Intermec Technologies Corporation

Bluetooth Radio (8520-00080)

July 01, 2004

Report No. ITRM0020

Report Prepared By:

www.nwemc.com 1-888-EMI-CERT

© 2004 Northwest EMC, Inc

Certificate of Test

Issue Date: July 01, 2004 Intermec Technologies Corporation Model: Bluetooth Radio (8520-00080)

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.207 AC Powerline Conducted Emissions:2003	ANSI C63.4:2001	\square	
FCC 15.247(a) Occupied Bandwidth:2003	ANSI C63.4:2001	\boxtimes	
FCC 15.247(b) Output Power:2003	ANSI C63.4:2001	\boxtimes	
FCC 15.247(c) Band Edge Compliance:2003	ANSI C63.4:2001	\square	
FCC 15.247(c) Spurious Conducted Emissions:2003	ANSI C63.4:2001	\boxtimes	
FCC 15.247(c) Spurious Radiated Emissions:2003	ANSI C63.4:2001	\boxtimes	
FCC 15.247(d) Power Spectral Density:2003	ANSI C63.4:2001	\square	

Modifications made to the product

See the Modifications section of this report

Test Facility

 The measurement facility used to collect the data is located at: Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826 This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
ADU.K.P
Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

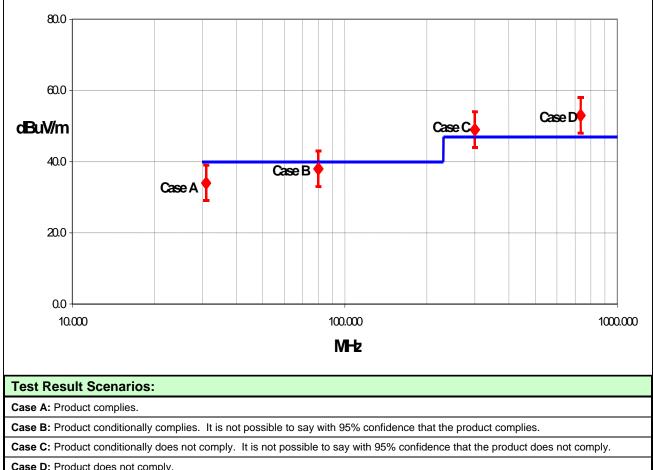
TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

Accreditations and Authorizations

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992. TUV Rheinland **NEMKO:** Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory NEMKO assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119). Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request. Australia/New Zealand: The National Association of Testing Authorities (NATA). Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP) VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. -Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: C-905, R-871, C-1784 and R-1761) **BSMI:** Northwest EMC has been designated by NIST and validated by C-Taipei BSMI (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017. GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

> SCOPE For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/scope.asp</u>

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability Biconical		Log Periodic		Dipole		
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence $\approx 95\%$)		- 2.51	2.70

Conducted Emissions				
	Probability	Value		
	Distribution	(+/- dB)		
Combined standard uncertainty <i>uc(y)</i>	normal	1.48		
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.97		

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility 22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility 30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Model:	8520-00080 in the 700C
First Date of Test:	05-11-2004
Last Date of Test:	05-24-2004
Receipt Date of Samples:	05-11-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.
I/O Ports:	N/A

Functional Description of the EUT (Equipment Under Test):

Bluetooth radio in a hand-held computer.

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection:

These tests satisfy the requirements for FCC certification under 15.247.

EUT Photo

EUT - 8520-00080

Host Device – 700C

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Bluetooth only

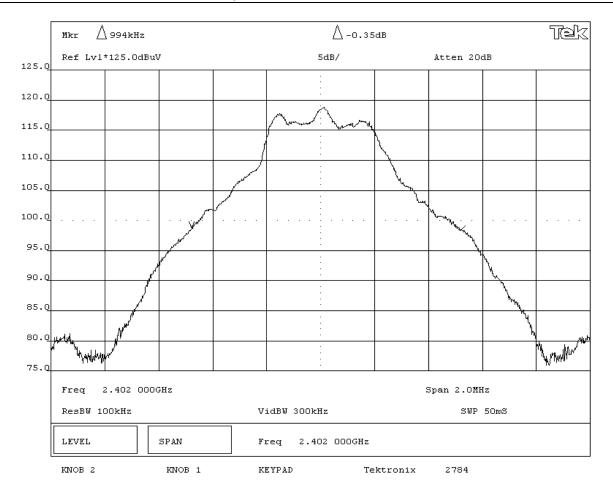
Software\Firmware Applied During Test					
Exercise software	FCC_Smart	Version	Unknown		
Description					
The system was tested using special test software to exercise the functions of the device during the					
testing including channels,	data rates, and output po	wer.	_		

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703				
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869				
Power Adapter	Elpac Power Systems	FW1812	014852				

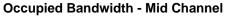
Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter	
AC Power	No	1.8	No	Power Adapter	AC Mains	
PA = Cable is pe	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

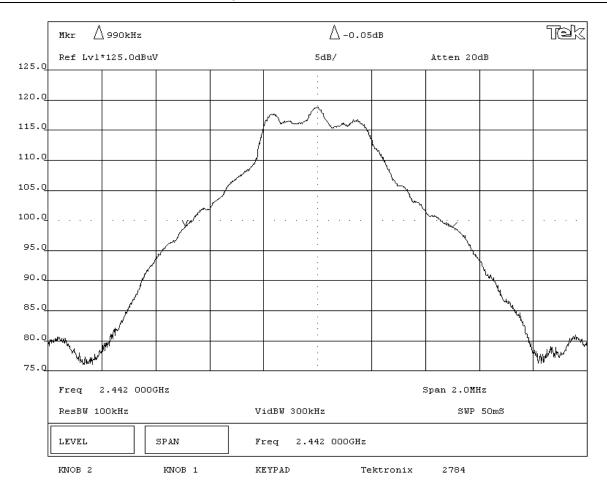
Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		

Test Description


<u>Requirement</u>: Per an FCC Interpretation sent to TCBs on October 8, 2002, frequency hoppers in the 2.4 GHz band operating under 15.247 are required to use a minimum of 15 non-overlapping channels. The hopping channel bandwidth can be wider than 1 MHz as long as the channels do not overlap and all emissions stay within the 2400-2483.5 MHz band. For example, a system that uses the minimum 15 channels can have hopping channel bandwidth that are up to 5 MHz wide. The measurement is made with the spectrum analyzer's resolution bandwidth set to $\geq 1\%$ of the 20dB bandwidth, and the video bandwidth set to greater than or equal to the resolution bandwidth.

