

FCC Radio Test Report FCC ID: HQXAPT-I5C

This report concerns (check one): Criginal Grant Class II Change

Issued Date	: Jul. 25, 2013
Project No.	: 1307C202
Equipment	: 2.4G Wireless Presenter
Model Name	: I5; H8B; PJ087-B; N1B; PSR01; AMP17-A;
	AMP025
Applicant	: SYSGRATION LTD.
Address	: 10FL, NO.868-3, Chung Rd, Chung Ho,
	Taipei, Taiwan, R.O.C.

Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: Jul. 16, 2013 Date of Test: Jul. 16, 2013 ~ Jul. 24, 2013

Testing Engineer

David Mao)

Technical Manager

(Leo Hung

Authorized Signatory

(Steven Lu)

NEUTRON ENGINEERING INC.

No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 *TEL :* +86-769-8318-3000 *FAX :* +86-769-8319-6000

Declaration

Neutron represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C**., or National Institute of Standards and Technology (**NIST**) of **U.S.A**.

Neutron's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports.

Neutron's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval.

Neutron's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

1. CERTIFICATION52. SUMMARY OF TEST RESULTS62.1 TEST FACILITY72.2 MEASUREMENT UNCERTAINTY73. GENERAL INFORMATION83.1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 NEASUREMENT INSTRUMENTS LIST144.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.4 DEVIATION FROM TEST STANDARD184.2.4 DEVIATION FROM TEST STANDARD184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.6 EUT OPERATING CONDITIONS115.7 DEVIATION FROM STANDARD145.8 DANDWIDTH TEST115.1 MEASUREMENT INSTRUMENTS LIST115.3 DEVIATION FROM STANDARD14 <th>Table of Contents P</th> <th>age</th>	Table of Contents P	age
2.1 TEST FACILITY72.2 MEASUREMENT UNCERTAINTY73. GENERAL INFORMATION83.1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 - 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)224.2.7 TEST RESULTS (ABOVE 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)225. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURI	1. CERTIFICATION	5
2.2 MEASUREMENT UNCERTAINTY73. GENERAL INFORMATION83.1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)204.2.6 EUT OPERATING CONDITIONS214.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)224.2.4 TEST RESULTS (ABOVE 1000 MHz)215. BANDWIDTH TEST115.1 MEASUREMENT INSTRUMENTS LIST115.1 MEASUREMENT INSTRUMENTS LIST115.4 TEST SETUP415.5 EUT OPERATION CONDITIONS<	2 . SUMMARY OF TEST RESULTS	6
3. GENERAL INFORMATION83. 1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS41 </td <td>2.1 TEST FACILITY</td> <td>7</td>	2.1 TEST FACILITY	7
3.1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST STOP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)225. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44	2.2 MEASUREMENT UNCERTAINTY	7
3.1 GENERAL DESCRIPTION OF EUT83.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST STOP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)225. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44	3 GENERAL INFORMATION	8
3.2 DESCRIPTION OF TEST MODES103.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST RESULTS194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST NETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)215. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.		-
3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED113.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)224.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)215. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.3 DEVIATION FROM STANDARD415.4 TEST RESULTS (ABOVE 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
3.4 DESCRIPTION OF SUPPORT UNITS124. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST SETUP415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4. EMC EMISSION TEST134.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST SETUP415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.1 CONDUCTED EMISSION MEASUREMENT134.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION MEASUREMENT164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS134.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295 . BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS415.6 TEST RESULTS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		13
4.1.2 MEASUREMENT INSTRUMENTS LIST134.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST RESULTS415.5 EUT OPERATING CONDITIONS415.5 EUT OPERATION CONDITIONS415.5 EUT OPERATION CONDITIONS416. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.1.3 TEST PROCEDURE144.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295 . BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.1.4 DEVIATION FROM TEST STANDARD144.1.5 TEST SETUP144.1.5 TEST SETUP144.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295 . BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.1.6 EUT OPERATING CONDITIONS144.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		14
4.1.7 TEST RESULTS154.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.1 RADIATED EMISSION LIMITS174.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.2 RADIATED EMISSION MEASUREMENT164.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295 . BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.2.1 RADIATED EMISSION LIMITS164.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295 . BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.2.2 MEASUREMENT INSTRUMENTS LIST174.2.3 TEST PROCEDURE184.2.4 DEVIATION FROM TEST STANDARD184.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.2.3 TEST PROCEDURE 18 4.2.4 DEVIATION FROM TEST STANDARD 18 4.2.5 TEST SETUP 19 4.2.6 EUT OPERATING CONDITIONS 20 4.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz) 22 4.2.8 TEST RESULTS (BETWEEN 30 – 1000 MHz) 29 5. BANDWIDTH TEST 41 5.1 MEASUREMENT INSTRUMENTS LIST 41 5.2 TEST PROCEDURE 41 5.3 DEVIATION FROM STANDARD 41 5.4 TEST SETUP 41 5.5 EUT OPERATION CONDITIONS 41 5.6 TEST RESULTS 42 6 . ANTENNA CONDUCTED SPURIOUS EMISSION 44 6.1 APPLIED PROCEDURES / LIMIT 44		-
4.2.5 TEST SETUP194.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
4.2.6 EUT OPERATING CONDITIONS204.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.2.7 TEST RESULTS (BETWEEN 30 – 1000 MHz)224.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		-
4.2.8 TEST RESULTS (ABOVE 1000 MHz)295. BANDWIDTH TEST415.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
5.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44	, , , , , , , , , , , , , , , , , , ,	
5.1 MEASUREMENT INSTRUMENTS LIST415.2 TEST PROCEDURE415.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44	5 BANDWIDTH TEST	41
5.3 DEVIATION FROM STANDARD415.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
5.4 TEST SETUP415.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426. ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44	5.2 TEST PROCEDURE	41
5.5 EUT OPERATION CONDITIONS415.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
5.6 TEST RESULTS426 . ANTENNA CONDUCTED SPURIOUS EMISSION446.1 APPLIED PROCEDURES / LIMIT44		
6.1 APPLIED PROCEDURES / LIMIT 44		
		44
6.1.1 MEASUREMENT INSTRUMENTS LIST 44	6.1 APPLIED PROCEDURES / LIMIT	44
	6.1.1 MEASUREMENT INSTRUMENTS LIST	44

Neutron Engineering Inc.	
Table of Contents	Page
6.1.2 TEST PROCEDURE 6.1.3 DEVIATION FROM STANDARD	44 44
6.1.4 TEST SETUP	44 44
6.1.5 EUT OPERATION CONDITIONS 6.1.6 TEST RESULTS	44 45
7 . EUT TEST PHOTO	50

1. CERTIFICATION

Equipment	4G Wireless Presenter	
Brand Name	Sysgration BenQ	Targus
Model Name	5; H8B; PJ087-B; N1B PSR01	AMP17-A; AMP025
Applicant	YSGRATION LTD.	
Manufacturer	ysgration (Shenzhen) Ltd.	
Address	gongling Village, Pinghu Town, Longgang Dist, S	Shenzhen City, China.
Factory	ysgration (Shenzhen) Ltd.	
Address	gongling Village, Pinghu Town, Longgang Dist, S	Shenzhen City, China.
Date of Test	ıl. 16, 2013 ~ Jul. 24, 2013	
Test Sample	ngineering Sample	
Standard(s)	CC Part15, Subpart C(15.249)/ ANSI C63.4 : 20)9

The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCP-1-1307C202) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC	FCC Part15, Subpart C (15.249)				
Standard(s) Section	Test Item	Judgment	Remark		
FCC		oddginent	Remark		
15.207	Conducted Emission	-	N/A		
15.209	Radiated Emission	PASS			
15.249	Radiated Spurious Emission	PASS			

