Intermec Technologies Corporation 700C with CDMA, 802.11(b), and RFID

December 16, 2003
Report No. ITRM0006

Report Prepared By:

© 2003 Northwest EMC, Inc

Certificate of Test

Issue Date: December 16, 2003
Intermec Technologies Corporation Model: 700C with CDMA, 802.11(b), and RFID

Emissions		Fail
Description	Pass	
FCC 22.917 Spurious Radiated Emissions:2003	区	\square
FCC 24.238 Spurious Radiated Emissions:2003	区	\square

Modifications made to the product

See the Modifications section of this report
Test Facility

- The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124
Phone: (503) 844-4066 Fax: 844-3826
This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision Number	Description	Date	Page Number

00	None		

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 200629-0, Certificate Number: 200630-0.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards
 by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0302C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

Abstract

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the
 approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: C-905, R-871, C-1784 and R-1761, North Sioux City $C-1246$ and R-1217)

BSMI: Northwest EMC has been designated by NIST and validated by CTaipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R\&TTE directive, as C described in the U.S. - EU Mutual Recognition Agreement

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

	$\frac{0}{2}$	O	$\frac{\boxed{\circ}}{2}$	0 8 3					$\begin{aligned} & \sum_{\mathbb{D}} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{ভ} \\ & > \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { O } \\ & \hline \end{aligned}$	¢
IEC 61000-4-2	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 61000-4-3	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark					
IEC 61000-4-4	\checkmark			\checkmark	V	\checkmark	\checkmark					
IEC 61000-4-5	\checkmark			\checkmark	V	V	V					
IEC 61000-4-6	\checkmark			\checkmark	V	\checkmark	\checkmark					
IEC 61000-4-8	\checkmark			\checkmark	V	V	\checkmark					
IEC 61000-4-11	\checkmark			\checkmark	V	V	\checkmark					
IEC 61000-3-2	\checkmark			\checkmark	V	V	V					
IEC 61000-3-3	\checkmark			\checkmark	V	\checkmark	\checkmark					
AS/NZS 3548	\checkmark											\checkmark
CNS 13438	\checkmark								\checkmark			
ISO/IEC17025	\checkmark			V	V	V	V		\checkmark			
Radiated Emissions	\checkmark			\checkmark	V	V	V	\checkmark	\checkmark	\checkmark	\checkmark	
Conducted Emissions	\checkmark			\checkmark	V	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
OATS Sites	\checkmark	V		\checkmark								
Hillsboro 5-Meter Chamber (EV01)	\checkmark	V		\checkmark								
TCB for Licensed Transmitters		\checkmark										
TCB for un-Licensed Transmitters		\checkmark										
Cab for R\&TTE			\checkmark									
CAB for EMC			\checkmark									
This chart represents only a partial NVLAP Scope, please reference http://ts.nist.gov/ts/htdocs/210/214/214.htm for the full NVLAP Scope of Accreditation												

What is measurement uncertainty?

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $\boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{y})$	normal	$\begin{aligned} & \hline+1.29 \\ & -1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.38 \\ & -1.35 \\ & \hline \end{aligned}$
Expanded uncertainty \boldsymbol{U} (level of confidence $\approx 95 \%$)	normal (k=2)	$\begin{aligned} & +2.57 \\ & -2.51 \\ & \hline \end{aligned}$	$\begin{array}{r} +2.76 \\ --2.70 \\ \hline \end{array}$

Conducted Emissions

	Probability Distribution	
Combined standard uncertainty $\boldsymbol{u c}(\boldsymbol{y})$ normal Value $(+/-\mathrm{dB})$ Expanded uncertainty \boldsymbol{U} (level of confidence $\approx 95 \%)$ normal $(\mathrm{k}=2)$ 1.48	2.97	

Radiated Immunity

	Distribution	$(+/-\mathrm{dB})$
Combined standard uncertainty $\boldsymbol{u c}(\boldsymbol{y})$	normal	1.05
Expanded uncertainty \boldsymbol{U}	normal $(\mathrm{k}=2)$	2.11
(level of confidence $\approx 95 \%)$		

Conducted Immunity

	Probability Distribution	Value $(+/-\mathrm{dB})$
Combined standard uncertainty $\boldsymbol{u c}(\boldsymbol{y})$	normal	1.05
Expanded uncertainty \boldsymbol{U} (level of confidence $\approx 95 \%)$	normal $(\mathrm{k}=2)$	2.10

Legend

$\boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{y})=$ square root of the sum of squares of the individual standard uncertainties
$\boldsymbol{U}=$ combined standard uncertainty multiplied by the coverage factor: \mathbf{k}. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\mathrm{k}=3$ (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