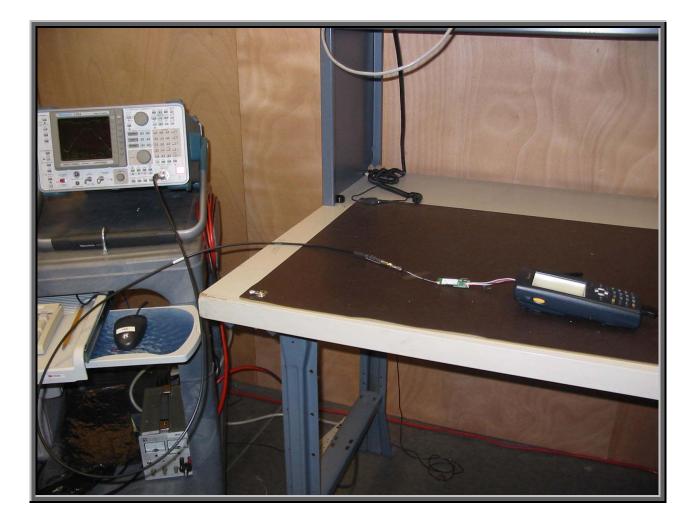
<u>Configuration</u>: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


Completed by:	
ADJU.K.P	


EMISSIONS DATA SHEET							
EMC	LINIIOOIONO	DATASH			Rev BETA 01/30/01		
EUT:	8520-00080			Work Order:	ITRM0020		
Serial Number:	4004703			Date:	05/21/04		
Customer:	Intermec Technologies Corporation			Temperature:	73 F		
Attendees:	none	Tested by:	Greg Kiemel	Humidity:	42%		
Customer Ref. No.:	N/A	Power:	3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION	S						
Specification:	FCC 15.247(a) Occupied Bandwidth Year: 2003	Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULATIO	ONS						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenna port						
EUT OPERATING MOD							
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum output power.						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The minimum 20 dB b	andwidth is less than the minimum channel separation of 1 MHz.						
RESULTS		BANDWIDTH					
Pass		0.994 MHz					
SIGNATURE	SIGNATURE						
Tested By:							
DESCRIPTION OF TES	T						
	Occupied Bandwidth - Low Channel						

Occupied Bandwidth - Low Channel

NORTHWEST							
EMC	EMISSIONS	DATA SH			Rev BETA 01/30/01		
EUT:	8520-00080			Work Order:	ITRM0020		
Serial Number:	4004703			Date:	05/21/04		
Customer:	Intermec Technologies Corporation			Temperature:	73 F		
Attendees:	none	Tested by:	Greg Kiemel	Humidity:	42%		
Customer Ref. No.:	N/A	Power:	3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION	IS						
Specification:	FCC 15.247(a) Occupied Bandwidth Year: 2003	Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULATIO	ONS						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenna port						
EUT OPERATING MOI							
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum output power.						
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The minimum 20 dB b	andwidth is less than the minimum channel separation of 1 MHz						
RESULTS		BANDWIDTH					
Pass		0.990 MHz					
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	ST						
	Occupied Bandwidth - Mid Channel						



NORTHWEST		_					
EMC	EMISSIO	DNS [DATA SHEET		Rev BETA 01/30/01		
EUT:	8520-00080			Work Order: ITRM0020			
Serial Number:	4004703	004703					
Customer:	Intermec Technologies Corporation			Temperature: 73 F			
Attendees:	none		Tested by: Greg Kiemel	Humidity: 42%			
Customer Ref. No.:	N/A		Power: 3.3 Vdc from host	Job Site: EV06			
TEST SPECIFICATION	IS						
Specification:	FCC 15.247(a) Occupied Bandwidth Year:	2003	Method: ANSI C63.4	Year: 2001			
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenna port						
EUT OPERATING MO	DES						
No hop mode. Modul	ated by PRBS at maximum data rate, at maximum output	power.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
The minimum 20 dB b	andwidth is less than the minimum channel separation of	of 1 MHz.					
RESULTS			BANDWIDTH				
Pass			0.992 MHz				
SIGNATURE							
Tested By:							
DESCRIPTION OF TE	ST						
		andwid	Ith - High Channel				

Occupied Bandwidth - High Channel

	Mkr /	992 kHz				∆-0.	.20dB			Tek
125.0		1*125.0dBu\	,			5dB/		Atten 200	ЗВ	
120.0						•				
115.0					4	Å	<u> </u>			
110.0				/			λ			
105.0						· ·				
100.0								• · · · · · · · · · · · · · · · · · · ·		
95.0			and the second s					\square		
90.Q		/						<u>م</u>	λ	
85.0		J w							have been a second seco	
80.0		n russian				•			& verene a	
75.Q	" Marine								J. J.	WWW WWW WARD
	Freq	2.480 0000	GHz					Span 2.0MH		
	ResBW 1	lOOkHz		v	idBW 3	300kHz		SWP	50mS	
	LEVEL		SPAN	F	req	2.480 000GH	Iz			
	KNOB 2		KNOB 1	K	EYPAD		Tektronix	2784		

Output Power

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Bluetooth only

Software\Firmware Applied During Test							
Exercise software FCC_Smart Version Unknown							
Description							
The system was tested using special test software to exercise the functions of the device during the testing including channels, data rates, and output power.							