NOTE:

(1)"N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **DG-CB03** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792 Neutron's test firm number for FCC 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The reported uncertainty of measurement y \pm U,where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2,providing a level of confidence of approximately 95 %.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U,(dB)	NOTE
DG-C02	CISPR	150 KHz ~ 30MHz	1.94	

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	NOTE
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	H	3.60	
		200MHz ~ 1,000MHz	V	3.86	
DG-CB03	CISPR	200MHz ~ 1,000MHz	Н	3.94	
DG-CB03	CISER	1GHz~18GHz	V	3.12	
		1GHz~18GHz	Н	3.68	
		18GHz ~ 40GHz	V	4.04	
		18GHz ~ 40GHz	Н	4.01	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	2.4G Wireless Presente	er	
Brand Name	Sysgration	BenQ	Targus
Model Name.	I5; H8B; PJ087-B; N1B	PSR01	AMP17-A; AMP025
Model Difference	Different model for different please refer to note 4.		earance, more details
Product Description	Operation Frequency 2412~2472 MHz Modulation Technology GFSK Data rate 2Mbps Number of Channel 5CH .Please see note 2.(Page 9) Antenna Gain(Peak) Please see note 3.(Page 9) Field Strength 91.73 dBuV/m (AV Max.) More details of EUT technical specification. Please refer to the User's Manual.		(Page 9) Max.)
Power Source	Supplied from 1*AAA size battery.		
Power Rating	DC 1.5V		
Connecting I/O Port(s)	Please refer to the Use	r's Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

ů

Frequenc	Frequency Channel	
Channel	Frequency	
Channel	(MHz)	
01	2412	
02	2427	
03	2442	
04	2457	
05	2472	

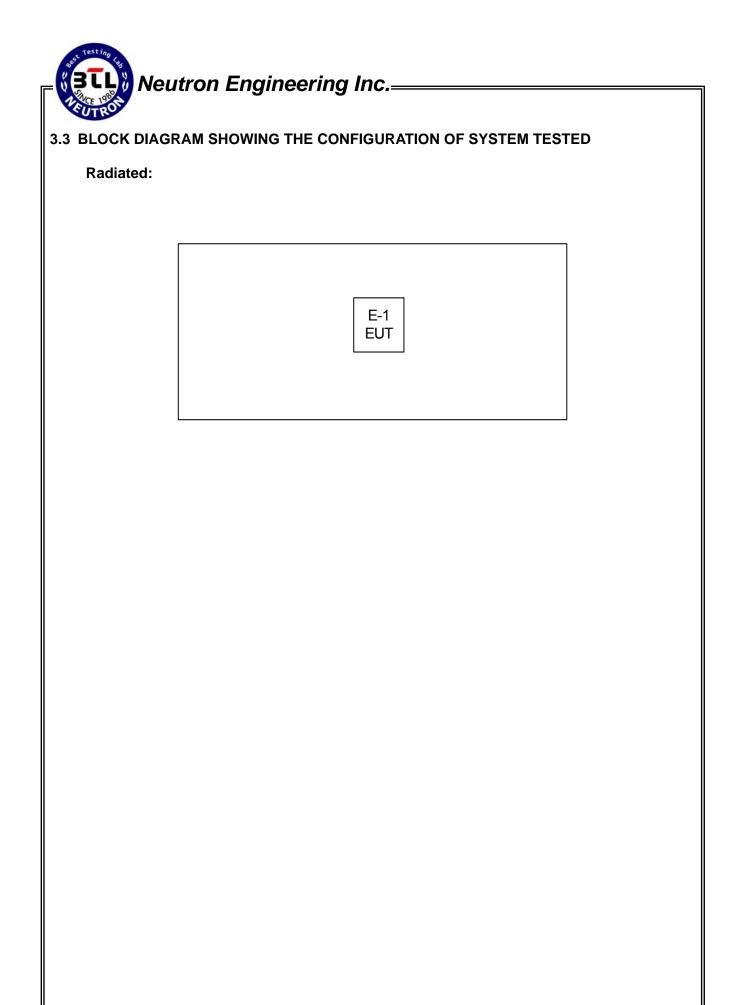
3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Printed	N/A	3.53

4.	Brand Model	Sysgration	BenQ	Targus
		15	PSR01	-
		H8B	-	AMP17-A
		PJ087-B	-	AMP025
		N1B	-	-

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Pretest Mode	Description
Mode 1	Low – 2412MHz
Mode 2	Middle – 2442MHz
Mode 3	High -2472MHz

For Conducted Test			
Final Test Mode Description			
N/A	"N/A" denotes test is not applicable in this test report.		

For Radiated Test			
Final Test Mode	Description		
Mode 1	Low – 2412MHz		
Mode 2	Middle – 2442MHz		
Mode 3	High -2472MHz		

Note:

(1) The measurements are performed at the high, middle, low available channels.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
E-1	2.4G Wireless Presenter	Sysgration	15	HQXAPT-I5C	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note
N/A	-	-	-	

Note:

(1) For detachable type I/O cable should be specified the length in m in ^[]Length ^[] column.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

	Class A (dBuV)		Class B (dBuV)		Standard	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR	
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR	
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

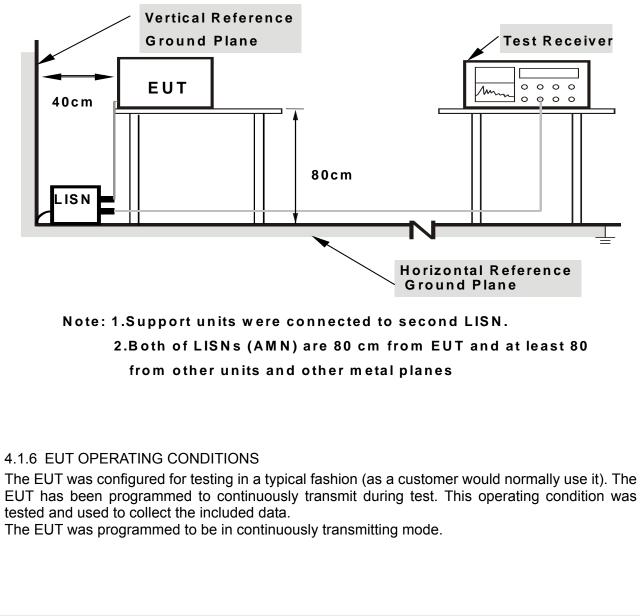
4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	EMCO	3816/2	00052765	Apr. 25, 2014
2	LISN	R&S	ENV216	100087	Nov. 16, 2013
3	Test Cable	N/A	C_17	N/A	Mar. 15, 2014
4	EMI TEST RECEIVER	R&S	ESCS30	826547/022	Apr. 25, 2014
5	50Ω Terminator	SHX	TF2-3G-A	08122902	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

The following table is the setting of the receiver

Receiver Parameters	Setting			
Attenuation	10 dB			
Start Frequency	0.15 MHz			
Stop Frequency	30 MHz			
IF Bandwidth	9 kHz			



4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall
- length shall not exceed 1 m. d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- 4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

4.1.7 TEST RESULTS

EUT:	2.4G Wireless Presenter	Model Name:	15
Temperature:	-	Relative Humidity:	-
Test Voltage:	-	Polarization:	-
Test Mode :	N/A		

Remark

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.
- (3) "N/A" denotes test is not applicable in this test report.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (FCC 15.209)

	, ,	
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.209)

	(dBuV/m) (at 3m)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC Part 15.249)

