z
0.340	0.220	0.090	0.360	0.220	0.100	0.50	0.00	0.92	±5.00	±5.00	±5.0
0.460	0.300	0.130	0.480	0.290	0.150	0.37	-0.29	1,24	±5.00	±5.00	±5.0
0.630	0.410	0.170	0.670	0.400	0.170	0.53	-0.21	0.00	±5.00	±5.00	±5.0
0.830	0.530	0.230	0.860	0.540	0.230	0.31	0.16	0.00	±5.00	±5.00	±5.00
1.12	0.720	0.300	1.16	0.760	0.320	0.30	0.47	0.56	±5.00	±5.00	±5.0
1.54	0.980	0.420	1.58	0.990	0.450	0.22	0.09	0.60	±5.00	±5.00	±5.0
2.05	1.31	0.560	2,11	1,30	0.550	0.25	-0.07	-0.16	±1.00	±5.00	±5.0
2,74	1.75	0.740	2.80	1.76	0.730	0.19	0.05	-0.12	±1,00	±5.00	±5.0
3,72	2.38	1.01	3,77	2.41	1.01	0.12	0.11	0.00	±1.00	±1.00	±5,0
5.04	3.22	1.37	5,14	3.24	1.36	0.17	0.05	-0.06	±1.00	±1.00	±5.00
6,78	4.33	1.84	6.87	4.36	1.81	0.11	0.06	-0.14	±1.00	±1,00	±5.00
9.05	5.78	2.46	9.18	5.78	2.41	0.12	0.00	-0.18	±1.00	±1.00	±1.0
12.2	7,81	3.32	12.4	7.81	3.27	0.14	0.00	-0.13	±1.00	±1.00	±1.0
16.5	10.5	4.48	16.7	10.5	4.40	0.10	0.00	-0.16	±1.00	±1.00	±1.0
22.3	14.2	6.05	22.6	14.2	5.95	0.12	0.00	-0.14	±1.00	±1.00	±1.0
29.7	19.0	8.07	30.1	19.0	7.97	0.12	0.00	-0.11	±1.00	±1.00	±1.0
40.2	25.6	10.9	40.6	25.7	10.8	0.09	0.03	-0.08	±1.00	±1.00	±1.0
54.4	34.7	14.8	55.0	34.9	14.6	0.10	0.05	-0.12	±1.00	±1.00	±1.0
74.9	47.8	20.3	75.0	47.5	19.9	0.01	-0.05	-0.17	±1.00	±1.00	±1.0
98.1	62.7	26.6	98.1	62.2	26.1	0.00	-0.07	-0.16	±1.00	±1.00	±1.0
135	86.1	36.6	135	85.4	36.0	0.00	-0.07	-0.14	±1.00	±1.00	±1.0
187	120	51.0	187	119	50.0	0.00	-0.07	-0.17	±1.00	±1.00	±1.0
260	166	70.7	261	166	70.0	0.03	0.00	-0.09	±1.00	±1,00	±1.0
386	247	105	364	234	104	0.51	-0.47	-0.08	±1.00	±1.00	±1.0
536	342	146	508	327	146	-0.47	-0.39	0.00	±1.00	±1.00	±1.0
806	514	219	772	498	222	-0.37	-0.27	0.12	±1.00	±1.00	±1.0
1230	785	334	1190	769	343	-0.29	-0.18	0.23	±1.00	±1.00	±1.0
1680	1080	458	1650	1070	475	-0.16	-0.08	0.32	±1.00	±1.00	±1.0
2760	1760	751	2750	1770	752	-0.03	0.05	0.01	±1.00	±1.00	±1.0
3300	2110	898	3300	2130	905	0.00	0.08	0.07	±1.00	±1,00	±1.00

SPEAG E-field linearity tolerance criteria1;

^{±5.0}dB for applied E-field < 2V/m

^{±1.0}dB for applied E-field ≥ 2V/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

Frequency Response

Frequency Response, H-field, Channel 0

20170/20	H-field/(A/m) Applied			H-field	I/(A/m) Rea	Diff	erence/(10.00	CHAPTER STREET	
1/(Hz)	x	y	2	×	y	z	×	У	z	Tolerance/(dB
3000	1.48	1.48	1,48	1.46	1.47	1,47	-0.12	-0,06	-0.06	±0.3
3200	1.47	1.47	1.47	1.47	1.49	1.49	0.00	0.12	0.12	±0.3
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1,44	1.43	1.46	-0.06	-0.12	0.06	±0.3
6600	1.44	1.44	1.44	1.44	1,44	1,44	0.00	0.00	0.00	±0.3
8200	1.43	1.43	1.43	1.42	1.42	1.42	-0.06	-0.06	-0,06	±0.3
9000	1,43	1.42	1.43	1.42	1.42	1.42	-0.06	0.00	-0.06	±0.3
10600	4.28	4.23	4.22	4.29	4.23	4.21	0.02	0.00	-0.02	±0.3
13400	4.27	4.24	4.24	4.26	4.22	4.23	-0.02	-0.04	-0.02	±0,3
17000	4.28	4.24	4.24	4.25	4,23	4.22	-0.06	-0.02	-0.04	±0.3
21400	4.30	4.26	4.26	4.29	4.26	4.26	-0.02	0.00	0.00	±0.3
27200	4.30	4.26	4.26	4.29	4.26	4.25	-0.02	0.00	-0.02	±0.3
34400	4.30	4.28	4.27	4.28	4.27	4.26	-0.04	-0.02	-0.02	±0.3
40000	4.29	4.27	4.27	4.29	4.27	4.27	0.00	0.00	0.00	±0.3
43600	4.28	4.26	4.26	4.28	4.25	4.26	0.00	-0.02	0.00	±0.3
55400	4,27	4.25	4.25	4.27	4.25	4.25	0.00	0.00	0.00	±0.3
70000	4.26	4.24	4.24	4.26	4.24	4.24	0.00	0.00	0.00	±0.3
88800	4.25	4.23	4.23	4.25	4.22	4.23	0.00	-0.02	0.00	±0.3
112400	4.24	4.22	4.22	4.24	4.22	4.21	0.00	0.00	-0.02	±0.3
142400	4.22	4.20	4.20	4.21	4.20	4.20	-0.02	0.00	0.00	±0.3
161750	4.20	4.18	4.18	4.20	4.18	4.18	0.00	0.00	0.00	±0.3
180400	4.19	4.17	4.17	4.18	4.17	4.17	-0.02	0.00	0.00	±0.3
228400	4.16	4.14	4.14	4.15	4.13	4.13	-0.02	-0.02	-0.02	±0.3
289 400	4.12	4.10	4.10	4.11	4.10	4.10	-0.02	0.00	0.00	±0.3
366400	4.08	4.06	4.06	4.08	4.06	4.06	0.00	0.00	0.00	±0.3
400000	4,06	4.04	4.04	4.05	4.04	4.04	-0.02	0.00	0.00	±0.3
464000	4.03	4.02	4.01	4.02	4.01	4.01	-0.02	-0.02	0.00	±0.3
587800	3.98	3.98	3.97	3.98	3.97	3.97	0.00	-0.02	0.00	+0.3
744200	3.93	3.93	3,93	3.93	3.93	3,92	0.00	0.00	-0.02	±0.3
942600	3.92	3.92	3.92	3.92	3.92	3.91	0.00	0.00	-0.02	±0.3
1193600	3.90	3.89	3.89	3.90	3.89	3.89	0.00	0.00	0.00	±0.3
1511600	3.89	3.88	3.88	3.89	3,89	3.88	0.00	0.02	0.00	±0.3
1914400	3.88	3.87	3.86	3.87	3.87	3.86	-0.02	0.00	0.00	±0.3
2424400	3.86	3.85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3
3070200	3.83	3.82	3.81	3.82	3.82	3.81	-0.02	0.00	0.00	±0.3
3888000	3.78	3.77	3.76	3,78	3.76	3.76	0.00	-0.02	0.00	±0.3
4000000	3.77	3.76	3.75	3.78	3,76	3.75	0.02	0.00	0.00	±0.3
4923800	3.70	3.69	3.69	3.71	3.69	3.69	0.02	0.00	0.00	±0.3
6235400	3.60	3.59	3.60	3.59	3.60	3.59	-0.02	0.02	-0.02	±0.3
7896400	3.45	3,44	3,44	3.44	3,43	3.45	-0.03	-0.03	0.03	±0.3
10000000	3.30	3.30	3.30	3.27	3.29	3.28	-0.08	-0.03	-0.05	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3059 Page 12 of 26