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703				
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869				
Power Adapter	Elpac Power Systems	FW1812	014852				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter	
AC Power No 1.8 No Power Adapter AC Mains						
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment									
Description	Manufacturer	Model	Identifier	Last Cal	Interval				
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo				
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo				
Power Meter	Hewlett Packard	E4418A	SPA	06/21/2002	24 mo				
Power Sensor	Hewlett-Packard	8481H	SPB	06/21/2002	24 mo				

Test Description

<u>Requirement</u>: Per 47 CFR 15.247(b)(3), the maximum peak output power must not exceed 1 Watt. The measurement is made using a spectrum analyzer using the following settings:

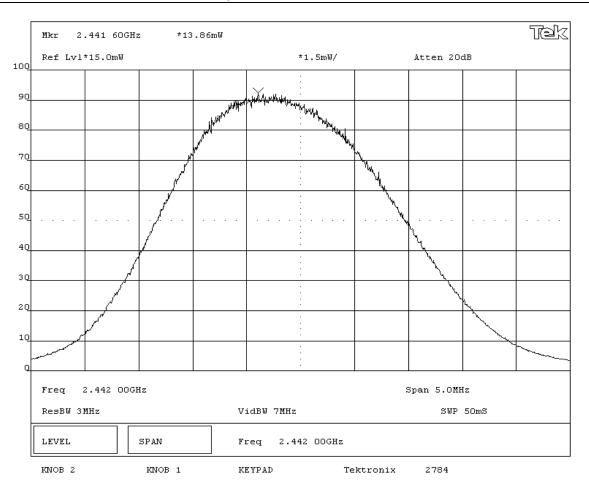
- Resolution bandwidth set to greater than the 6 dB bandwidth of the modulated carrier, and
- The video bandwidth set to greater than or equal to the resolution bandwidth.

<u>Configuration</u>: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


Prior to measuring the output power from the EUT, the test set-up was calibrated using a signal generator and power meter.

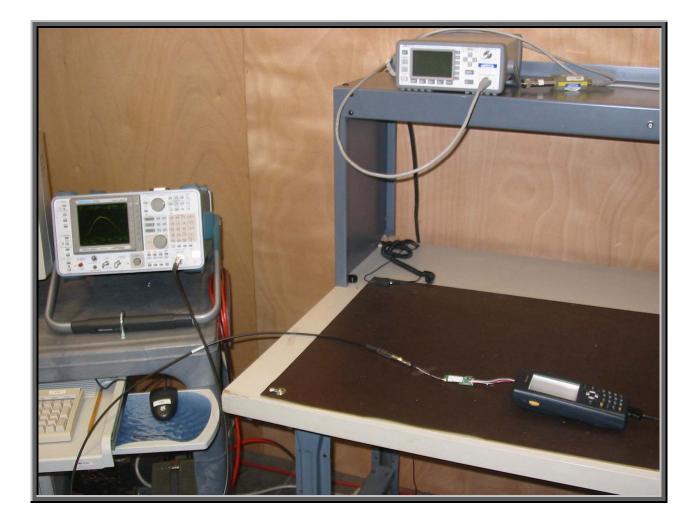
De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by:	
ADJU.K.P	


Rev BETA REV BETA							
EMC	EMISSI	ON 5 I	JATA 5H	EEI		Rev BETA 01/30/01	
EUT:	8520-00080				Work Order:	ITRM0020	
Serial Number:	4004703				Date:	05/21/04	
Customer:	Intermec Technologies Corporation				Temperature:	73 F	
Attendees:	none		Tested by:	Greg Kiemel	Humidity:	42%	
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06	
TEST SPECIFICATION	IS						
Specification:	on: FCC 15.247(b) Output Power Year: 2003 Method: ANSI C63.4				Year:	2001	
SAMPLE CALCULATIO	ONS						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenna p	ort					
EUT OPERATING MOI	DES						
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum out	put power.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak condu	cted output power does not exceed 1 Watt						
RESULTS			AMPLITUDE				
Pass			12.08 mW				
SIGNATURE							
ATT U.K.P							
Tested By:							
DESCRIPTION OF TES	ST						
Output Power - Low Channel							

Output Power - Low Channel

NORTHWEST								
EMC	EMISSI	IONS [DATA SH	EET		Rev BETA 01/30/01		
	8520-00080				Work Order:			
Serial Number:	4004703				Date:	05/21/04		
Customer:	Intermec Technologies Corporation				Temperature:	73 F		
Attendees:	none		Tested by:	Greg Kiemel	Humidity:	42%		
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION	IS							
Specification:	FCC 15.247(b) Output Power Year: 2003 Method: ANSI C63.4				Year:	2001		
SAMPLE CALCULATION	ONS							
COMMENTS								
EUT installed outside	of Intermec Model 700C. Direct connect to antenna p	port						
EUT OPERATING MOI	DES							
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum out	put power.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum peak condu	cted output power does not exceed 1 Watt							
RESULTS			AMPLITUDE					
Pass			13.86 mW					
SIGNATURE								
A D V. K. P Tested By:								
DESCRIPTION OF TES								
Output Power - Mid Channel								


Output Power - Mid Channel

Rev DETA EMISSIONS DATA SHEET Rev DETA							
EMC					01/30/01		
	8520-00080			Work Order:			
Serial Number:	4004703			Date:	05/21/04		
Customer:	Intermec Technologies Corporation		Tested by: Greg Kiemel	Temperature:	73 F		
Attendees:		Humidity:					
Customer Ref. No.:			Power: 3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION							
		ear: 2003	Method: ANSI C63.4	Year:	2001		
SAMPLE CALCULATIO	ONS						
COMMENTS							
	of Intermec Model 700C. Direct connect to antenna p	port					
EUT OPERATING MOD							
· ·	ated by PRBS at maximum data rate, at maximum out	tput power.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
	cted output power does not exceed 1 Watt						
RESULTS			AMPLITUDE				
Pass			11.09 mW				
SIGNATURE							
A T V. K. P							
DESCRIPTION OF TES	T						
	Outpu	t Power	- High Channel				

Output Power - High Channel

	Mkr 2	.479 62GH	Iz *11	09mW						٦
100	Ref Lvl	*15.OmW			*:	.5mW/		Atten 20	dB	
					:					
90					· ·					
80					:					
70				, Januari	Manan Walker	1				
T				w/www.	merinan manufathia	WWWWWWWW				
60			/	pr ^{ra}			1. Wa			
50			· ·				. Mr			
40			, AND				h have			
T			∇		:			A. M.		
30		1	4					- ¹ / ₄		
20					:					
10		- A A A A A A A A A A A A A A A A A A A			:				No wanter	
	Transmission of the second sec				:					
	Freq	2.480 000	Hz	1	1			Span 5.0MH	Iz	
	ResBW 3	MHz		v	idBW 7MHz			SWP	50mS	
ſ	LEVEL		SPAN	F	req 2.480	00GHz				
	KINOB 2		KNOB 1	K	EYPAD	T∈	ktronix	2784		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Bluetooth only

Software\Firmware Applied During Test						
Exercise software	FCC_Smart	Version	Unknown			
Description						
The system was tested using special test software to exercise the functions of the device during the testing including channels, data rates, and output power.						