FCC Part15 (15.249) , Subpart C			
Limit Frequency Range (MHz)			
Field strength of fundamental 50000 μV/m (94 dBμV/m) @ 3 m	2400-2483.5		
Field strength of harmonics 500 μV/m (54 dBμV/m) @ 3 m	Above 2483.5		

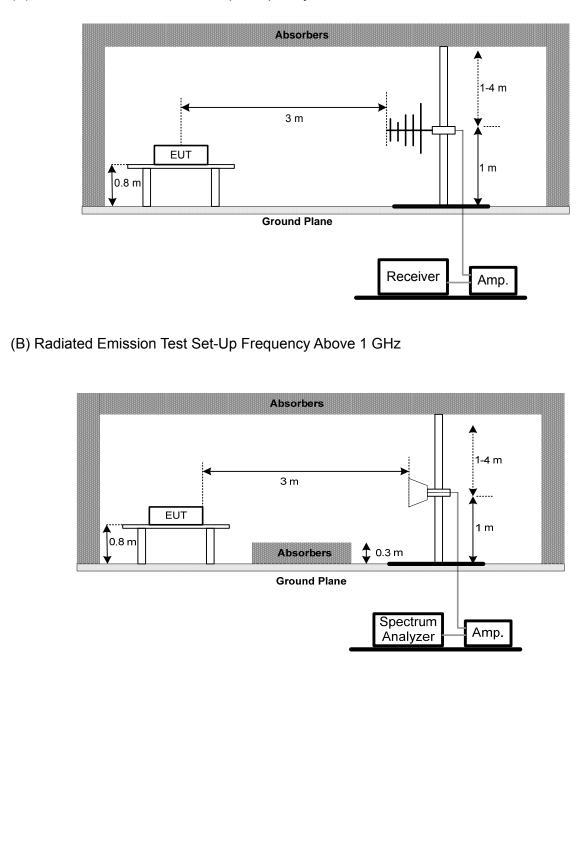
4.2.2 MEASUREMENT INSTRUMENTS LIST

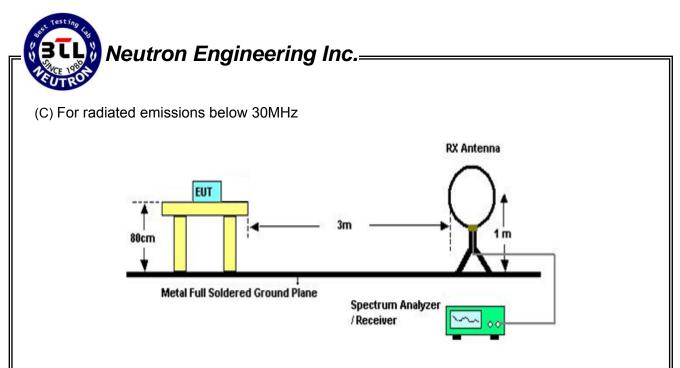
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Apr. 25, 2014
2	Amplifier	HP	8447D	2944A09673	Apr. 25, 2014
3	Test Receiver	R&S	ESCI	100382	Apr. 25, 2014
4	Test Cable	N/A	C-01_CB03	N/A	Jul. 02, 2014
5	Antenna	ETS	3115	00075789	Apr. 25, 2014
6	Amplifier	Agilent	8449B	3008A02274	Apr. 25, 2014
7	Spectrum	Agilent	E4408B	US39240143	Nov. 16, 2013
8	Test Cable	HUBER+SUHNER	C-45	N/A	Apr. 30, 2014
9	Controller	СТ	SC100	N/A	N/A
10	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Apr. 25, 2014
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Oct. 23, 2013
12	Horn Antenna	EMCO	3115	9605-4803	Apr. 25, 2014

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (emission in restricted	1 MHz / 1 MHz for Dook, Average=DK duty evelo
band)	1 MHz / 1 MHz for Peak, Average=PK-duty cycle

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz for PK/AVG detector
Start ~ Stop Frequency	90kHz~110kHz for QP detector
Start ~ Stop Frequency	110kHz~490kHz for PK/AVG detector
Start ~ Stop Frequency	490kHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector


4.2.3 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then AV detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- 4.2.4 DEVIATION FROM TEST STANDARD No deviation

4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **4.1.6** Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.7 TEST RESULTS (9K~ 30MHz)

EUT:	2.4G Wireless Presenter	Model Name:	15
Temperature:	25 ℃	Relative Humidity:	58 %
Test Voltage:	DC 1.5V		
Test Mode:	TX Mode		

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Nata
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Note
0.0098	0°	27.15	24.30	51.45	127.78	-76.33	AVG
0.0098	0°	30.65	24.30	54.95	147.78	-92.83	PK
0.0256	0°	23.78	23.95	47.73	119.44	-71.71	AVG
0.0256	0°	26.42	23.95	50.37	139.44	-89.07	PK
0.0402	0°	20.04	23.02	43.06	115.53	-72.46	AVG
0.0402	0°	22.71	23.02	45.73	135.53	-89.79	PK
0.0623	0°	23.56	22.15	45.71	111.71	-66.00	AVG
0.0623	0°	25.82	22.15	47.97	131.71	-83.74	PK
0.3528	0°	20.34	20.15	40.49	96.65	-56.16	AVG
0.3528	0°	23.02	20.15	43.17	116.65	-73.48	PK
1.7430	0°	27.35	19.53	46.88	69.54	-22.66	QP

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Margin	Note
(MHz)	0°/90°	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	NOIC
0.0096	90°	19.54	24.30	43.84	127.96	-84.12	AVG
0.0096	90°	22.31	24.30	46.61	147.96	-101.35	PK
0.0225	90°	18.59	24.14	42.73	120.56	-77.83	AVG
0.0225	90°	21.04	24.14	45.18	140.56	-95.38	PK
0.0465	90°	20.14	22.62	42.76	114.26	-71.49	AVG
0.0465	90°	23.58	22.62	46.20	134.26	-88.05	PK
0.0705	90°	21.44	21.99	43.43	110.64	-67.21	AVG
0.0705	90°	24.66	21.99	46.65	130.64	-83.99	PK
0.3680	90°	21.07	20.12	41.19	96.29	-55.10	AVG
0.3680	90°	24.96	20.12	45.08	116.29	-71.21	PK
1.5240	90°	23.74	19.55	43.29	63.94	-20.66	QP

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB);.
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor..

4.2.8 TEST RESULTS (BETWEEN 30 - 1000 MHz)

- (1) All readings are Peak unless otherwise stated QP in column of "Note]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Peak detector mode or QP detector mode of the emission .
- (4) Data of measurement within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