¹Calibration uncertainty not taken into account (shared risk 50%),

	H-field/(A/m) Applied			H-field	/(A/m) Rea	Diff	erence/(d	6-50 BWS		
f/(Hz)	x	y	2	x	у	Z	x	У	Z	Tolerance/(dB
3000	1.48	1.48	1.48	1.46	1.47	1.48	-0.12	-0.06	0.00	±0.3
3200	1,47	1,47	1.47	1.46	1.49	1.48	-0.06	0.12	0.06	±0.3
4000	1.46	1.46	1,46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.43	1.44	1.45	-0.12	-0.06	0.00	±0.3
6600	1.44	1.44	1.44	1.44	1.44	1.43	0.00	0,00	-0.06	±0.3
8200	1.43	1.43	1.43	1.42	1.43	1,43	-0.06	0.00	0.00	±0.3
9000	1.43	1.42	1.43	1.42	1.43	1.42	-0.06	0.06	-0.06	±0.3
10600	4.28	4.23	4.22	4.28	4.23	4.20	0.00	0.00	-0.04	±0.3
13400	4.27	4.24	4.24	4.27	4.24	4.24	0.00	0.00	0.00	±0.3
17000	4.28	4.24	4.24	4.25	4.24	4,25	-0.06	0.00	0.02	±0.3
21400	4.30	4.26	4.26	4.27	4.25	4.25	-0.06	-0.02	-0.02	±0.3
27200	4.30	4.26	4.26	4.27	4.25	4,26	-0.06	-0.02	0,00	±0.3
34400	4.30	4.28	4.27	4.28	4.28	4.27	-0.04	0.00	0.00	±0.3
40000	4.29	4.27	4.27	4.27	4.27	4.27	-0.04	0.00	0.00	±0.3
43600	4.28	4.26	4.26	4.26	4.27	4.27	-0.04	0.02	0.02	±0.3
55400	4.27	4.25	4.25	4.26	4.25	4.25	-0.02	0.00	0.00	±0.3
70000	4.26	4.24	4.24	4.25	4.24	4.24	-0.02	0.00	0.00	±0.3
88800	4.25	4.23	4.23	4.23	4.23	4.24	-0.04	0.00	0.02	±0.3
112400	4.24	4.22	4.22	4.22	4.21	4.22	-0.04	-0.02	0.00	±0.3
142400	4.22	4.20	4.20	4.21	4.19	4.20	-0.02	-0.02	0.00	±0.3
161750	4.20	4.18	4.18	4.19	4.18	4.18	-0.02	0.00	0.00	±0.3
180400	4.19	4.17	4,17	4.17	4.17	4.17	-0.04	0.00	0.00	±0.3
228400	4.16	4.14	4.14	4.15	4.14	4.14	-0.02	0.00	0.00	±0.3
289400	4.12	4.10	4.10	4.11	4,10	4.10	-0.02	0.00	0.00	±0.3
366400	4.08	4.06	4.06	4.07	4.06	4.07	-0.02	0.00	0.02	±0.3
400000	4.06	4.04	4.04	4.05	4.05	4.05	-0.02	0.02	0.02	±0.3
464000	4.03	4.02	4.01	4.02	4.02	4.03	-0.02	0.00	0.04	±0.3
587800	3.98	3.98	3.97	3.98	3.98	3.97	0.00	0.00	0.00	±0.3
744200	3.93	3.93	3.93	3.92	3.92	3.93	-0.02	-0.02	0.00	±0.3
942600	3.92	3.92	3.92	3.91	3.92	3.93	-0.02	0.00	0.02	±0.3
1193600	3.90	3.89	3.89	3.90	3.89	3,90	0.00	0.00	0.02	±0.3
1511600	3.89	3.88	3.88	3.89	3.88	3.88	0.00	0.00	0.00	±0,3
1914400	3.88	3.87	3,86	3.88	3.86	3.86	0.00	-0.02	0.00	±0.3
2424400	3.86	3.85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3
3070200	3.83	3.82	3.81	3.83	3.82	3.81	0.00	0.00	0.00	±0.3
3888000	3.78	3.77	3.76	3.77	3.76	3.76	-0.02	-0.02	0.00	±0.3
4000000	3.77	3.76	3.75	3.76	3,76	3,75	-0.02	0,00	0.00	±0.3
4923800	3.70	3.69	3.69	3.69	3.69	3.70	-0.02	0.00	0.02	±0.3
6235400	3.60	3.59	3.60	3.59	3.58	3.59	-0.02	-0.02	-0.02	±0.3
7896400	3.45	3.44	3.44	3.44	3.44	3.40	-0.03	0.00	-0.10	±0.3
10000000	3.30	3.30	3.30	3.32	3.32	3.31	0.05	0.05	0.03	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Calibration uncertainty not taken into account (shared risk 50%).

	H-field/(A/m) Applied			H-field	/(A/m) Rea	ding	Diff	erence/(d	1=101 00000	
f/(Hz)	x	y	Z	x	y	z	X	y	Z	Tolerance/(dB
3000	1.48	1.48	1.48	1.48	1.47	1.48	0.00	-0.06	0.00	±0.3
3200	1.47	1.47	1,47	1.47	1.49	1.48	0.00	0.12	0.06	±0.3
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.44	1.44	1.46	-0.06	-0.06	0.06	±0.3
6600	1.44	1.44	1.44	1.44	1.44	1,43	0.00	0.00	-0.06	±0.3
8200	1.43	1.43	1.43	1.42	1.42	1.43	-0.06	-0.06	0.00	±0.3
9000	1.43	1,42	1.43	1.43	1.42	1.42	0.00	0.00	-0.06	±0.3
10600	4.28	4.23	4.22	4.29	4.21	4.21	0.02	-0.04	-0.02	±0.3
13400	4.27	4.24	4.24	4.26	4.22	4.23	-0.02	-0.04	-0.02	±0.3
17000	4.28	4.24	4.24	4.27	4.23	4.22	-0.02	-0.02	-0.04	±0.3
21400	4.30	4.26	4.26	4.28	4.25	4.26	-0.04	-0.02	0.00	±0.3
27200	4.30	4.26	4.26	4.28	4.24	4.26	-0.04	-0.04	0.00	±0.3
34400	4.30	4.28	4.27	4.29	4.26	4.27	-0.02	0.04	0.00	±0.3
40000	4.29	4.27	4.27	4.29	4.26	4.26	0.00	-0.02	-0.02	±0.3
43600	4.28	4.26	4.26	4.29	4.25	4.26	0.02	-0.02	0.00	±0.3
55400	4.27	4.25	4.25	4.26	4.25	4.25	-0.02	0.00	0.00	£0.3
70000	4.26	4.24	4.24	4.25	4.24	4.24	-0.02	0.00	0.00	±0,3
88800	4.25	4.23	4.23	4.24	4.22	4.22	-0.02	-0.02	-0.02	±0.3
112400	4.24	4.22	4.22	4.23	4.21	4.21	-0.02	-0.02	-0.02	±0.3
142400	4.22	4.20	4.20	4.21	4.19	4.20	-0.02	-0.02	0.00	±0.3
161750	4.20	4.18	4,18	4.19	4.18	4.18	-0.02	0.00	0.00	±0.3
180400	4.19	4.17	4.17	4.17	4.17	4.17	-0.04	0.00	0.00	±0.3
228400	4.16	4.14	4.14	4.15	4.13	4.13	-0.02	-0.02	-0.02	±0.3
289400	4.12	4.10	4,10	4.12	4.09	4.09	0.00	~0.02	-0.02	±0.3
366400	4.08	4.06	4.06	4.07	4.06	4.07	-0.02	0.00	0.02	±0.3
400000	4.06	4.04	4.04	4.05	4.04	4.04	-0.02	0.00	0.00	±0.3
464000	4.03	4.02	4.01	4.02	4.01	4.01	-0.02	-0.02	0.00	±0.3
587800	3.98	3.98	3.97	3.98	3.97	3.97	0.00	-0.02	0.00	±0.3
744200	3.93	3.93	3.93	3.93	3.92	3.92	0.00	-0.02	-0.02	±0.3
942600	3.92	3.92	3.92	3.92	3.92	3.91	0.00	0.00	-0.02	±0.3
1193600	3.90	3.89	3.89	3.91	3.89	3.89	0.02	0.00	0.00	±0.3
1511600	3.89	3.88	3.88	3.89	3.89	3.88	0.00	0.02	0.00	±0.3
1914400	3.88	3.87	3.86	3.88	3.87	3.87	0.00	0.00	0.02	±0.3
2424400	3.86	3.85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3
3070200	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3
3888000	3.78	3.77	3.76	3.78	3.76	3.77	0.00	-0.02	0.02	±0.3
4000000	3.77	3.76	3.75	3.76	3,76	3.76	-0.02	0.00	0.02	±0.3
4923800	3.70	3.69	3.69	3.70	3.69	3.69	0.00	0.00	0.00	±0.3
6235400	3.60	3.59	3.60	3.60	3.60	3.60	0.00	0.02	0.00	±0.3
7896400	3.45	3.44	3.44	3.44	3.43	3.42	-0.03	-0.03	-0.05	±0.3
0000000	3.30	3.30	3.30	3.28	3.29	3.29	-0.05	-0.03	-0.03	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Calibration uncertainty not taken into account (shared risk 50%).