EUT and Peripherals						
Description	Manufacturer	Model/Part Number	Serial Number			
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703			
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869			
Power Adapter	Elpac Power Systems	FW1812	014852			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter
AC Power	No	1.8	No	Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

Completed by:	
ADJU.K.P	

NORTHWEST				
EMC	EMISSIC	DNS D	ATA SHEET	Rev BETA 01/30/01
EUT:	8520-00080			Work Order: ITRM0020
Serial Number:	4004703			Date: 05/21/04
Customer:	Intermec Technologies Corporation			Temperature: 73 F
Attendees:	none		Tested by: Greg Kiemel	Humidity: 42%
Customer Ref. No.:	N/A		Power: 3.3 Vdc from host	Job Site: EV06
TEST SPECIFICATION	IS			
Specification:	FCC 15.247(c) Band Edge Compliance Year:	2003	Method: ANSI C63.4	Year: 2001
SAMPLE CALCULATION	ONS			
COMMENTS				
EUT installed outside	of Intermec Model 700C. Direct connect to antenna port	1		
EUT OPERATING MOI				
	ated by PRBS at maximum data rate, at maximum output	t power.		
DEVIATIONS FROM T	EST STANDARD			
None				
REQUIREMENTS				
Maximum level of any	spurious emission at the edge of the authorized band is	s 20 dB down fr	om the fundamental	
RESULTS		AN	IPLITUDE	
Pass		-50	0.4 dB	
SIGNATURE				
	An U.K.P			
Tested By:	~ 02 .			
DESCRIPTION OF TES				
	Band Edge C	Complian	ce - Low Channel	

	Mkr 🛆	о_мн	z	_ −50.40dв						Tek
10.0		*10.0dBm			10	dB/		Atten 100 V	цВ	
0.0							ſ	n l		
-10.0										
-20.0										
-30.0							\sim		~	
-40.Q					un allander and the	in Awy	••• ••••		home	March .
-50.0		e . e ho utila e des de e vellet	we wert about the about the	when he was a start of the second of the second	an What was a second					***
-60.Q	valor~vivelyveliver•	Walden And Lower Level			:					
-70.0										
-80.Q										
-90.0										
	Freq 2	2.400 OOGH	z					Span 10MHz	:	
	ResBW 10	DOkHz		Vi	idBW 300kHz			SWP	50mS	
	LEVEL		3PAN	Fr	req 2.400	OOGHz				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

NORTHWEST EMISSIONS DATA SHEET Rev BETA							
EMC	EMISS	SIONSI	JATA SH	EEI		Rev BETA 01/30/01	
EUT:	8520-00080				Work Order:	ITRM0020	
Serial Number:	4004703				Date:	05/21/04	
Customer:	Intermec Technologies Corporation				Temperature:	73 F	
Attendees:	none		Tested by:	Greg Kiemel	Humidity:	42%	
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06	
TEST SPECIFICATION	IS						
Specification:	FCC 15.247(c) Band Edge Compliance	Year: 2003	Method:	ANSI C63.4	Year:	2001	
SAMPLE CALCULATI	ONS						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenn	a port					
EUT OPERATING MOI	DES						
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum o	output power.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum level of any	spurious emission at the edge of the authorized b	and is 20 dB dow	n from the fundamenta	1			
RESULTS			AMPLITUDE				
Pass			-60.5 dB				
SIGNATURE							
	ATTU.K.P						
Tested By:							
DESCRIPTION OF TES	ST						
	Band Edg	je Complia	ance - High C	hannel			

Band Edge Compliance - High Channel

	мкт 🛆 7.76мн2	:	Ссо.50дв				
10.0	Ref Lv1*10.0dBm		10dB/	Ati	ten 10dl	В	
0.0	M						
-10.0							
-20.0	Å						
-30.0	n m						
-40.Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hopen had)				
-50.0			Kalan				L.W. and a
-60.Q			and the second	unnya ang ang ang ang ang ang ang ang ang an	Manutan	water	front water filling water
-60.Q			led a land and a series and a	uning the second se	Manandaraha	erettyn in wydyden a	(ANT TO THE AND A CONTRACT OF A CONTRACT
			······		Minerelation	entran an a	(W ¹ ~~TV)(V)(V)(L-/4A)
-70.0					Microsoftenin	****	4447
-70.0 -80.0	Freq 2.483 50GH		· · · · · · · · · · · · · · · · · · ·		Miryayakeniya 10MHz	***/~~~~*/}///**	44************************************
-70.0 -80.0	Freq 2.483 50GH ResBW 100kHz	z	LdBW 300kHz				
-70.0 -80.0	ResBW 100kHz	z V:			n 10MHz		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Bluetooth only

Software\Firmware Applied During Test						
Exercise software FCC_Smart Version Unknown						
Description						
The system was tested us testing including channels.	•	o exercise the functions of th	e device during the			

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703				
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869				
Power Adapter	Elpac Power Systems	FW1812	014852				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter	
AC Power	No	1.8	No	Power Adapter	AC Mains	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Measurement Equipment							
Description	Manufacturer	Model	Identifier	Last Cal	Interval		
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo		

Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

Completed by:	
ADJU.K.P	

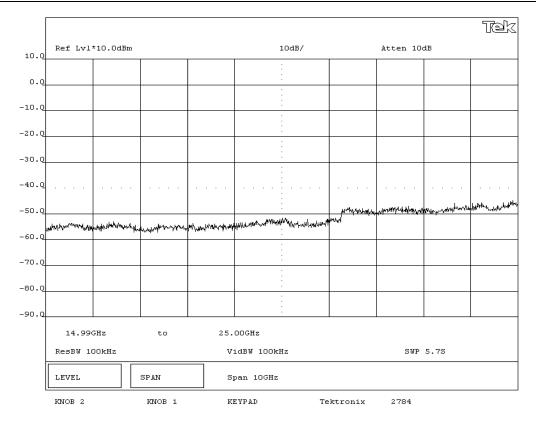
NORTHWEST			
EMC EMI	SSIONS [DATA SHEET	Rev BETA 01/30/01
EUT: 8520-00080			Work Order: ITRM0020
Serial Number: 4004703			Date: 05/21/04
Customer: Intermec Technologies Corporation			Temperature: 73 F
Attendees: none		Tested by: Greg Kiemel	Humidity: 42%
Customer Ref. No.: N/A		Power: 3.3 Vdc from host	Job Site: EV06
TEST SPECIFICATIONS			
Specification: FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method: ANSI C63.4	Year: 2001
SAMPLE CALCULATIONS			
COMMENTS			
EUT installed outside of Intermec Model 700C. Direct connect to an	ntenna port		
EUT OPERATING MODES			
No hop mode. Modulated by PRBS at maximum data rate, at maxin	num output power.		
DEVIATIONS FROM TEST STANDARD			
None			
REQUIREMENTS			
Maximum level of any spurious emission outside of the authorized	band is 20 dB down fro	om the fundamental	
RESULTS			
Pass			
SIGNATURE			
An U.K.P			
Tested By:	-		
DESCRIPTION OF TEST			
	Sourious Emi	ssions - Low Channel 0M	Hz-3GHz
Antenna Colluucieu a			