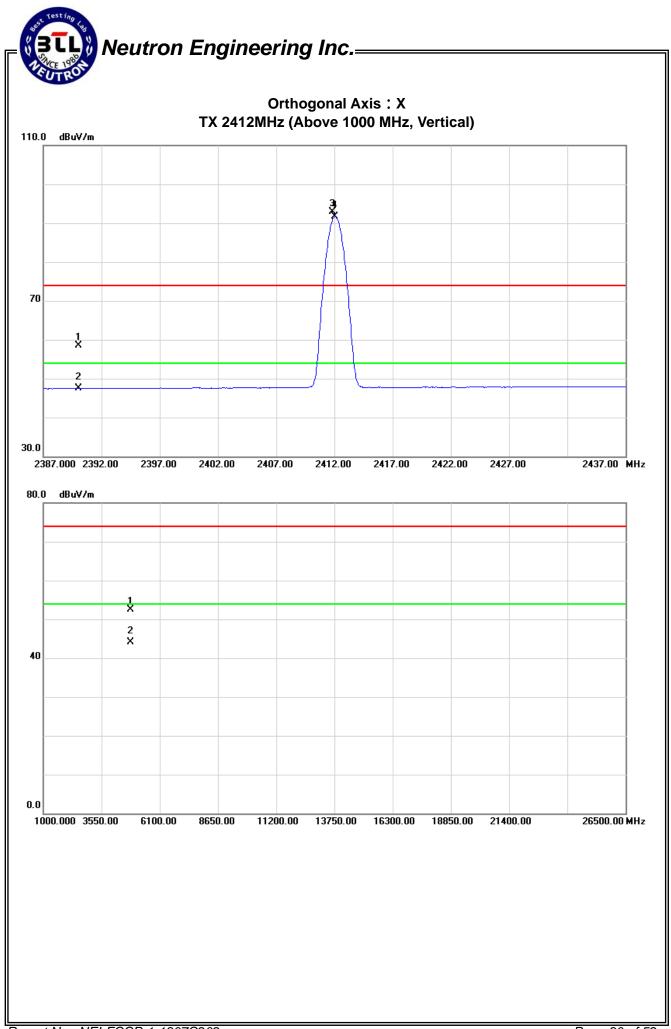
UT:		2.4G W	'ireless F	Presenter		Model	Name:	15		
emperat	ure:	25 °C				Relativ	e Humidity	: 58 %		
est Volta	ige:	DC 1.5	V			Polariz	ation:	Vertica	al	
est Mod	e :	TX Mod	le 2412N	ЛНz						
80.0	dBuV/m									
-										
										İ
40										
-										
								5	5	
						3	4 *		E.	
		ķ		Z		3	Janie Martine Martine	- Annon	and the second s	
	مهاهر ريما	mulled	and the state of the	2 Andread and and and and and and and and and a	an Moral A	3 	Janien Frederica		, contraction of the second	
	Mary and Mary	mallend	and when the second second	z podria kananan		3 	Josephine South Store		N ^{Martin} andan	
	Mary and Marga	mahalland	6.00	here a second	an North Alter	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
0.0 30.0	^{род} ицино ^{род} ицино 00 127.00	224.00	321.00	418.00	515.00	3 		806.00	1000.00	MHz
	00 127.00 Freq.	mahalland	6.00	here a second	515.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				MHz
30.0 No. Mk.	Freq. MHz	224.00 Reading	321.00 Correct	418.00 Measure-	515.00	612.00) 709.00			MHz
30.0 No. Mk.	Freq. MHz 205.5700	224.00 Reading Level dBuV 36.33	321.00 Correct Factor dB -15.29	418.00 Measure- ment dBuV/m 21.04	515.00 Limit dBuV/m 43.50	612.00 Over dB -22.46) 709.00	806.00		MHz
30.0 No. Mk. 1 2	Freq. MHz 205.5700 400.5400	224.00 Reading Level dBuV 36.33 31.04	321.00 Correct Factor dB -15.29 -9.77	418.00 Measure- ment dBuV/m 21.04 21.27	515.00 Limit 43.50 46.00	612.00 Over dB -22.46 -24.73	Detector C peak peak	806.00		MHz
30.0 No. Mk. 1 2 3 3	Freq. MHz 205.5700 400.5400 550.8900	224.00 Reading Level dBuV 36.33 31.04 29.13	321.00 Correct Factor dB -15.29 -9.77 -5.89	418.00 Measure- ment dBuV/m 21.04 21.27 23.24	515.00 Limit 43.50 46.00	612.00 Over dB -22.46 -24.73 -22.76	Detector C peak peak peak	806.00		MHz
30.0 No. Mk. 1 2 3 3 4 0	Freq. MHz 205.5700 400.5400 550.8900 690.5700	224.00 Reading Level dBuV 36.33 31.04 29.13 30.65	321.00 Correct Factor dB -15.29 -9.77 -5.89 -4.68	418.00 Measure- ment dBuV/m 21.04 21.27 23.24 25.97	515.00 Limit 43.50 46.00 46.00	612.00 Over dB -22.46 -24.73 -22.76 -20.03	Detector C peak peak peak peak	806.00		MHz
30.0 No. Mk. 1 2 2 4 3 5	Freq. MHz 205.5700 400.5400 550.8900	224.00 Reading Level dBuV 36.33 31.04 29.13	321.00 Correct Factor dB -15.29 -9.77 -5.89	418.00 Measure- ment dBuV/m 21.04 21.27 23.24	515.00 Limit 43.50 46.00	612.00 Over dB -22.46 -24.73 -22.76	Detector C peak peak peak	806.00		MHz

UT:		2.4G W	ireless F	Presente	r	Model N	Name:	15	
emper	ature:	25 ℃				Relative	e Humidi	ity: 58 %	
est Vo	ltage:	DC 1.5\	5V			Polariza	ation:	Horizo	ntal
est Mo	ode :	TX Mod	e 2412N	/Hz					
80	.0 dBuV/m								
4									
								5	ę.
					_	3	4 X	مريد بدايسة المستكم المجلس	Walnut all North
			1	whether and a second second	Sound work and	Test marked the	Versenan	and the second second	
	and manufacture	anorth waren	-And a start and a start and	NUMBER .					
	1 apr								
0.0									
	30.000 127.0		321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
No. N	lk. Freq.	Reading Level	Correct Factor	Measure ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	332.6400	29.13	-11.22	17.91	46.00	-28.09	peak		
2	462.6200	30.11	-9.17	20.94	46.00	-25.06	peak		
2	554.0000	29.37	-5.94	23.43	46.00	-22.57	peak		
3	551.8600	20.01							
	700.2700	29.53	-4.42	25.11	46.00	-20.89	peak		
3			-4.42 -1.81 0.51	25.11 28.08 29.84	46.00 46.00 46.00	-20.89 -17.92 -16.16	peak peak		

EUT:			2.4G	Wire	eless F	reser	ter		Model	Name:		15		
empe	ratur	e:	25 °C	·					Relativ	e Humic	dity:	58 %		
Test Vo	oltage	e:	DC 1	.5V					Polariz	ation:		Vertical		
est M	ode :		TX M	ode	2442N	1Hz								
8	0.0 di	3uV/m												1
														1
														1
														1
														1
	ю													
	-													
										5		الله المع	per Marihan Marina	į –
			×	Z X			3 X	Warte of the	A MANA	Annappin Contact	VA PAR			
	6.03		astronom		Mar Hilling the	Antonital	N.N.							
	- m	- Maria	w	al an weller								_		
D	.0													
	30.000	127.0	0 224	.00	321.00	418.	00	515.00	612.00	0 709.00) 9	06.00	1000.00	MHz
		-	Readi		Correct	Meas		Linsit	0					
No.	MK.	Freq.	Leve		Factor	me		Limit	Over					
	40	MHz 1.9200	dBuV 34.7		dB -12.77	dBuV 22.0		dBuV/m 43.50	dB -21.48	Detector	Com	ment		
1										peak				
		3.4000			-14.70	20.6		46.00	-25.35	peak				
3		B.0700			-8.75	20.9		46.00	-25.08	peak				
4		1.8600			-5.94	23.1		46.00	-22.84	peak				
	69.	2.5100	29.8	1	-4.63	25.1	8	46.00	-20.82	peak				
		6.0000		4	-1.92	27.2	0	46.00	-18.71	peak				