	H-field/(A/m) Applied			H-field	/(A/m) Rea	ding	Diff	erence/(dB)		
t/(Hz)	x	y	z	x	у	Z	x	У	2	Tolerance/(dB	
3000	1.48	1.48	1.48	1,47	1.48	1.47	-0.06	0.00	-0.06	±0.3	
3200	1.47	1.47	1,47	1.47	1.48	1.49	0.00	0.06	0.12	±0.3	
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3	
5200	1.45	1.45	1.45	1.43	1.43	1.46	-0.12	-0.12	0.06	±0.3	
6600	1.44	1.44	1,44	1.45	1.44	1.43	0.06	0.00	-0.06	±0.3	
8200	1.43	1.43	1.43	1.43	1.42	1.43	0.00	-0.06	0.00	±0.3	
9000	1,43	1.42	1.43	1,42	1.43	1.42	-0.06	0.06	-0.06	±0.3	
10600	4.28	4.23	4.22	4.29	4.21	4.22	0.02	-0.04	0.00	±0.3	
13400	4.27	4.24	4.24	4.26	4.24	4.22	-0.02	0.00	-0.04	±0.3	
17000	4.28	4.24	4.24	4.27	4.23	4.22	-0.02	-0.02	-0.04	±0.3	
21400	4.30	4.26	4.26	4.28	4.27	4.27	-0.04	0.02	0.02	±0.3	
27200	4.30	4.26	4.26	4.29	4.28	4.24	-0.02	0.04	-0.04	±0.3	
34400	4.30	4.28	4.27	4.28	4.27	4.27	-0.04	-0.02	0.00	±0.3	
40000	4.29	4.27	4.27	4.28	4.27	4.26	-0.02	0.00	-0.02	±0.3	
43600	4.28	4.26	4.26	4.27	4.25	4.25	-0.02	-0.02	-0.02	±0.3	
55400	4.27	4.25	4.25	4.26	4.24	4.24	-0.02	-0.02	-0.02	±0.3	
70000	4.26	4.24	4.24	4.25	4.24	4.23	-0.02	0.00	-0.02	±0.3	
88800	4.25	4.23	4.23	4.24	4.23	4.22	-0.02	0.00	-0.02	±0.3	
112400	4.24	4.22	4.22	4.23	4.21	4.21	-0.02	-0.02	-0.02	±0.3	
142400	4.22	4.20	4.20	4.22	4.19	4.19	0.00	-0.02	-0.02	±0.3	
161750	4.20	4.18	4.18	4.19	4.17	4.18	-0.02	-0.02	0.00	±0.3	
180400	4.19	4.17	4,17	4.18	4,17	4.17	-0.02	0.00	0.00	±0.3	
228400	4.16	4.14	4.14	4.15	4.13	4.13	-0.02	-0.02	-0.02	±0,3	
289400	4.12	4.10	4.10	4.10	4.11	4.09	-0.04	0.02	-0.02	±0.3	
366 400	4.08	4.06	4.06	4.07	4.06	4,06	-0.02	0.00	0.00	±0.3	
400000	4.06	4.04	4.04	4.05	4.04	4.04	-0.02	0.00	0.00	±0.3	
464000	4.03	4.02	4.01	4.02	4.01	4.01	-0.02	-0.02	0.00	±0.3	
587800	3.98	3.98	3.97	3.98	3.97	3.97	0.00	-0.02	-0.00	±0.3	
744200	3.93	3.93	3.93	3.93	3.93	3.93	0.00	0.00	0.00	±0.3	
942600	3.92	3.92	3.92	3.92	3.92	3.91	0.00	0.00	-0.02	±0.3	
1193600	3.90	3.89	3.89	3.90	3.89	3.89	0.00	0.00	0.00	±0.3	
1511600	3.89	3.88	3.88	3.88	3.88	3.88	-0.02	0.00	0.00	±0.3	
1914400	3.88	3.87	3.86	3.87	3.86	3.87	-0.02	-0.02	0.02	±0.3	
2424400	3.86	3.85	3.85	3.85	3.85	3.85	-0.02	0.00	0.00	±0.3	
3070200	3.83	3.82	3.81	3.83	3.82	3.81	0.00	0.00	0.00	±0.3	
3888000	3.78	3.77	3.76	3.78	3.77	3.77	0.00	0.00	0.02	±0.3	
4000000	3.77	3.76	3.75	3.77	3,76	3.75	0.00	0.00	0.00	±0.3	
4923800	3.70	3.69	3.69	3,70	3.70	3.69	0.00	0.02	0.00	±0.3	
6235400	3.60	3.59	3.60	3.60	3.59	3.60	0.00	0.00	0.00	±0.3	
7896400	3.45	3.44	3.44	3.44	3.44	3.42	-0.03	0.00	-0.05	±0.3	
10000000	3.30	3.30	3.30	3.32	3.28	3.32	0.05	-0.05	0.05	±0.3	

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

¹ Calibration uncertainty not taken into account (shared risk 50%);

f/(Hz)	H-field/(A/m) Applied			H-field	/(A/m) Rea	Diff	erence/(d	Party Territorial Mark		
	x	y	Z	x	у	Z	x	У	Z	Tolerance/(dB
3000	1.48	1.48	1.48	1.47	1.47	1.45	-0.06	-0.06	-0.18	±0.3
3200	1.47	1.47	1.47	1.46	1.49	1.47	-0.06	0.12	0.00	±0.3
4000	1.46	1,46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.44	1.44	1.46	-0.06	-0.06	0.06	±0.3
6600	1.44	1,44	1.44	1.44	1.43	1.43	0.00	-0.06	-0.06	±0.3
8200	1.43	1,43	1.43	1.42	1.42	1.43	-0.06	-0.06	0.00	±0.3
9000	1.43	1.42	1.43	1.42	1.42	1.42	-0.06	0.00	-0.06	±0.3
10600	4.28	4.23	4.22	4.26	4.19	4.22	-0.04	-0.08	0.00	±0.3
13400	4.27	4.24	4.24	4.26	4.23	4.25	-0.02	-0.02	0.02	±0.3
17000	4.28	4.24	4.24	4.25	4.24	4.24	-0.06	0.00	0.00	±0.3
21400	4.30	4.26	4.26	4.28	4.24	4.27	-0.04	-0.04	0.02	±0.3
27200	4.30	4.26	4.26	4.28	4.26	4.25	-0.04	0.00	-0.02	±0.3
34400	4.30	4.28	4.27	4.28	4.27	4.27	-0.04	-0.02	0.00	±0.3
40000	4.29	4.27	4.27	4.28	4.26	4.26	-0.02	-0.02	-0.02	±0.3
43600	4.28	4.26	4.26	4.27	4.25	4.26	-0.02	-0.02	0.00	±0.3
55400	4.27	4.25	4.25	4.26	4.25	4.25	-0.02	0.00	0.00	±0.3
70000	4.26	4.24	4.24	4.25	4.23	4.24	-0.02	-0.02	0.00	±0.3
88800	4.25	4.23	4.23	4.24	4.22	4.22	-0.02	-0.02	-0.02	±0.3
112400	4.24	4.22	4.22	4.22	4.21	4.21	-0.04	-0.02	-0.02	±0.3
142400	4.22	4.20	4.20	4.21	4.20	4.19	-0.02	0.00	-0.02	±0.3
161750	4.20	4,18	4.18	4.19	4.18	4.17	-0.02	0.00	-0.02	±0.3
180400	4.19	4.17	4.17	4.18	4.17	4.17	-0.02	0.00	0.00	±0.3
228400	4.16	4,14	4,14	4.15	4.14	4.14	-0.02	0.00	0.00	±0.3
289 400	4.12	4.10	4,10	4.11	4.10	4.10	-0.02	0.00	0.00	±0.3
366400	4.08	4.06	4.06	4.07	4.07	4.06	-0.02	0.02	0.00	±0.3
400 000	4.06	4.04	4.04	4.05	4.05	4.04	-0.02	0.02	0.00	±0.3
464000	4.03	4.02	4.01	4.03	4.02	4.01	0.00	0.00	0.00	±0.3
587800	3.98	3.98	3.97	3.98	3.98	3.97	0.00	0.00	0.00	±0.3
744200	3.93	3.93	3.93	3.93	3.92	3.93	0.00	-0.02	0.00	±0.3
942600	3.92	3.92	3.92	3.92	3.92	3.92	0.00	0.00	0.00	±0.3
1193600	3.90	3.89	3.89	3.90	3.89	3.89	0.00	0.00	0.00	±0.3
1511600	3.89	3.88	3.88	3.89	3.88	3.87	0.00	0.00	-0.02	±0.3
1914400	3.88	3.87	3.86	3.87	3.87	3.87	-0.02	0.00	0.02	±0.3
2424400	3.86	3.85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3
3070200	3.83	3.82	3.81	3.83	3.82	3.81	0.00	0.00	0.00	±0.3
3888000	3.78	3.77	3.76	3.78	3.76	3.77	0.00	-0.02	0.02	±0.3
4000000	3.77	3.76	3.75	3.76	3.76	3.75	-0.02	0.00	0.00	±0,3
4923800	3.70	3.69	3.69	3.70	3.70	3.70	0.00	0.02	0.02	±0.3
6235400	3.60	3.59	3.60	3.57	3.59	3.60	-0.07	0.00	0.00	±0.3
7896400	3.45	3.44	3.44	3.45	3.44	3.40	0.00	0.00	-0.10	±0.3
0000000	3.30	3.30	3.30	3.27	3.32	3.32	-0.08	0.05	0.05	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Calibration uncertainty not taken into account (shared risk 50%).