California
Orange County Facility
41 Tesla Ave.
Irvine, CA 92618
(888) 364-2378

FAX (503) 844-3826

Oregon
Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400
Hillsboro, OR 97124
(503) 844-4066

FAX (503) 844-3826

Oregon
Trails End Facility

30475 NE Trails End Lane
Newberg, OR 97132
(503) 844-4066

FAX (503) 537-0735

South Dakota
 North Sioux City Facility

745 N. Derby Lane
P.O. Box 217

North Sioux City, SD 57049
(605) 232-5267

FAX (605) 232-3873

Washington
Sultan Facility

14128 339 ${ }^{\text {th }}$ Ave. SE
Sultan, WA 98294
(888) 364-2378

FAX (360) 793-2536

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Dave Fry
Model:	700 C with CDMA, 802.11b, and RFID
First Date of Test:	November 21, 2003
Last Date of Test:	November 26, 2003
Receipt Date of Samples:	November 20, 2003
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test
I/O Ports:	none

Functional Description of the EUT (Equipment Under Test):

Handheld computer with three internal radios used for inventory control

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection:

These test satisfy the requirements of FCC 22.917(e) and FCC 24.238 for co-located transmitters.

Modifications

Revision 4/28/03

Equipment modifications							
Item	Test	Date	Modification	Note	Disposition of EUT		
1	Spurious Radiated Emissions	$11-21$ thru $11-26-2003$	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT was returned to client following testing.		

Justification

The EUT is a CDMA radio module installed inside Intermec's handheld computer, Model 700C. The 700 C also contains two other co-located radio modules (802.11(b) and Bluetooth). The EUT has been previously certified (FCC ID: HN2SB555-2) for portable use with these two other radios (FCC ID: HN22011B-2 and FCC ID: HN2ABTM3-3). This test demonstrates compliance with FCC 22.917 and FCC 24.238 emissions limits while the EUT is co-located with another previously certified RFID radio (FCC ID: EHARFID915PCC-6). This new RFID radio is internal to a pistol grip (Model IP3). The IP3 is an optional accessory that attaches externally to the bottom of the 700C. Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz . All the radios were configured for simultaneous transmission at the channels specified below:

Channels in Specified Band Investigated (when CDMA radio is operating in Cellular Band):	
CDMA (Cellular Band):	$310,477,602,727$
RFID:	$12,47,71,73$
$\mathbf{8 0 2 . 1 1 (b) : ~}$	$1,5,8,11$

Channels in Specified Band Investigated (when CDMA radio is operating in PCS Band):

CDMA (PCS Band):	$41,932,1117,1182$,
RFID:	$7,8,12,50,62,69$,
$\mathbf{8 0 2 . 1 1 (b) : ~}$	1,11

Operating Modes Investigated:
Simultaneous Transmission of CDMA Cellular Channel 477, RFID Channel 12, and 802.11(b) Channel 1
Simultaneous Transmission of CDMA Cellular Channel 727, RFID Channel 47, and 802.11(b) Channel 8
Simultaneous Transmission of CDMA Cellular Channel 602, RFID Channel 73, and 802.11(b) Channel 1
Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 5
Simultaneous Transmission of CDMA Cellular Channel 310, RFID Channel 71, and 802.11(b) Channel 11
Simultaneous Transmission of CDMA PCS Channel 41, RFID Channel 69, and 802.11(b) Channel 11
Simultaneous Transmission of CDMA PCS Channel 1182, RFID Channel 12, and 802.11(b) Channel 1
Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 7, and 802.11(b) Channel 11
Simultaneous Transmission of CDMA PCS Channel 932, RFID Channel 8, and 802.11(b) Channel 11
Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 50, and 802.11(b) Channel 1
Simultaneous Transmission of CDMA PCS Channel 1117, RFID Channel 62, and 802.11(b) Channel 1
Simultaneous Transmission of CDMA PCS Channel 1182, RFID Channel 7, and 802.11(b) Channel 11

Antennas Investigated:
CDMA (Cellular Band):
CDMA (PCS Band):
RFID:
802.11(b):

805-606-002 Antenna (external to 700C)
805-606-004 Antenna (external to 700C)
IP3 integral antenna (internal to IP3)
2011B integral antenna (internal to 700C)

Output Power Setting(s) Investigated:

Maximum

Data Rate(s) Investigated:

Maximum

Power Input Settings Investigated:
120VAC, 60Hz
Battery

Frequency Range Investigated

SoftwarelFirmware Applied During Test

Exercise software	Intel 802.11 AgencyTest Core IP3FCC2	Version(s)	unknown unknown v0.4

Description

The system uses special software designed to exercise the functions of the device such as transmit/receive, channel, modulation, data rates, and simultaneous transmission of all three co-located radios.