UT:			2.4G V	Vireless I	Presente	r	Model I	Name:	15	
empe	eratur	e:	25 ℃				Relative	e Humidit	y: 58 %	
est V	oltage	e:	DC 1.5	δV			Polariza	ation:	Horizo	ontal
est M	lode :		TX Mo	de 2442	ИНz					
8	0.0 dE	3uV/m								
	40									
	-									6
							_	4	5	And a start and a start and a start a st
				1		3	3 Menselway	when he when an	And a start and a start of the	
			have	manaham	admith for the second	whether whethe				
	Mar 1	happedentities	and the second sec	aline .						
	30.000	127.00	224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
		_	Reading		Measure	÷				
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		Comment	
1		7.4200	29.31	-11.01	18.30	46.00	-27.70	peak		
2		0.3800	29.90	-9.45	20.45	46.00	-25.55	peak		
	548	8.9500	29.04	-5.94	23.10	46.00	-22.90	peak		
3										
3	70	7.0600	29.59	-4.54	25.05	46.00	-20.95	peak		
3 4 5	707 802	7.0600 2.1200 9.7900	29.59 30.13 29.33	-4.54 -1.72 0.40	25.05 28.41 29.73	46.00 46.00 46.00	-20.95 -17.59 -16.27	peak peak peak		

UT:		2.4G V	Vireless F	Presenter		Model I	Name:	15	
empera	ature:	25 °C				Relativ	e Humidi	ty: 58 %	
est Volt	age:	DC 1.5	ν			Polariza	ation:	Vertica	al
est Mo	de :	TX Mo	de 2472N	ЛНz				·	
80.0 1	dBuV/m								
	_								
40									
									6
		Ç 3					5	. weather	planner Victoria
		↓ Î î				mand	hopen and the shares	particular all sometimes and the	
	ali le	e derandue 1	- Ano Norman	Howker	-MM/N-4				
	and Maria and	our unitedated	Alter.						
0.0									
	.000 127.	.00 224.00	321.00	418.00	515.00	612.00	709.00	806.00	1000.00 MHz
		Reading		Measure-		0			
No. M			Factor	ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	447.070	0.05.54			43.50	-21.80	peak		
1	147.370		-13.81	21.70	40.50	40.00			
2	184.2300	0 39.08	-13.88	25.20	43.50	-18.30	peak		
2	184.2300 226.9100	0 39.08 0 38.54	-13.88 -14.75	25.20 23.79	46.00	-22.21	peak		
2 3 4	184.2300 226.9100 555.7400	0 39.08 0 38.54 0 29.57	-13.88 -14.75 -6.12	25.20 23.79 23.45	46.00 46.00	-22.21 -22.55	peak peak		
2	184.2300 226.9100	0 39.08 0 38.54 0 29.57 0 29.89	-13.88 -14.75	25.20 23.79	46.00	-22.21	peak		


UT:			2.4G W	ireless F	Presente	r	Model I	Name:	15		
empera	ature	:	25 °C				Relativ	e Humid	ity: 58	%	
est Vol	tage:		DC 1.5\	/			Polarization: Horizontal				
est Mo	de :		TX Mod	e 2472N	ЛНz						
80.0	0 dBu/	V/m									1
											ł
]
											1
40											
										6	
							3	\$	and the second	and the second	
				_	Z	المراجع والمراجع	" and and	mantas	where the second s	4	
			news.		No. Martin	W. Harrow P.	Not want	manter	www.mystamore	and the second	-
		up har har	ound marchedite	and a marker way	ann na marta	N. Starrow Prober	"Rent pand	math	www.the	un the second	-
0.0		- hydraellaer	, when we have	ر مستقسموں	Amon Garage	with the second s	Runchennel	muth	www.day.Marcon	and a state of the	-
		127.00	^{yunl} ungenpelan 224.00	مر المعربي 321.00	2 X X 418.00	515.00	3 		806.00	1000.00	
31	0.000	127.00	224.00 Reading	321.00 Correct	418.00 Measure	515.00	612.00				
	0.000 k. F	127.00 Freq.	224.00 Reading Level	321.00 Correct Factor	418.00 Measure ment	515.00 Limit	612.00 Over	709.00	806.00		
зі No. M	0.000 k. F	127.00 Freq. MHz	224.00 Reading Level dBuV	321.00 Correct Factor dB	418.00 Measure ment dBuV/m	515.00 Limit dBuV/m	612.00 Over dB	709.00 Detector			
31 No. M	n. 000 k. F 299.0	127.00 Freq. MHz 6600	224.00 Reading Level dBuV 28.02	321.00 Correct Factor dB -10.97	418.00 Measure ment dBuV/m 17.05	515.00 Limit dBuV/m 46.00	612.00 Over dB -28.95	709.00 Detector peak	806.00		
34 No. M 1 2	k. F 299.0	127.00 Freq. MHz 6600 0100	224.00 Reading Level dBuV 28.02 30.02	321.00 Correct Factor dB -10.97 -8.71	418.00 418.00 Measure ment dBuV/m 17.05 21.31	515.00 Limit dBuV/m 46.00 46.00	612.00 Over dB -28.95 -24.69	709.00 Detector peak peak	806.00		
31 No. M 1 2 3	k. F 299.0 450.0	127.00 Freq. MHz 6600 0100 8000	224.00 Reading Level dBuV 28.02 30.02 29.33	321.00 Correct Factor dB -10.97 -8.71 -6.03	418.00 418.00 Measure ment dBuV/m 17.05 21.31 23.30	515.00 Limit dBuV/m 46.00 46.00	612.00 Over dB -28.95 -24.69 -22.70	709.00 Detector peak peak peak	806.00		
34 No. M 1 2	k. F 299.0 450.0 553.0 705.1	127.00 Freq. MHz 6600 0100	224.00 Reading Level dBuV 28.02 30.02	321.00 Correct Factor dB -10.97 -8.71	418.00 418.00 Measure ment dBuV/m 17.05 21.31	515.00 Limit dBuV/m 46.00 46.00	612.00 Over dB -28.95 -24.69	709.00 Detector peak peak	806.00		

4.2.9 TEST RESULTS (ABOVE 1000 MHz)

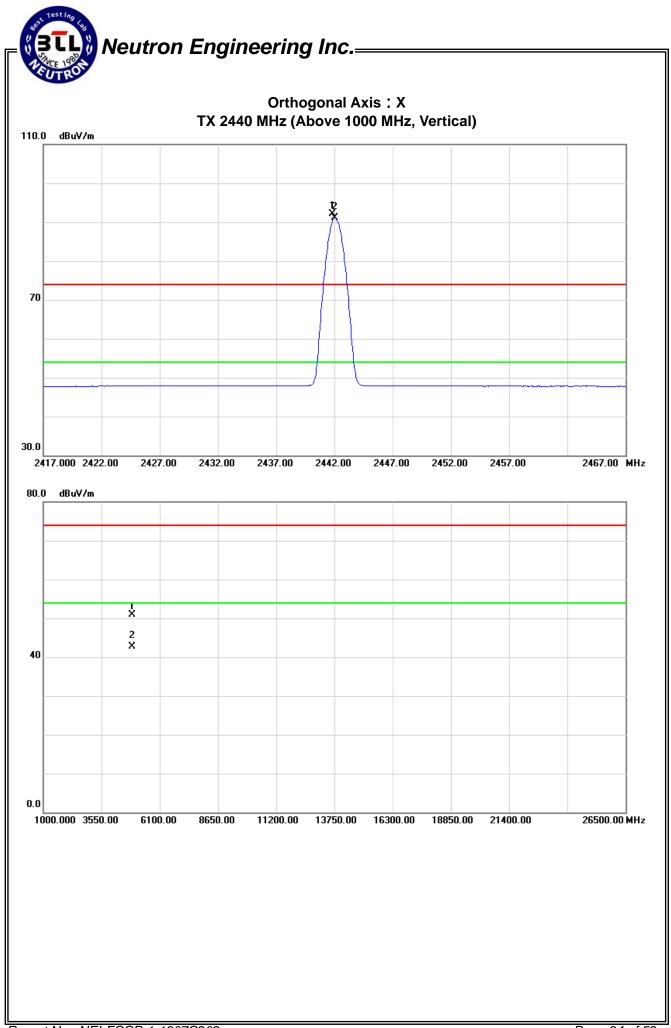
EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	V	24.51	13.42	34.09	58.60	47.51	74.00	54.00	X/E
2411.80	V	58.65	57.57	34.16	92.81	91.73	114.00	94.00	X/F
4824.07	V	46.06	37.74	6.43	52.49	44.17	74.00	54.00	X/H


- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
 "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

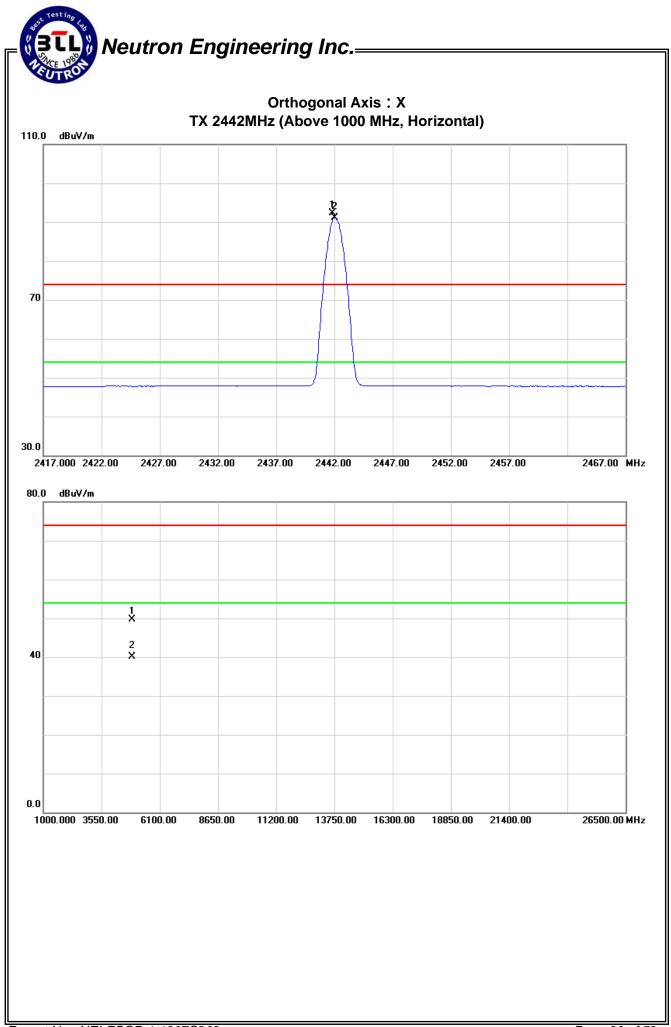
EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2412MHz		

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2390.00	Н	24.78	13.38	34.09	58.87	47.47	74.00	54.00	X/E
2411.75	Н	58.66	57.55	34.16	92.82	91.71	114.00	94.00	X/F
4824.18	Н	44.17	34.18	6.43	50.60	40.61	74.00	54.00	X/H


- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
 "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2442MHz	·	

Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2411.80	V	57.89	56.86	34.25	92.14	91.11	114.00	94.00	X/F
4884.12	V	44.28	36.01	6.62	50.90	42.63	74.00	54.00	X/H

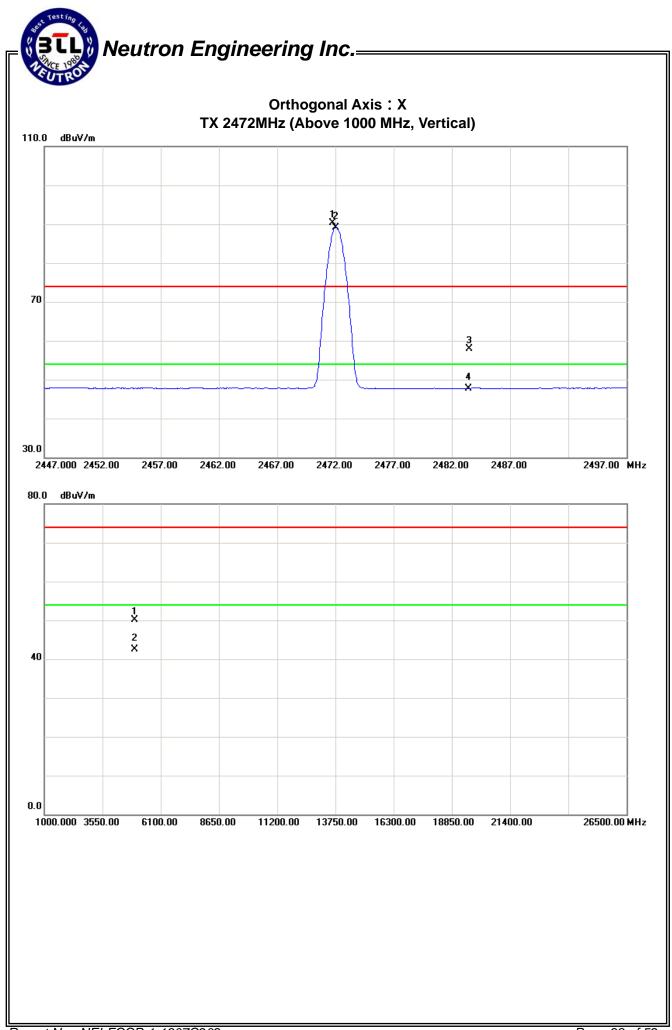

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2442MHz	·	

	Freq.	Ant.Pol.	Reading		Ant./CF	Act.		Limit		
			Peak	AV		Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
	2441.80	Н	58.00	56.95	34.25	92.25	91.20	114.00	94.00	X/F
ſ	4884.14	Н	43.05	33.46	6.62	49.67	40.08	74.00	54.00	X/H

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table; "Y" denotes Vertical Stand; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2472MHz		

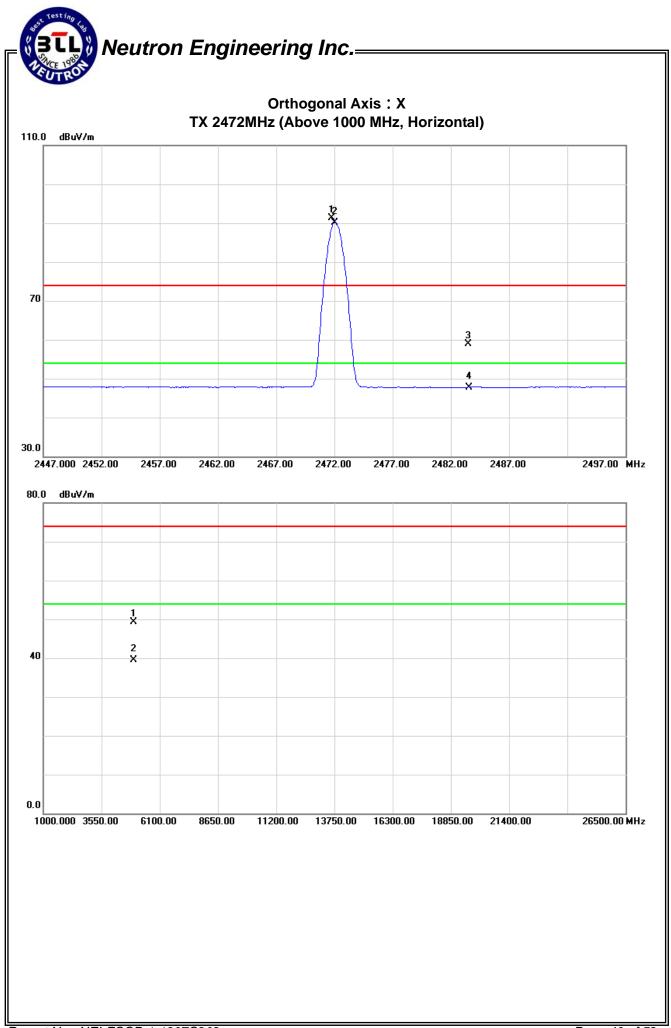

	Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
			Peak	AV		Peak	AV	Peak	AV	Note
	(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
24	471.75	V	55.98	54.83	34.33	90.31	89.16	114.00	94.00	X/F
24	483.50	V	23.54	13.40	34.37	57.91	47.77	74.00	54.00	X/E
49	944.10	V	43.25	35.69	6.79	50.04	42.48	74.00	54.00	X/H