	H-field	1/(A/m) Ap	olied	H-field	/(A/m) Rea	ding	Diff	erence/(dB)	5.50 5.5000
f/(Hz)	x	y	z	x	y	z	x	У	Z	Tolerance/(dB
3000	1.48	1.48	1.48	1.46	1.47	1,48	-0.12	-0.06	0.00	±0.3
3200	1,47	1.47	1.47	1.46	1.48	1,48	-0.06	0.06	0.06	±0.3
4000	1.46	1.46	1.46	1.45	1.46	1.46	-0.06	0.00	0.00	±0.3
5200	1.45	1.45	1.45	1.44	1,44	1.46	-0.06	-0.06	0.06	±0.3
6600	1.44	1.44	1.44	1.43	1,44	1.43	-0.06	0.00	-0.06	±0.3
8200	1,43	1.43	1.43	1.41	1.42	1.42	-0.12	-0.06	-0.06	±0.3
9000	1.43	1.42	1.43	1.42	1.42	1.42	-0.06	0.00	-0.06	±0.3
10600	4.28	4.23	4.22	4.25	4.22	4.21	-0.06	-0.02	-0.02	±0.3
13400	4.27	4.24	4.24	4.28	4.25	4.22	0.02	0.02	-0.04	±0.3
17000	4.28	4.24	4.24	4.26	4.23	4.22	-0.04	-0.02	-0.04	±0.3
21 400	4.30	4.26	4.26	4.28	4.25	4.25	-0.04	-0.02	-0.02	±0.3
27200	4.30	4.26	4.26	4.28	4.25	4.25	-0.04	-0.02	-0.02	±0.3
34400	4.30	4.28	4.27	4.28	4.27	4.26	-0.04	-0.02	-0.02	±0.3
40000	4.29	4.27	4.27	4.27	4.27	4.26	-0.04	0.00	-0.02	±0.3
43600	4.28	4.26	4.26	4.27	4.26	4.25	-0.02	0.00	-0.02	±0.3
55400	4.27	4.25	4.25	4.26	4.25	4.24	-0.02	0.00	-0.02	±0.3
70000	4.26	4.24	4.24	4.25	4.24	4.23	-0.02	0.00	-0.02	±0.3
88800	4.25	4.23	4.23	4.23	4.22	4.22	-0.04	-0.02	-0.02	±0.3
112400	4.24	4.22	4.22	4.22	4.21	4.21	-0.04	-0.02	-0.02	±0.3
142400	4.22	4.20	4.20	4.21	4.19	4.19	-0.02	-0.02	-0.02	±0.3
161750	4.20	4.18	4.18	4.18	4.18	4.18	-0.04	0.00	0.00	±0,3
180400	4.19	4.17	4.17	4.18	4.17	4.16	-0.02	0.00	-0.02	±0.3
228400	4.16	4.14	4.14	4.14	4.13	4.13	-0.04	-0.02	-0.02	±0.3
289400	4.12	4.10	4.10	4.12	4,10	4.09	0.00	0.00	-0.02	±0.3
366400	4.08	4.06	4.06	4.07	4.06	4:06	-0.02	0.00	0.00	±0.3
400000	4.06	4.04	4.04	4.05	4.04	4.04	-0.02	0.00	0.00	±0.3
464000	4.03	4.02	4.01	4.02	4.01	4.01	-0.02	-0.02	0.00	±0.3
587800	3.98	3.98	3.97	3.98	3.97	3.97	0.00	-0.02	0.00	±0.3
744200	3.93	3.93	3.93	3.93	3.92	3.92	0.00	-0.02	-0.02	±0.3
942600	3.92	3.92	3.92	3.92	3.91	3.92	0.00	-0.02	0.00	±0.3
1193600	3.90	3.89	3.89	3.90	3.89	3.90	0.00	0.00	0.02	±0.3
1511600	3,89	3.88	3.88	3.89	3.88	3.88	0,00	0.00	0.00	±0.3
1914400	3.88	3.87	3.86	3.88	3.86	3.86	0.00	-0.02	0.00	±0.3
2424400	3.86	3.85	3.85	3.85	3.85	3.84	-0.02	0.00	-0.02	±0.3
3070200	3.83	3.82	3.81	3.83	3.82	3.81	0.00	0.00	0.00	±0.3
3888000	3.78	3.77	3.76	3.78	3.77	3.77	0.00	0.00	0.02	±0.3
4000000	3.77	3.76	3.75	3.76	3.76	3.75	-0.02	0.00	0.00	±0.3
4923800	3.70	3.69	3.69	3.69	3.69	3.69	-0.02	0.00	0.00	±0.3
6235400	3.60	3.59	3.60	3.60	3.57	3.60	0.00	-0.05	0.00	±0.3
7896400	3.45	3.44	3.44	3.45	3.44	3.41	0.00	0.00	-0.08	±0.3
0000000	3.30	3.30	3.30	3.29	3.30	3,32	-0.03	0.00	0.05	±0.3

SPEAG H-field frequency response tolerance criteria1:

±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

¹Calibration uncertainty not taken into account (shared risk 50%).