									Tek
10.0	Ref Lvl	*10.OdBm			10dB/		Atten 10	dB	
0.0					· · ·				
-10.0					:				
-20.0									
-30.0									
-40.0					· · · · · · · · · · · · · · · · · · ·				
-50.0					:				
-60.Q	and Antonia and	Wednesdam		M.M	warder and here was	arberet level and a start be	annon an an	human	when any whether
-70.0									
-80.0									
-90.0									
	OMHz		to	3.0	OOGHz				
	ResBW 10	DOkHz		v	idBW 100kHz		SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10.0dBm				
	KINOB 2		KNOB 1	KI	EYPAD	Tektronix	2784		

NORTHWEST									
EMC	EMISS	SIONS	DATA SHE	EET		Rev BETA 01/30/01			
	8520-00080				Work Order:				
Serial Number:	4004703				Date:	05/21/04			
Customer: Intermec Technologies Corporation Temperature: 73 F									
Attendees:	Attendees: none Tested by: Greg Kiemel Humidity: 42%								
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06			
TEST SPECIFICATION	IS		·						
Specification:	FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method:	ANSI C63.4	Year:	2001			
SAMPLE CALCULATION	ONS								
COMMENTS									
EUT installed outside	of Intermec Model 700C. Direct connect to antenna	a port							
EUT OPERATING MOI	DES								
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum o	utput power.							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
Maximum level of any	spurious emission outside of the authorized band i	is 20 dB down fr	om the fundamental						
RESULTS									
Pass									
SIGNATURE									
An U.K.P									
Tested By:									
DESCRIPTION OF TEST									
	Antenna Conducted Spur	ious Emis	ssions - Low (Channel 3GI	Iz-6.5GHz				

Antenna Conducted Spurious Emissions - Low Channel 3GHz-6.5GHz

											Tek
10.0	Ref Lvl*	10.0dBm			_	10d)	в/		Atten 100	ЗB	
0.0						•					
-10.0						:					
-20.0						:					
-30.0											
-40.Q											
-50.0						:					
-60.0	shaller werden jekseler Wese	whatherm	anna ann inn ann an ann ann an ann ann a	arty-systematicality	Murry	definentiation.	Worth HAN	white and any the	mburkanthorthou	ุกลาได้ปร ^{ากเป} ระหารได้เอง	y hay to be had a set of the set
						:					
-70.0						:					
-80.0						:					
-90.Q						:					
	2.990)GHz	to	6.5	OOGHz	z					
	ResBW 10)0kHz		V	idB₩	100kHz			SWP	2.05	
	LEVEL		SPAN	SI	top	6.500G	Hz				
	KNOB 2		KNOB 1	KI	EYPAD		Te	ktronix	2784		


NORTHWEST	REVISES EMISSIONS DATA SHEET REV BETA									
EMC	EMIS	SIONSI	JATA SH	EEI		Rev BETA 01/30/01				
EUT: 8520-00080 Work Order: ITRM0020										
Serial Number:	4004703				Date:	05/21/04				
Customer:	Intermec Technologies Corporation				Temperature:	73 F				
Attendees:	none		Tested by:	Greg Kiemel	Humidity:	42%				
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06				
TEST SPECIFICATION	IS									
Specification:	FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method:	ANSI C63.4	Year:	2001				
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT installed outside	of Intermec Model 700C. Direct connect to anten	na port								
EUT OPERATING MO										
No hop mode. Modul	ated by PRBS at maximum data rate, at maximum	output power.								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
Maximum level of any	spurious emission outside of the authorized ban	d is 20 dB down fro	om the fundamental							
RESULTS										
Pass										
SIGNATURE										
	Am U.K.P									
Tested By:										
Tested By.										
DESCRIPTION OF TEST										
	Antenna Conducted Spu	rious Emis	sions - Low (Channel 6.50	GHz-15GHz					

Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz

										Tek
10.0	Ref Lvl*1	0.0dBm				10dB/		Atten 10	dB	
0.0										
-10.0						•				
-20.0						•				
-30.0										
-40.0										
-50.0						•				
-60.Q	the ward and the state of the s	And de way we have a first	had a construction of the	Whennesser	Norderhouse of the	maninthan	to have a state war and a second	with the post of the	way water which apply a sub-	4k446444444444444444444
-70.0						•				
-80.0						•				
-90.0										
	6.499G	Hz	to	15.0	OOGHz					
	ResBW 100	kHz		v:	idBW 1	OOkHz		SWP	4.85	
	LEVEL		SPAN	S1	top 1	5.000GHz				
	KNOB 2		KNOB 1	KI	EYPAD		Tektronix	2784		

EMISSIONS DATA SHEET										
EUT: 8520-00080 Work Order: ITRM0020										
Serial Number: 4004703		Date:	05/21/04							
Customer: Intermec Technologies Corporation Temperature:										
Attendees: none		Tested by:	Greg Kiemel	Humidity:	42%					
Customer Ref. No.: N/A		Power:	3.3 Vdc from host	Job Site:	EV06					
TEST SPECIFICATIONS										
Specification: FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method:	ANSI C63.4	Year:	2001					
SAMPLE CALCULATIONS										
COMMENTS										
EUT installed outside of Intermec Model 700C. Direct connect to an	itenna port									
EUT OPERATING MODES										
No hop mode. Modulated by PRBS at maximum data rate, at maxim	ium output power.									
DEVIATIONS FROM TEST STANDARD										
None										
REQUIREMENTS										
Maximum level of any spurious emission outside of the authorized	band is 20 dB down from	m the fundamental								
RESULTS										
Pass										
SIGNATURE										
Tested By:										
DESCRIPTION OF TEST										
Antenna Conducted S	purious Emis	sions - Low (Channel 15G	Hz - 25GHz						

Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz

NORTHWEST									
EMC EMI	SSIONSL	DATA SHEET	Rev BETA 01/30/01						
EUT: 8520-00080			Work Order: ITRM0020						
Serial Number: 4004703 Date: 05/21/									
Customer: Intermec Technologies Corporation Temperature: 73 F									
Attendees: none		Tested by: Greg Kiemel	Humidity: 42%						
Customer Ref. No.: N/A		Power: 3.3 Vdc from host	Job Site: EV06						
TEST SPECIFICATIONS									
Specification: FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method: ANSI C63.4	Year: 2001						
SAMPLE CALCULATIONS									
COMMENTS									
EUT installed outside of Intermec Model 700C. Direct connect to an	tenna port								
EUT OPERATING MODES									
No hop mode. Modulated by PRBS at maximum data rate, at maxim	um output power.								
DEVIATIONS FROM TEST STANDARD									
None									
REQUIREMENTS									
Maximum level of any spurious emission outside of the authorized	band is 20 dB down fro	om the fundamental							
RESULTS									
Pass									
SIGNATURE									
An U.K.									
$\sim 10^{-4}$									
Tested By: V V									
DESCRIPTION OF TEST									
Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz									
Antenna Conducted a	spurious Em	issions - mid Channel Um	TZ-30HZ						

Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz

										Tek
10.0	Ref Lvl	*10.0dBm			10dB,	/		Atten 100	ЗB	
0.0					· ·					
-10.0										
-20.0					:					
-30.0										
-40.Q					· · · · · · · · · · · · · · · · · · ·					
-50.Q					•				U	
-60.0	helphater the second	nerenandrian	Mp. Mrde derapequeres	and the state of t	mounterminister	nhanself produce	when he have had	mannatraphantala	in the sector and	********
-70.0										
					:					
-80.0					:					
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	DOkHz		V	idBW 100kHz			SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10.0dBr	n				
	KINOB 2		KNOB 1	KI	EYPAD	Te	ktronix	2784		

	EMISS	SIONS	DATA SHEET		Rev BETA			
EMC					01/30/01			
	8520-00080			Work Order: ITRM0020				
Serial Number:				Date: 05/21/04				
	Intermec Technologies Corporation			Temperature: 73 F				
Attendees:			Tested by: Greg Kiemel	Humidity: 42%				
Customer Ref. No.:			Power: 3.3 Vdc from host	Job Site: EV06				
TEST SPECIFICATION								
	FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method: ANSI C63.4	Year: 2001				
SAMPLE CALCULATION	ONS							
COMMENTS								
	of Intermec Model 700C. Direct connect to antenn	a port						
EUT OPERATING MOD								
	ated by PRBS at maximum data rate, at maximum o	output power.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
-	spurious emission outside of the authorized band	l is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
ATT. K.P								
Tested By:								
DESCRIPTION OF TEST								
	Antenna Conducted Spu	rious Emi	ssions - Mid Channel 3G	Hz-6.5GHz				

Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz

										R K
10.0	Ref Lvl'	10.0dBm				10dB/		Atten 100	1B	
0.0										
-10.0						:				
-20.0						:				
-30.0						•				
-40.Q						· · · · · · · ·				
-50.0										
-60.0	where the start of the second	kynnissykkenninghensisk	Nyedhawaana ahaana	diversition and	weether destruction	when more thank	and an an an and the second	ayaadaya.ya.dhaaddhadaadhaa	hord/whitesphareshold	yeen here de la
						· ·				
-70.0						:				
-80.0										
-90.0						•				
	2.990)GHz	to	6.5	OOGHz					
	ResBW 10)0kHz		V:	idBW 100)	tHz		SWP	2.05	
	LEVEL		SPAN	St	top 6.!	500GHz				
	KNOB 2		KNOB 1	к	EYPAD	Τe	ektronix	2784		

NORTHWEST								
EMC	EMISSION	IS DATA SH	EET		Rev BETA 01/30/01			
EUT:	8520-00080			Work Order:	ITRM0020			
Serial Number:	4004703			Date:	05/21/04			
Customer:	Intermec Technologies Corporation			Temperature:	73 F			
Attendees:	none	Tested by:	Greg Kiemel	Humidity:	42%			
Customer Ref. No.:	N/A	Power:	3.3 Vdc from host	Job Site:	EV06			
TEST SPECIFICATION	IS							
Specification:	FCC 15.247(c) Spurious Cond. Em. Year: 200	3 Method:	ANSI C63.4	Year:	2001			
SAMPLE CALCULATION	ONS							
COMMENTS								
	of Intermec Model 700C. Direct connect to antenna port							
EUT OPERATING MOI								
	ated by PRBS at maximum data rate, at maximum output pov	/er.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the authorized band is 20 dB of	lown from the fundamental						
RESULTS								
Pass								
SIGNATURE								
	ATTU.K.P							
Tested By:								
DESCRIPTION OF TEST								
	Antenna Conducted Spurious I	Emissions - Mid	Channel 6.5G	Hz-15GHz				

Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz

								je X
10.0	Ref Lv1*10.0	dBm		10dB/		Atten 100	1B	
0.0								
				:				
-10.0				· ·				
-20.0				: :				
-30.0								
-40.Q								
-50.0								
-60.Q	and when the work of the work	water and all all and the second and	larana ang kanalaka ka	her many mainted the many many many many many many many many	694/4441-494Ladorading/2014	49th March Marchele	protradiosciantered	happetrations
-70.0								
-70.0				:				
-80.0								
-90.0				•				
	6.499GHz	to	15.000GHz	:				
	ResBW 100kHz		VidBW	100kHz		SWP	4.85	
	LEVEL	SPAN	Stop	15.000GHz				
-	KNOB 2	KNOB 1	KEYPAD	Te	ktronix	2784		