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency."F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:

"X" - denotes Laid on Table ; "Y" - denotes Vertical Stand ; "Z" - denotes Side Stand

(7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna



EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	60 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX 2472MHz		

Freq.	Ant.Pol.	Rea	ding	Ant./CF	A	ct.	Lir	nit	
		Peak	AV		Peak	AV	Peak	AV	Note
(MHz)	H/V	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	
2471.75	Н	57.04	55.85	34.33	91.37	90.18	114.00	94.00	X/F
2483.50	Н	24.45	13.43	34.37	58.82	47.80	74.00	54.00	X/E
4944.05	Н	42.56	32.65	6.79	49.35	39.44	74.00	54.00	X/H

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz or the 10th harmonic of highest fundamental frequency. "F" denotes fundamental frequency; "H" denotes spurious frequency.
 "E" denotes band edge frequency. (This judgment method includes the Band Edge Requirement.)
- (3) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission .
- (4) Data of measurement within this frequency range shown " * " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.
- (6) EUT Orthogonal Axis:
 - "X" denotes Laid on Table ; "Y" denotes Vertical Stand ; "Z" denotes Side Stand
- (7) During the measurements above 1 GHz it is taken care of that the EUT is always within the 3 dB cone of radiation BW of the used antenna

5. BANDWIDTH TEST

5.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov.16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

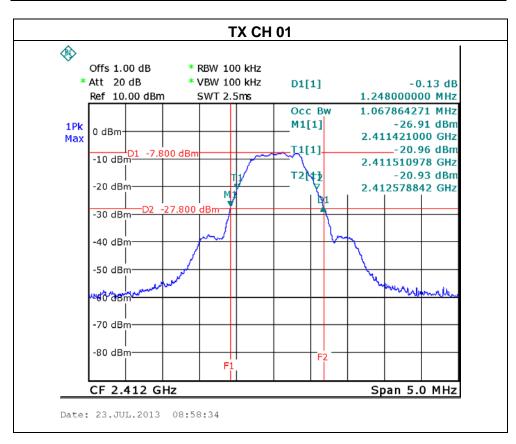
5.2 TEST PROCEDURE

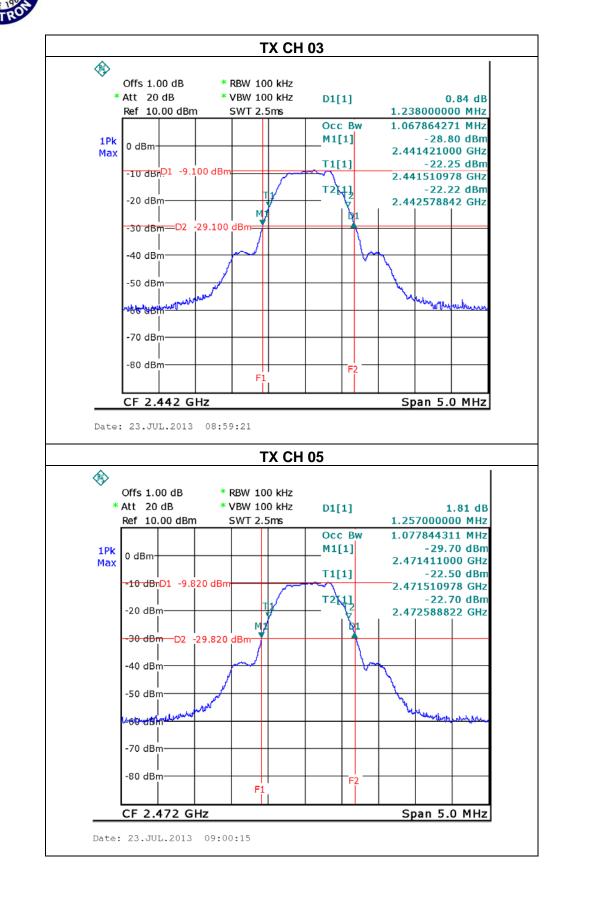
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP


5.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 °C	Relative Humidity	55 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX CH 01/03/05		

Frequency	20 dBc Bandwidth
	(MHz) 1.248
	1.238
	1.257
	Frequency (MHz) 2412 2442 2472

6. ANTENNA CONDUCTED SPURIOUS EMISSION

6.1 APPLIED PROCEDURES / LIMIT

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

6.1.1 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	R&S	FSP 40	100185	Nov.16.2013

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

6.1.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = 10 ms.

6.1.3 DEVIATION FROM STANDARD

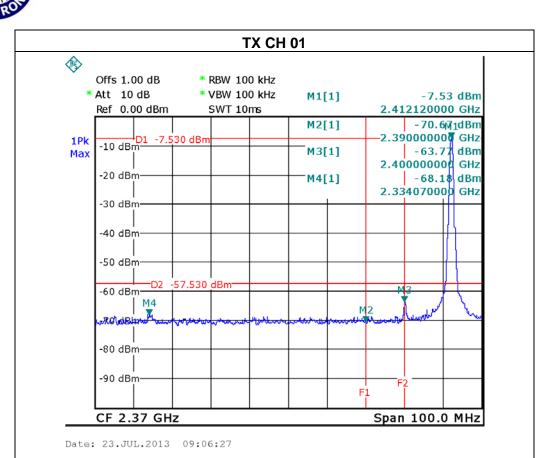
No deviation.