	H-field	I/(A/m) App	olled	H-field	/(A/m) Rea	ding	Diff	erence/(d	dB)		
f/(Hz)	×	y	z	x	y	Z	×	y	Z	Tolerance/(dB	
3000	1.48	1,48	1.48	1,52	1.47	1.46	0.23	-0.06	-0.12	±0.3	
3200	1.47	1.47	1.47	1.46	1.49	1.47	-0.06	0.12	0.00	±0.3	
4000	1.46	1.46	1.46	1.46	1.46	1.46	0.00	0.00	0.00	±0.3	
5200	1.45	1.45	1.45	1.44	1.44	1.45	-0.06	-0.06	0.00	±0.3	
6600	1.44	1.44	1.44	1,44	1.43	1.44	0.00	-0.06	0.00	±0.3	
8200	1.43	1.43	1.43	1.42	1.42	1.43	-0.06	-0.06	0.00	±0.3	
9000	1.43	1.42	1.43	1.43	1.42	1.43	0.00	0.00	0.00	±0.3	
10600	4.28	4.23	4.22	4.28	4.20	4.21	0.00	-0.06	-0.02	±0.3	
13400	4.27	4.24	4.24	4,27	4.22	4.23	0.00	-0.04	-0.02	±0.3	
17000	4.28	4.24	4.24	4.26	4.22	4.23	-0.04	-0.04	-0.02	±0.3	
21400	4.30	4.26	4.26	4.28	4.26	4.26	-0.04	0.00	0.00	±0.3	
27200	4.30	4.26	4.26	4.29	4.26	4.25	-0.02	0.00	-0.02	±0.3	
34400	4.30	4.28	4.27	4.29	4.26	4.27	-0.02	-0.04	0.00	±0.3	
40000	4.29	4.27	4.27	4.28	4.26	4.26	-0.02	-0.02	-0.02	±0.3	
43600	4.28	4.26	4.26	4.26	4.25	4.25	-0.04	-0.02	-0.02	±0.3	
55400	4.27	4.25	4.25	4.26	4.24	4.24	-0.02	-0.02	-0.02	±0.3	
70000	4.26	4:24	4.24	4.25	4.23	4.24	-0.02	-0.02	0.00	±0.3	
88800	4.25	4.23	4.23	4.24	4.22	4.23	-0.02	-0.02	0.00	±0.3	
112400	4.24	4.22	4.22	4.22	4.21	4.21	-0.04	-0.02	-0.02	±0.3	
142400	4.22	4.20	4.20	4.21	4.19	4.19	-0.02	-0.02	-0.02	±0.3	
161750	4.20	4,18	4.18	4.18	4.18	4.17	-0.04	0.00	-0.02	±0.3	
180400	4.19	4.17	4.17	4.18	4.17	4.16	-0.02	0.00	-0.02	±0.3	
228 400	4.16	4.14	4.14	4.15	4.13	4.13	-0.02	-0.02	-0.02	±0.3	
289400	4.12	4,10	4.10	4,11	4.09	4.10	-0.02	-0.02	0.00	±0.3	
366400	4.08	4.06	4.06	4.07	4.06	4.06	-0.02	0.00	0.00	±0.3	
400000	4.06	4.04	4.04	4.05	4.04	4.04	-0.02	0.00	0.00	±0.3	
464000	4.03	4.02	4.01	4.02	4.01	4.01	-0.02	-0.02	0.00	±0.3	
587800	3.98	3.98	3.97	3.98	3.97	3.97	0.00	-0.02	0.00	±0.3	
744200	3.93	3.93	3.93	3.93	3.92	3.92	0.00	-0.02	-0.02	±0.3	
942600	3.92	3.92	3.92	3.92	3.91	3.92	0.00	-0.02	0.00	±0.3	
1193600	3.90	3.89	3.89	3.90	3.89	3.89	0,00	0.00	0.00	±0.3	
1511600	3.89	3.88	3.88	3.89	3.89	3.88	0.00	0.02	0.00	±0.3	
1914400	3.88	3.87	3.86	3.88	3.86	3.86	0.00	-0.02	0.00	±0.3	
2424400	3.86	3,85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3	
3070200	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3	
3888000	3.78	3.77	3.76	3.77	3.77	3.76	-0.02	0.00	0.00	±0.3	
4000000	3,77	3.76	3.75	3.75	3.76	3.75	-0.05	0.00	0.00	±0.3	
4923800	3.70	3.69	3.69	3.69	3.69	3.69	-0.02	0.00	0.00	±0.3	
6235400	3.60	3.59	3.60	3.60	3.59	3.59	0.00	0.00	-0.02	±0.3	
7896400	3.45	3.44	3.44	3.44	3.44	3.43	-0.03	0.00	-0.03	±0.3	
0000000	3.30	3.30	3.30	3.29	3.29	3,34	-0.03	-0.03	0.10	±0.3	

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

¹ Calibration uncertainty not taken into account (shared risk 50%).

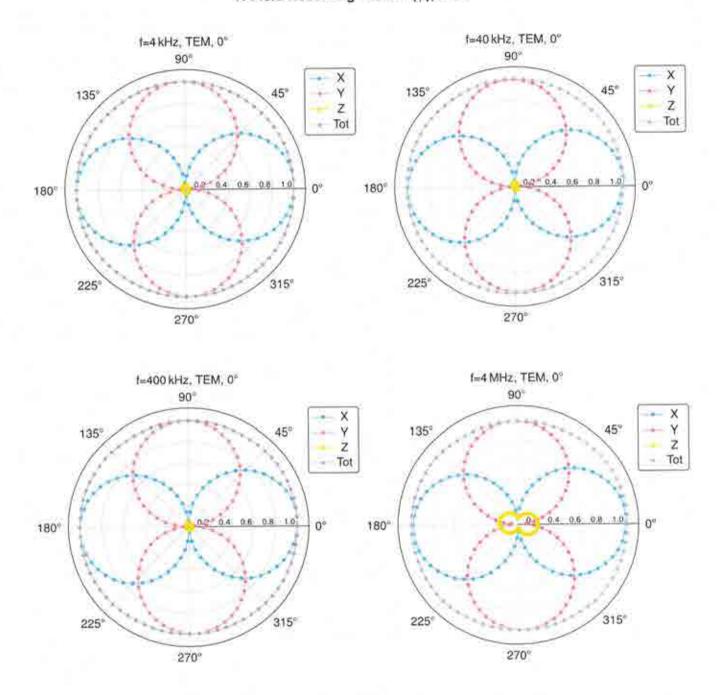
Frequency Response, H-field, Channel 7

	H-field	/(A/m) App	olied	H-field	/(A/m) Rea	ding	Diff	erence/(dB)	DESCRIPTION OF THE PROPERTY OF	
1/(Hz)	x	y	2	x	y	2	X	y	Z	Tolerance/(dB	
3000	1.48	1.48	1.48	1.47	1.46	1.46	-0.06	-0.12	-0.12	±0.3	
3200	1.47	1.47	1.47	1.46	1.48	1.48	-0.06	0.06	0.06	±0.3	
4000	1.46	1.46	1.46	1.45	1.45	1.46	-0.06	-0.06	0.00	±0.3	
5200	1.45	1.45	1.45	1.43	1,43	1.46	-0.12	-0.12	0.06	±0.3	
6600	1.44	1.44	1.44	1.43	1.42	1.43	-0.06	-0.12	-0.06	±0.3	
8200	1.43	1.43	1.43	1.41	1.42	1.43	-0.12	-0.06	0.00	±0.3	
9000	1.43	1.42	1.43	1.41	1.42	1.42	-0.12	0.00	-0.06	±0.3	
10600	4.28	4.23	4.22	4.28	4.24	4.20	0.00	0.02	-0.04	±0.3	
13400	4.27	4.24	4.24	4.26	4.22	4.24	-0.02	-0.04	0.00	±0.3	
17000	4.28	4.24	4.24	4.25	4.24	4.23	-0.06	0.00	-0.02	±0.3	
21400	4.30	4.26	4,26	4.29	4.27	4.26	-0.02	0.02	0.00	±0.3	
27200	4.30	4.26	4.26	4.28	4.25	4.27	-0.04	-0.02	0.02	±0.3	
34400	4.30	4.28	4.27	4.28	4.28	4.26	-0.04	0.00	-0.02	±0.3	
40000	4.29	4.27	4.27	4.26	4.27	4.26	-0.06	0.00	-0.02	±0.3	
43600	4.28	4.26	4.26	4.27	4.26	4.25	-0.02	0.00	-0.02	±0.3	
55400	4.27	4.25	4.25	4.25	4.25	4.25	-0.04	0.00	0.00	±0.3	
70000	4.26	4.24	4.24	4.25	4.25	4.23	-0.02	0.02	-0.02	±0.3	
88800	4.25	4.23	4.23	4.24	4.22	4.23	-0.02	-0.02	0.00	±0.3	
112400	4.24	4.22	4.22	4.22	4.22	4.21	-0.04	0.00	-0.02	±0.3	
142400	4.22	4.20	4.20	4.21	4.20	4.20	-0.02	0.00	0.00	±0.3	
161750	4.20	4.18	4.18	4.18	4.18	4.18	-0.04	0.00	0.00	±0,3	
180400	4.19	4,17	4.17	4,18	4.17	4.18	-0.02	0.00	0.02	±0.3	
228 400	4.16	4.14	4.14	4.15	4.15	4.14	-0.02	0.02	0.00	±0.3	
289400	4.12	4,10	4.10	4.11	4.09	4.10	-0.02	-0.02	0.00	±0.3	
366400	4.08	4.06	4.06	4.07	4.07	4.07	-0.02	0.02	0.02	±0.3	
400000	4.06	4.04	4.04	4.05	4.05	4.04	-0.02	0.02	0.00	±0.3	
464000	4.03	4.02	4.01	4.02	4.03	4.01	-0.02	0.02	0.00	±0.3	
587800	3.98	3.98	3.97	3.98	3.98	3.98	0.00	0.00	0.02	±0.3	
744200	3.93	3.93	3.93	3.93	3.94	3.93	0.00	0.02	0.00	±0.3	
942600	3.92	3.92	3.92	3.92	3.92	3.93	0.00	0.00	0.02	±0.3	
1193600	3.90	3.89	3.89	3.90	3.90	3.89	0.00	0.02	0.00	±0.3	
1511600	3.89	3.88	3.88	3.89	3.89	3.87	0.00	0.02	-0.02	±0.3	
1914400	3.88	3.87	3.86	3.88	3.87	3,86	0.00	0.00	0.00	±0,3	
2424400	3.86	3.85	3.85	3.86	3.85	3.85	0.00	0.00	0.00	±0.3	
3070200	3.83	3.82	3.81	3.84	3.83	3.81	0.02	0.02	0.00	±0.3	
3888000	3.78	3.77	3.76	3.78	3.76	3.77	0.00	-0.02	0.02	±0.3	
4000000	3.77	3.76	3.75	3.75	3.76	3.75	-0.05	0.00	0.00	±0.3	
4923800	3.70	3.69	3.69	3.70	3.69	3.69	0.00	0.00	0.00	±0.3	
6235400	3.60	3.59	3.60	3.59	3.60	3.61	-0.02	0.02	0.02	±0.3	
7896400	3.45	3.44	3.44	3.44	3.43	3.41	-0.03	-0.03	-0.08	±0.3	
10000000	3.30	3.30	3.30	3.29	3.32	3.34	-0.03	0.05	0.10	±0.3	