NORTHWEST										
EMC	EMISS	SIONS [DATA SHEET	Rev BETA 01/30/01						
EUT:	8520-00080			Work Order: ITRM0020						
Serial Number: 4004703 Date: 05/21/04										
Customer: Intermec Technologies Corporation Temperature: 73 F										
Attendees:	none		Tested by: Greg Kiemel	Humidity: 42%						
Customer Ref. No.:	N/A		Power: 3.3 Vdc from host	Job Site: EV06						
TEST SPECIFICATION	NS									
Specification:	Specification: FCC 15.247(c) Spurious Cond. Em. Year: 2003 Method: ANSI C63.4 Year: 2001									
SAMPLE CALCULATI	ONS									
COMMENTS										
EUT installed outside	of Intermec Model 700C. Direct connect to antenn	a port								
EUT OPERATING MO	DES									
No hop mode. Modul	ated by PRBS at maximum data rate, at maximum	output power.								
DEVIATIONS FROM T	EST STANDARD									
None										
REQUIREMENTS										
Maximum level of any	spurious emission outside of the authorized band	l is 20 dB down fro	om the fundamental							
RESULTS										
Pass										
I GOS										
An U.K.P										
Tested By:										
DESCRIPTION OF TEST										
DESCRIPTION OF TEX			sions Mid Channel 450							
	Antenna Conducted Spu	rious Emis	sions - Mid Channel 15G	HZ-29GHZ						

Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz

										Tek
10.0	Ref Lvl*10.0dBm					LOdB/		Atten 10dB		
0.0										
-10.0						· ·				
-20.Q										
-30.Q										
-40.Q										
-50.Q							Hudaluana	cherry Maple Press	nely when the most some	water allowed by the
-60.0	water	wanter and the second states of the second states o	have a state of the second	lund of the second	white the second second	^{hele} viquischeriquiscorenc ^a	, Kuputul			
-70.0						· ·				
-80.Q										
-90.Q										
	14.99GHz		to	25.	OOGHz					
	ResBW 100kHz			VidBW 100kHz			SWP 5.7S			
	LEVEL SPAN		sı	Span 10GHz						
	KINOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST			
EMC EMIS	SSIONS [DATA SHEET	Rev BETA 01/30/01
EUT: 8520-00080			Work Order: ITRM0020
Serial Number: 4004703			Date: 05/21/04
Customer: Intermec Technologies Corporation	Temperature: 73 F		
Attendees: none		Tested by: Greg Kiemel	Humidity: 42%
Customer Ref. No.: N/A		Power: 3.3 Vdc from host	Job Site: EV06
TEST SPECIFICATIONS			
Specification: FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method: ANSI C63.4	Year: 2001
SAMPLE CALCULATIONS			
COMMENTS			
EUT installed outside of Intermec Model 700C. Direct connect to ant	enna port		
EUT OPERATING MODES			
No hop mode. Modulated by PRBS at maximum data rate, at maximu	um output power.		
DEVIATIONS FROM TEST STANDARD			
None			
REQUIREMENTS			
Maximum level of any spurious emission outside of the authorized b	and is 20 dB down fro	om the fundamental	
RESULTS			
Pass			
SIGNATURE			
An U.K.P			
Tested By:			
DESCRIPTION OF TEST			
	nurious Emi	ssions - High Channel 0M	
Antenna Conducted S		SSICHS - HIGH CHAITLEI UN	112-30112

										Tek
10.0	Ref Lvl	*10.0dBm				10dB/		Atten 10	dB	
0.0										
0.0										
-10.0						: ·				
-20.0										
-30.0						•				
-40.0									.	
-50.0						•				
-60.0	m. Antonial Martin	ጉብጽ‹‹ኒሳክ፦ትቶሳኒዩትም›	white the state of the second second	adhlan yaya han da ay h	mounterances	mound	Holdwithmak-norm	ounderstations	had brough	where all we draw
-70.0										
-80.0										
-90.0										
	OMHz		to	3.0	OOGHz					
	ResBW 10	DOkHz		V:	idBW 100k)	Hz		SWP	1.75	
	LEVEL		SPAN	Re	≘f Lvl*10	.OdBm				
	KINOB 2		KNOB 1	KI	EYPAD	Τe	ektronix	2784		

NORTHWEST									
EMC	EMISSION	S DATA SHEET		Rev BETA 01/30/01					
EUT:	8520-00080		Work Order: ITR	M0020					
Serial Number:	ber: 4004703 Date: 05/21/04								
Customer:	Intermec Technologies Corporation	ntermec Technologies Corporation Temperature: 73 F							
Attendees:	none	Tested by: Greg Kiemel	Humidity: 42%						
Customer Ref. No.:	N/A	Power: 3.3 Vdc from host	Job Site: EV0	6					
TEST SPECIFICATION	IS								
Specification:	FCC 15.247(c) Spurious Cond. Em. Year: 2003	Method: ANSI C63.4	Year: 2001	1					
SAMPLE CALCULATI	ONS								
COMMENTS	COMMENTS								
	of Intermec Model 700C. Direct connect to antenna port								
EUT OPERATING MO									
	ated by PRBS at maximum data rate, at maximum output powe	r.							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
	spurious emission outside of the authorized band is 20 dB do	wn from the fundamental							
RESULTS									
Pass									
SIGNATURE									
ATT.K.P									
Tested By:									
DESCRIPTION OF TES	ST								
	Antenna Conducted Spurious E	missions - High Channel 3G	H7-6 5GH7						
	Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz								

Antenna Conducted Spurious Emissions - High Channel 3GHz-6.5GHz

										Tek
10.0	Ref Lvl*	10.0dBm				10dB/		Atten 100	dB	
0.0						•				
						•				
-10.0						•				
-20.0						•				
-30.0						•				
-40.Q										
-50.0										
-60.Q	ever-staneous and the	way and a stranger	www.	taka yiradil ang kang kang kang kang kang kang kang	ungth-spin-tailiteet	not marking factories	and the second	and and the second	or the production of the second	haller and the second
-70.0						•				
-80.0										
-90.0						•				
	2.990	GHz	to	6.5	OOGHz					
	ResBW 10	OkHz		V:	idBW 100k	Hz		SWP	2.05	
	LEVEL		SPAN	St	top 6.5	OOGHz				
	KNOB 2		KNOB 1	кі	EYPAD	Τe	ktronix	2784		