EUT and Peripherals	Manufacturer	Model/Part Number	Serial Number
Description	Intermec Technologies Corporation	700 C	N/A
Handheld Computer	Intermec Technologies Corporation	SB555	N/A
802.11(b) Radio in 700C	Intermec Technologies Corporation	2011 B	N/A
RFID Radio in Pistol Grip	Intermec Technologies Corporation	IP3	N/A
Power Adapter	EIpac Power Systems	FW1812	004506
Cellular Antenna	Intermec Technologies Corporation	$805-606-002$	N/A
Cellular Antenna	Intermec Technologies Corporation	$805-606-004$	N/A

Cables							
Cable Type	Shield	Length (\mathbf{m})	Ferrite	Connection 1	Connection 2		
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter		
AC Power	No	1.8	No	Power Adapter	AC Mains		
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.							

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
High Pass Filter	RLC Electronics	F-100-4000-5-R $($ HPF>4GHz up to	HFF	$05 / 01 / 2003$	12 mo
Antenna, Biconilog	EMCO	3142	AXA	$11 / 07 / 2002$	36 mo
Pre-Amplifier	Amplifier	Research	LN1000A	APS	$01 / 06 / 2003$
Antenna, Horn	EMCO	3115	AHC	$09 / 18 / 2003$	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	$01 / 06 / 2003$	12 mo
Antenna, Horn	EMCO	$3160-08$	AHK	$06 / 20 / 2003$	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	$10 / 08 / 2003$	12 mo
Antenna, Horn	EMCO	$3160-09$	AHG	$10 / 08 / 2003$	12 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	$10 / 08 / 2003$	12 mo
Spectrum Analyzer	Hewlett-Packard	8566 B	AAL	$01 / 07 / 2003$	12 mo
Spectum Analyzer Display	Hewlett Packard	$85662 A$	AALD	$01 / 07 / 2003$	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650 A	AQF	$01 / 07 / 2003$	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	$02 / 26 / 2003$	24 mo
High Pass Filter	Hewlett-Packard	$84300-80037$	HFE	$05 / 01 / 2003$	12 mo

Test Description

Requirement: Per 2.1053, the field strength of spurious radiation was measured in the far-field at an FCC Listed semi-anechoic chamber up to 25 GHz . The applicable limits are 22.917(e) for the cellular band, and 24.238(a) for the PCS band.

Per 22.917(e), the mean power of out of band emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at least $43+10 \log (P) d B .(-13 d B m)$.

Per 24.238(a), on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43+10 \log (P) d B .(-13 d B m)$.

Configuration: Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions.

The substitution method as described in TIA/EIA-603 Section 2.2.12 was used for the highest spurious emissions. The EUT was tested while simultaneously transmitting with co-located radios.

Test Methodology: For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a $1 / 2$ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal $1 / 2$ wave dipole antenna is determined for each radiated spurious emission.

Simultaneous Transmission: The EUT is a CDMA radio module installed inside Intermec's handheld computer, Model 700C. The 700C also contains two other co-located radio modules (802.11(b) and Bluetooth). The EUT has been previously certified (FCC ID: HN2SB555-2) for portable use with these two other radios (FCC ID: HN22011B-2 and FCC ID: HN2ABTM3-3). This test demonstrates compliance with FCC 22.917 and FCC 24.238 emissions limits while the EUT is co-located with another previously certified mobile radio (FCC ID: EHARFID915PCC-6). This new RFID radio is internal to a pistol grip (Model IP3). The IP3 is an optional accessory that attaches externally to the bottom of the 700C. Since the IP3 uses the same IRDA interface port as the Bluetooth radio, the Bluetooth and RFID radios cannot transmit simultaneously (see Intermec's attestation letter). All other radios can transmit simultaneously. Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q \& A, October 2002, Day 2, Question 7:
Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

All possible combinations of harmonic emissions from the CDMA, 802.11(b) and RFID radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz.. The frequency range from 1 GHz to 25 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at $2483.5-2500 \mathrm{MHz}$ was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Measurements

Frequency Range $(\mathbf{M H z})$	Peak Data $(\mathbf{k H z})$	Quasi-Peak Data $(\mathbf{k H z})$	Average Data $(\mathbf{k H z})$
$0.01-0.15$	1.0	0.2	0.2
$0.15-30.0$	10.0	9.0	9.0
$30.0-1000$	100.0	120.0	120.0
Above 1000	1000.0	$\mathrm{~N} / \mathrm{A}$	1000.0
Measurements were made using the bandwidths and detectors specified. No video filter was used.			

completed by:

Test Setup Photos with 805-606-002 Antenna Cellular Band

Test Setup Photos with 805-606-004 Antenna PCS Band