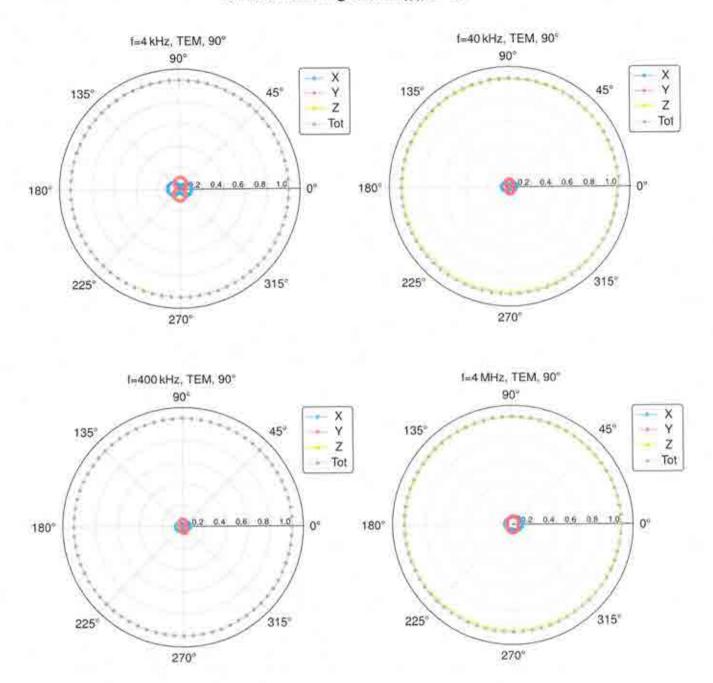
SPEAG H-field frequency response tolerance criteria¹; ±0,3dB for applied H-fields at calibration points from 3kHz to 10MHz

Calibration uncertainty not taken into account (shared risk 50%).

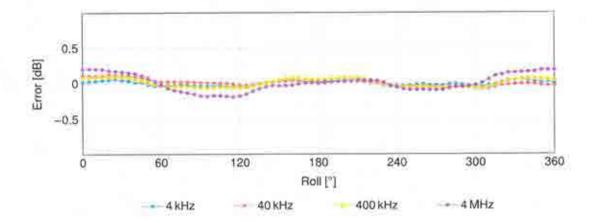
Frequency Response, E-field, Channel 0


	E-fi	eld/(V/m) A	pplied	E-fi	eld/(V/m) R	leading	Diffe	erence/(dB)	5.53A	
f/(Hz)	×	y	2	x	У	Z	X	y	2	Tolerance/(dB)	
3000	169	169	172	170	170	172	0.05	0.05	0.00	±0.3	
3200	167	167	162	167	169	163	0.00	0.10	0.05	±0.3	
4000	175	175	170	175	175	170	0.00	0.00	0.00	±0.3	
5200	165	165	163	166	165	163	0.05	0.00	0.00	±0.3	
6600	163	163	160	163	163	160	0.00	0.00	0.00	±0.3	
8200	162	162	159	163	162	159	0.05	0.00	0.00	±0.3	
9000	163	163	164	164	163	164	0.05	0.00	0.00	±0.3	
10600	166	166	159	167	166	159	0.05	0.00	0.00	±0.3	
13400	163	163	162	164	164	161	0.05	0.05	-0.05	±0.3	
17000	161	161	163	162	162	163	0.05	0.05	0.00	±0.3	
21400	157	157	158	158	157	158	0.06	0.00	0.00	±0.3	
27200	158	158	157	158	158	157	0.00	0.00	0.00	±0.3	
34400	162	162	159	163	162	159	0.05	0.00	0.00	±0.3	
40000	161	161	161	162	161	161	0.05	0.00	0.00	±0.3	
43600	162	162	160	162	162	160	0.00	0.00	0.00	±0.3	
55400	161	161	159	161	161	159	0.00	0.00	0.00	±0.3	
70000	162	162	160	162	162	160	0.00	0.00	0.00	±0.3	
88800	161	161	160	162	162	160	0.05	0.05	0.00	±0.3	
112400	161	161	160	162	161	160	0.05	0.00	0.00	±0.3	
142400	162	162	160	163	162	160	0.05	0.00	0.00	±0.3	
161750	163	163	162	164	163	162	0.05	0.00	0.00	±0.3	
180400	164	164	162	164	164	162	0.00	0.00	0.00	±0.3	
228400	165	165	163	166	166	163	0.05	0.05	0.00	±0.3	
289 400	166	166	164	166	166	164	0.00	0.00	0.00	±0.3	
366400	166	166	165	167	166	165	0.05	0.00	0.00	±0.3	
400 000	167	167	165	168	167	165	0.05	0.00	0,00	±0.3	
464000	168	168	166	169	169	166	0.05	0.05	0.00	±0.3	
587800	169	169	167	170	169	167	0.05	0.00	0.00	±0.3	
744200	169	169	167	170	170	168	0.05	0.05	0.05	±0.3	
942600	170	170	168	171	170	168	0.05	0.00	0.00	±0.3	
1193600	171	171	169	171	171	169	0.00	0.00	0.00	=0.3	
1511600	170	170	169	171	170	169	0.05	0.00	0.00	±0.3	
1914400	170	170	168	170	170	168	0.00	0.00	0.00	±0.3	
2424400	170	170	168	170	170	168	0.00	0.00	0.00	±0:3	
3070200	171	171	169	171	171	169	0.00	0.00	0.00	±0.3	
3888000	171	171	169	-171	171	169	0.00	0.00	0.00	±0.3	
4000000	171	171	169	171	171	170	0.00	0.00	0.05	±0.3	
4923800	172	172	170	172	172	170	0.00	0.00	0.00	±0.3	
6235400	174	174	172	174	174	172	0.00	0.00	0.00	±0.3	
7896400	180	180	179	180	180	179	0.00	0.00	0.00	±0.3	
0000000	201	201	199	201	201	199	0.00	0.00	0.00	±0.3	

SPEAG E-field frequency response tolerance criteria¹: ±0.3dB for applied E-fields at calibration points from 3kHz to 10MHz


¹ Calibration uncertainty not taken into account (shared risk 50%).