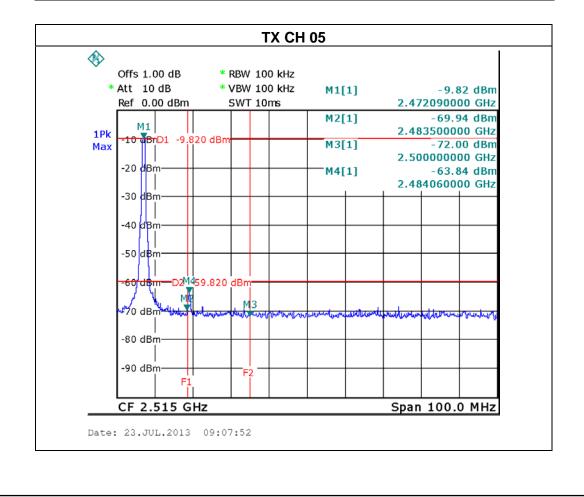
6.1.4 TEST SETUP

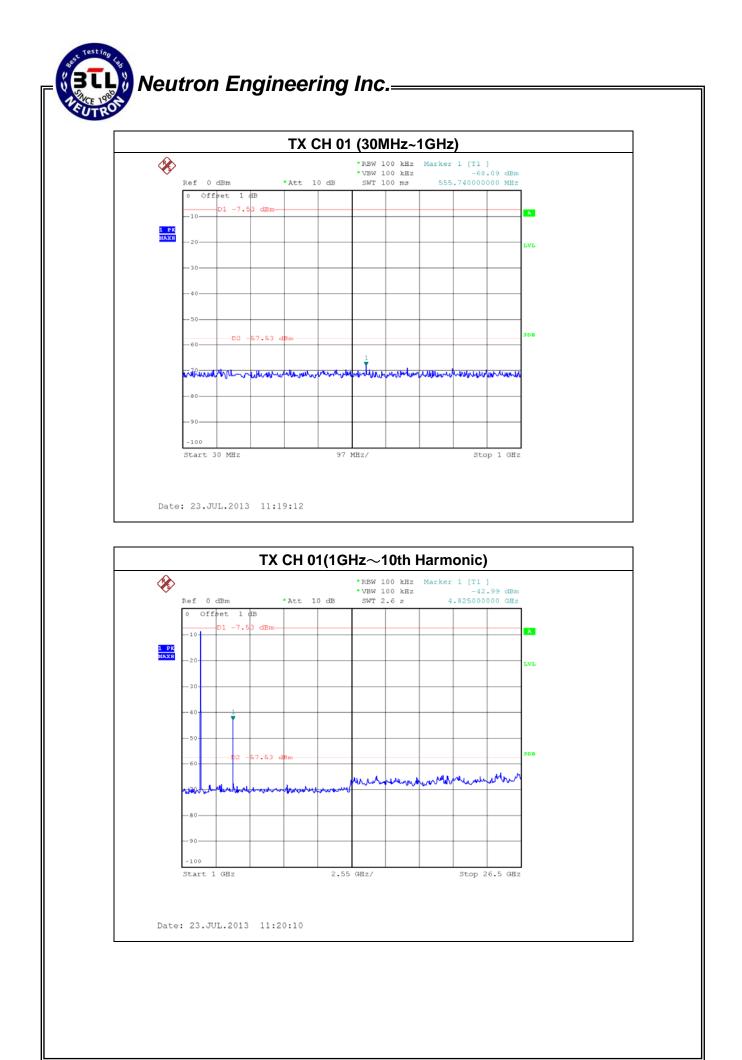
EUT	SPECTRUM
	ANALYZER

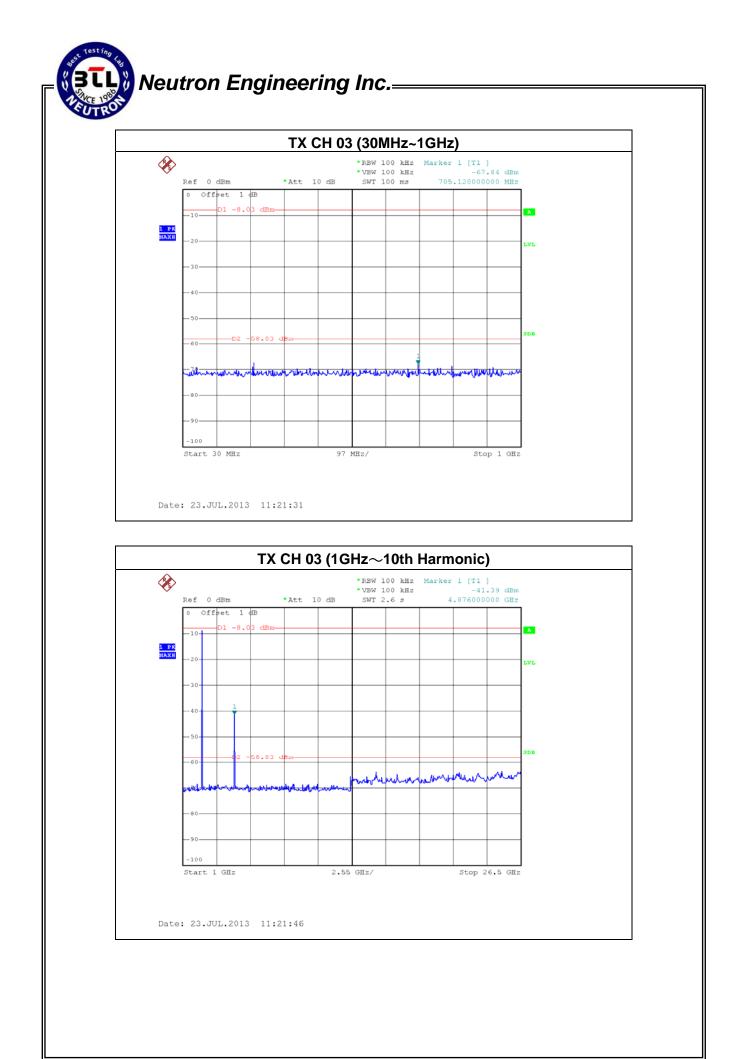
6.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

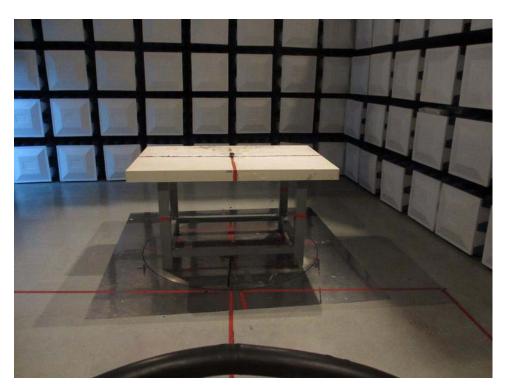



6.1.6 TEST RESULTS

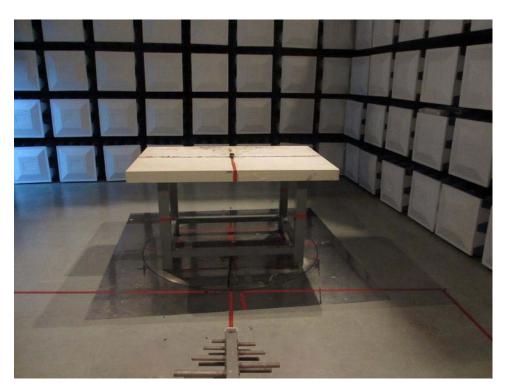

EUT	2.4G Wireless Presenter	Model Name	15
Temperature	25 ℃	Relative Humidity	55 %
Pressure	1009 hPa	Test Voltage	DC 1.5V
Test Mode	TX CH01, CH 03, CH 05		


Channel of Worst Data: CH34				
	cy power in any 100kHz the frequency band	The max. radio frequend bandwidth within th		
FREQUENCY(MHz)	POWER(dBm)	FREQUENCY(MHz)	POWER(dBm)	
2400.00	-63.77	2484.06	-63.84	
Result				

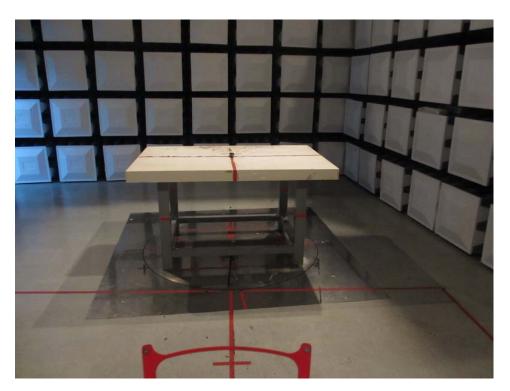
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.



7. EUT TEST PHOTO


Radiated Measurement Photos 9K-30MHz




Radiated Measurement Photos 30MHz-1GHz

Radiated Measurement Photos ABOVE 1GHz