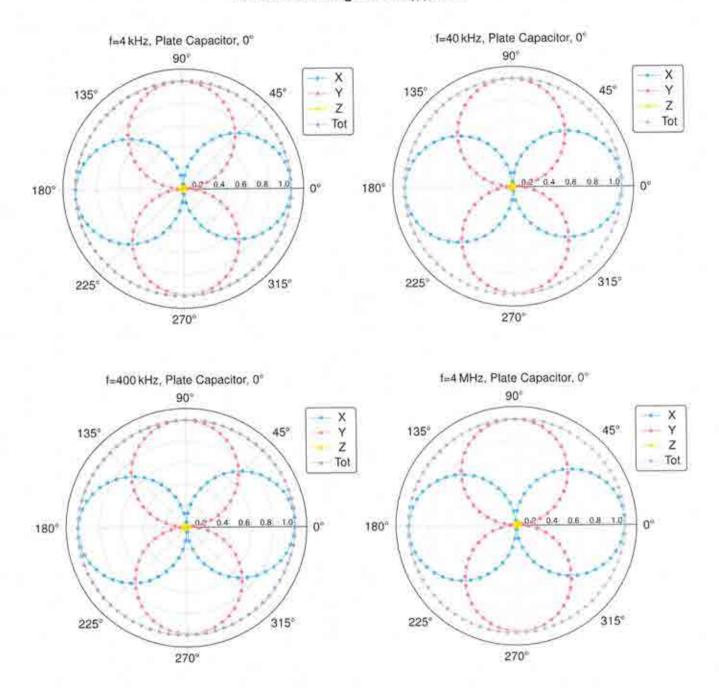
Isotropy H-Field


H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

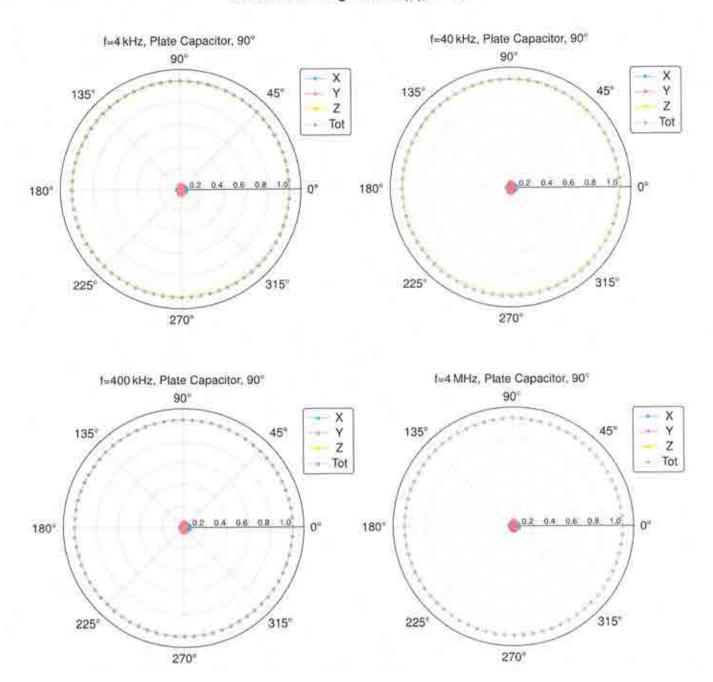
H-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

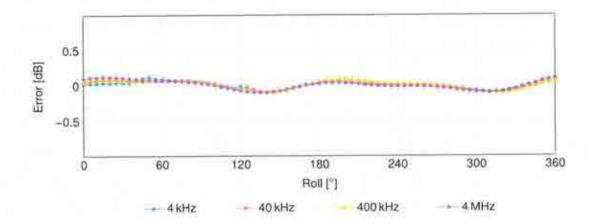
H-Field Receiving Pattern (ϕ), $\partial = 90^{\circ}$

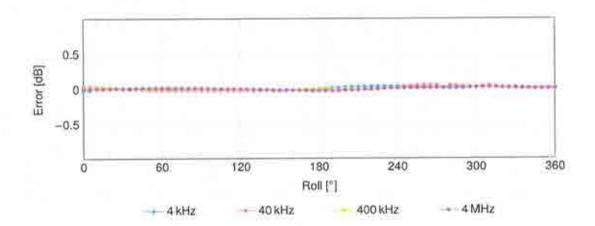


SPEAG axial deviation from the ideal response tolerance for H-field: ±0.6dB


Certificate No: MAGPy-8H3D-3059

Isotropy E-Field


E-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$


E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

E-Field Receiving Pattern (ϕ), ϑ = 0 $^{\circ}$

E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

SPEAG axial deviation from the ideal response tolerance for E-field: ±0.8dB

Calibration Laboratory of

Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Taoyuan			Certificate No:V-Coil350/85V2- 1023 May24				
CALIBRATION	CERTIFICAT						
Object	V-Coil350/85V2	2 - SN: 1023					
Calibration procedure(s)	QA CAL-47.v1: Calibration Pro	3 cedure for WPT Verification & Vali	dation Sources				
Calibration date:	May 22, 2024						
The measurements and the un	ncertainties with confidence	national standards, which realize the physical un e probability are given on the following pages a atory facility: environment temperature (22 ± 3)	nd are part of the certificate				
The measurements and the un All calibrations have been con	ncertainties with confidence	e probability are given on the following pages at all along facility: environment temperature (22 \pm 3)	nd are part of the certificate				
The measurements and the un All calibrations have been con Calibration Equipment used (f	ncertainties with confidence	e probability are given on the following pages at all along facility: environment temperature (22 \pm 3)	nd are part of the certificate				
The measurements and the un	ncertainties with confidence inducted in the closed labora M&TE critical for calibration	e probability are given on the following pages at all all the street $(22 \pm 3)^{\circ}$	nd are part of the certificate. C and humidity < 75%.				

Calibrated by:

Name Jingtian Xi Function

Project Leader

Signature

Approved by:

Sven Kühn

Technical Manager

Issued: May 29, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Glossary:

WPT V&V wireless power transfer verification & validation

Calibration is Performed According to the Following Standards:

- Internal procedure QA CAL-47 Calibration procedure for WPT verification & validation sources from 3 kHz to 10 MHz
- IEC/IEEE 63164, "Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems – Models, instrumentation, measurement and computational methods and procedures (Frequency range 3 kHz to 30 MHz)", draft standard, 2023

Additional Documentation:

a) cDASY6/DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: The V&V source is switched on for at least 30 minutes.
- Source Positioning: The V&V source is placed in the center of the UniPV1 phantom such
 that the source surface is parallel to phantom surface. The probe location used for DUT
 teaching is the top center of the coil (marked on the source casing). The probe distance is
 verified using mechanical gauges placed on the source surface.
- H-field distribution: H-field is measured in the volume above the V&V source in a rectilinear grid with a uniform grid step of 7.33 mm.

Calibrated Quantity

 Spatial peak of H-field (RMS value) at d mm from the DUT surface (extrapolated from measurements)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

	cDASY6 Module WPT	2.4.0.4346		
Software version	Notebook GUI	2.4.0.2		
	Sim4Life	7.2.4		
Calabatan	Grid dimensions	x: 477 mm, y: 389 mm, z: 36.7 mm		
Scan setup	Grid resolutions	dx, dy, dz: 7.33 mm		
Nominal frequency	85 kHz			

Calibrated Quantities

Distance (relative to source surface) (mm)	Peak H-field (A/m)	Uncertainty (k=2) (dB)		
0	208	1,13		
2	189	1.13		

Appendix (Additional assessments outside the scope of SCS 0108)

Peak values of induced fields1

Distance (relative to	Induced peak current	Induced	peak E-fie	peak spatial SAR (mW/kg)		
source surface) (mm)	density, 1cm ² area avg. (A/m ²)	2mm cube avg.	Local	5mm line avg.	1g avg.	10g avg.
0	2.35	3.35	3.38	3.39	6.50	4.84
2	2.22	3.15	3.18	3.19	5.81	4.38

Voltage measurement

Total voltage (V)	Voltages at harmonics (dBc)
0.414	Highest harmonic: -40.1

 $^{^1}$ determined for a virtual half-space phantom with tissue properties ϵ_r = 55, σ = 0.75 S/m, ρ =1000 kg/m 3

Measurement report

cDASY6 Module WPT Measurement Report

Device under test

into: V-Coll350/85

Serial number 1023

Scenario: source calibration

Tool Into

DASY software version:

cDASY6 Module WPT 2 4.0.4346

Probe model, serial no: and configuration date: MAGPy-8H3D+E3Dv2, WP000231, 2024/01/10

Software version: 2.0.49, backend: 2.2.3

5can into

Center location:

x: -48.08 mm, y: -119.86 mm, z: 35.83 mm

x: 477.0 mm, V: 389.0 mm, 2: 36,7 mm

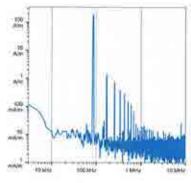
x: 7.33 mm, v: 7.33 mm, z: 7.33 mm

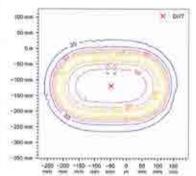
Completed on: 2024/05/22 21:39:05

Measurement results.

Maximum H-field [nxes]: MAGNITUDE: 131.92 A/m

x: 113.01 A/m, v: 32.68 A/m, z: 59.70 A/m


Maximum H-field location relative to DUT x: 157.67 mm, v: -25.67 mm, z: 8.50 mm


Distance to -20.0 dB boundary. 51,33 mm

Offset relative to DUT: x: 0.00 m, x: 0.00 m, z: 1.00 mm

H-field magnitude [HMS] at maximum focation

H-field magnitude (RMs) at lowest plane

Incident fields, and induced quantities in the anatomical model 114 45,00,045, n + 0.750 Sm, store energy = 1,000 spin-1,

	Peak incident fights [mas]	P	Peak E _{ing} [V/m, res]		Peak J _{ine} (A/m², nec)	peSA	R [mW/kgl	H-field extent			E-nore
(mm)	H _{ing} (A/m)	Cube avg.	Local	time avg.	Surface avg.	1g mg	10g avg	-20 dB radius [mm]	Sign	Vécito poternel	Boundary offect
0.0	208.0	3.35	3.38	3.39	2.35	8.5	4.84	182.0	- (6)	07W	365
2,0	189.0	3.15	3.18	3.19	2.22	5.81	4.38	184.0	1%	07%	38%

Standard compliance evaluation, Absolute

	ICN	IRP 2010	1/2020		ICNIRF 1998		IEEE 2016				FCC		HC Code 6		
	RL (Aur)	BE	(men)	RL [min]	BR	(mes)	ERL (mm)	DR	I. (mas)	MPE [mm]	BF	t [nos]	FEL [most]	BP	(man)
Distance	pH _{vec}	pE _{mt}	psSAR	pH _{inc}	pl _{nd}	paSAR	pH _{ee}	pE _{ref}	paSAR	pH _{err}	pE_{inf}	peSAR	pH _{res}	ρE _{rel}	psSAR
(mm)	(A/m)	[V/m]	[mW/kgj	(A/m)	$[A/m^2]$	[mW/kg]	[A/m]	(Wint)	[mW/kg]	[A/m]	[Vim]	(mW/leg)	(A/m)	(V/m)	hwww.gl
9.0	208.0	3.35	4.84	208.0	2,35	4.84	208.0	3,39	4,84	208.0	NA	6.5	208.0	3.38	6.5
2.0	189.0	3.15	4.38	189.0	2.22	4.38	189.0	3.19	4.38	189.0	N/A	5.81	189.0	3.18	5.81

Standard compliance evaluation, Relative

	KONI	RP 2010/	2020 [dB]	10	ICNIRP 1998 (dB)			IEEE 2019 [dB]			FCC (dE	34	HC Code 8 (dB)		
	RL		BR	RL		BR	ERL		DRE	MPE		BR	RL		BR
Distance [rm]	pHono	pE _m	peSAR	pH _{inc}	plan	DISAR	pH _{inc}	p€ _{inc}	paSAR	pH _{inc}	pE _{ant}	PASAR	pHoe	pE _{red}	paSAR
0.0	19.0	-10.7	-26.2	32.4	22,8	-26.2	2.1	14.4	-26.2	7.3	NIA	N/A:	27.7	-10.6	-23.9
2.0	19.1	-11,2	-26.6	31.5	22.3	-26,6	1:3	-14.9	-26.6	6.4	NW	M/A	26.8	-11.1	-24,4

Document generated at 2024/05/22 22:14:05. simulation performed at 2024/05/22 22:01:24 using Sim4Life version 7.2.4.14019

Test Setup Photos Appendix D.

Front test at 0mm

Report No. : FA440911

Back test at 0mm

Left Side test at 0mm

Right Side test at 0mm

Top Side test at 0mm

Bottom Side test at 0mm

1. External Photograph of EUT

Brand Name: SYSGRATION / Model Name: TT03

Report No.: EP440911

TEL: 886-3-327-3456 Page Number : 1 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

TEL: 886-3-327-3456 Page Number : 2 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

TEL: 886-3-327-3456 Page Number : 3 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

TEL: 886-3-327-3456 Page Number : 4 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

TEL: 886-3-327-3456 Page Number : 5 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

TEL: 886-3-327-3456 Page Number : 6 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01

2. Photograph of Accessory

Brand Name: SYSGRATION / Model Name: TT03

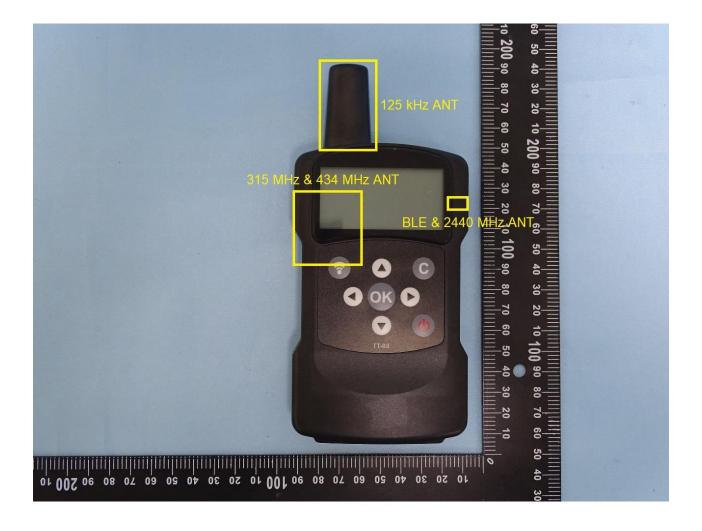

Report No.: EP440911

Specification of Accessory						
Pottory	Brand Name	SYSGRATION				
Battery	Model Name	TT02				

Remark: For accessories equipped with this EUT, please refer to the following photos.

TEL: 886-3-327-3456 Page Number : 7 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

Report Version : 01


TEL: 886-3-327-3456 Page Number : 8 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024

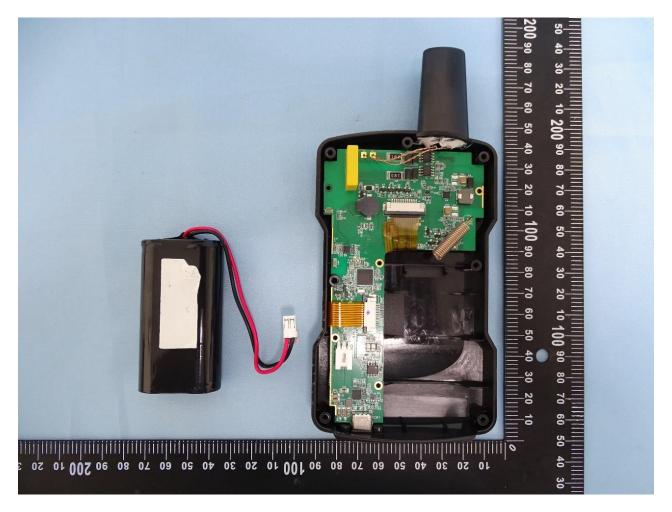
Report Version : 01

3. Internal Photograph of EUT

Brand Name: SYSGRATION / Model Name: TT03

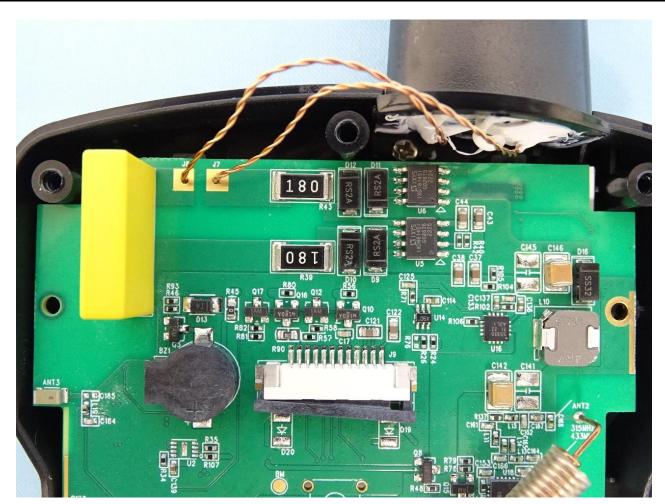
Report No.: EP440911

TEL: 886-3-327-3456 Page Number : 9 of 24
FAX: 886-3-328-4978 Issue Date : Jun. 28, 2024


Report Version : 01

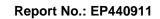
 TEL: 886-3-327-3456
 Page Number
 : 10 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024


Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 11 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024


Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 12 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024

Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 13 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024

Report Version : 01

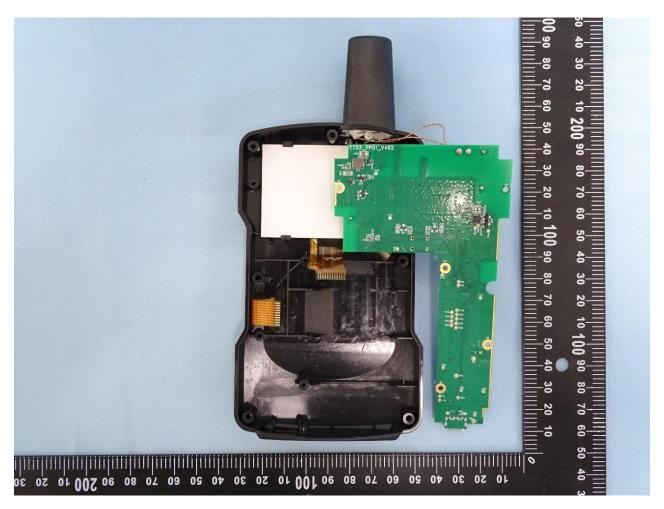
 TEL: 886-3-327-3456
 Page Number
 : 14 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024

Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 15 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024


Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 16 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024

Report Version : 01

 TEL: 886-3-327-3456
 Page Number
 : 17 of 24

 FAX: 886-3-328-4978
 Issue Date
 : Jun. 28, 2024

Report Version : 01