NORTHWEST								
EMC	EMIS	SIONS	DATA SH	EET		Rev BETA 01/30/01		
EUT:	8520-00080				Work Order:	ITRM0020		
Serial Number:	4004703				Date:	05/21/04		
Customer:	Intermec Technologies Corporation	termec Technologies Corporation Temperature: 73 F						
Attendees:	none	Humidity:	42%					
Customer Ref. No.:	N/A		Power:	3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION	IS							
Specification:	FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULATI	ONS							
COMMENTS	COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to ante	nna port						
EUT OPERATING MO								
	ated by PRBS at maximum data rate, at maximu	m output power.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum level of any	spurious emission outside of the authorized ba	nd is 20 dB down f	rom the fundamental					
RESULTS								
Pass								
SIGNATURE								
ATT.K.P								
Tested By:	· · ·							
DESCRIPTION OF TE	ST							
		rious Emis	sions - High (Channel 6 50	Hz-15GHz			
Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz								

Antenna Conducted Spurious Emissions - High Channel 6.5GHz-15GHz

											Tek
10.0	Ref Lvl	*10.OdBm				10dB	/		Atten 10	цВ	
0.0											
-10.0											
-20.0						•					
-30.0						•					
-40.Q											
-50.0						•					
-60.0	of the states and an end of the	and the second	MV6burtdawainaath	ware and a pair of the second	Not the second	Alexandra and	ng hata	wallow-who wake	and have been the second	Marine Marine and	haper between white
						•					
-70.0											
-80.0						:					
-90.0						•					
	6.499	∋GHz	to	15.0	OOGHz	:					
	ResBW 10	DOkHz		V:	idBW	100kHz			SWP	4.85	
	LEVEL		SPAN	St	top	15.000GH	z				
	KINOB 2		KNOB 1	KI	EYPAD		Te	ktronix	2784		

NORTHWEST								
EMC	EMISS	SIONS I	DATA SHEET		Rev BETA			
					01/30/01			
-	8520-00080			Work Order:				
	Serial Number: 4004703 Date: 05/21/04							
	Intermec Technologies Corporation		Tested by: Greg Kiemel	Temperature:				
Attendees:		Humidity:						
Customer Ref. No.:			Power: 3.3 Vdc from host	Job Site:	EV06			
TEST SPECIFICATION								
	FCC 15.247(c) Spurious Cond. Em.	Year: 2003	Method: ANSI C63.4	Year:	2001			
SAMPLE CALCULATI	SAMPLE CALCULATIONS							
COMMENTS								
EUT installed outside	of Intermec Model 700C. Direct connect to antenn	na port						
EUT OPERATING MOI								
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum	output power.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum level of any	spurious emission outside of the authorized band	d is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
	. 0							
	An U.K.P							
	$\sim 0^{-1}$							
Tested By:								
DESCRIPTION OF TES								
	Antenna Conducted Spur	rious Emis	sions - High Channel 15	GHz-25GHz				

Antenna Conducted Spurious Emissions - High Channel 15GHz-25GHz

										jej K
10.0	Ref Lvl*	10.0dBm			1	.0dB/		Atten 100	1B	
0.0					-					
0.0										
-10.Q										
-20.0										
-30.0										
-40.0										
-50.0							Manualia	www.	deres and the second	-www.wyw
-60.Q	ww.hayahahamanayah	happender and he have a	w alour adamation	r>nyuuntettettettettettettettettettettettettet	AND	^{hell} hentherentlede benevel	m .			
-00.0										
-70.0										
-80.Q										
-90.0										
	14.99G	Hz	to	25.	OOGHz					
	ResBW 10	OkHz		V:	idBW 100kH	Iz		SWP	5.7%	
	LEVEL		SPAN	SI	pan 10GHz					
	KNOB 2		KNOB 1	KI	EYPAD	Τe	ktronix	2784		

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Bluetooth only

Software\Firmware Applied During Test								
Exercise software FCC_Smart Version Unknown								
Description								
The system was tested us testing including channels.	•	o exercise the functions of th	e device during the					

EUT and Peripherals							
Description Manufacturer		Model/Part Number	Serial Number				
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703				
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869				
Power Adapter	Elpac Power Systems	FW1812	014852				

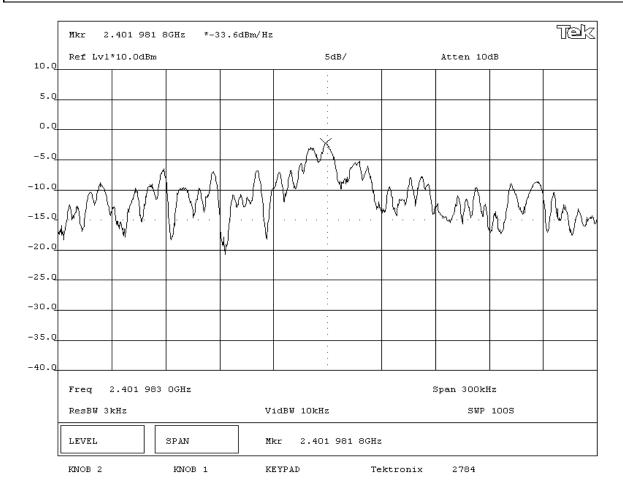
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter
AC Power	No	1.8	No	Power Adapter	AC Mains
PA = Cable is pe	ermanently a	attached to the de	vice. Shiel	ding and/or presence of ferrite ma	ay be unknown.

Measurement Equipment						
Description	Manufacturer	Model	Identifier	Last Cal	Interval	
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo	

Test Description

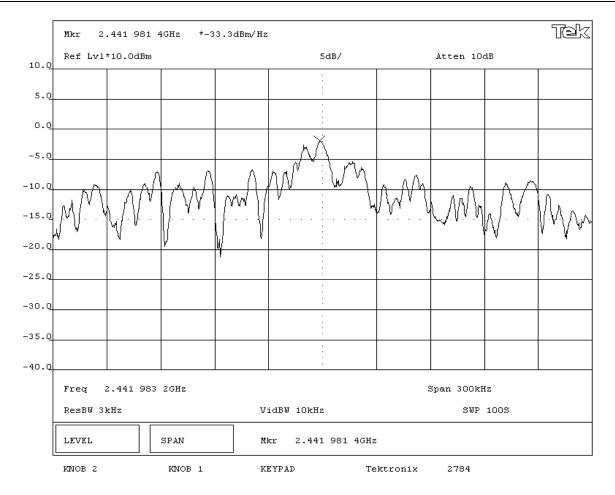
Requirement: Per 47 CFR 15.247(d), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

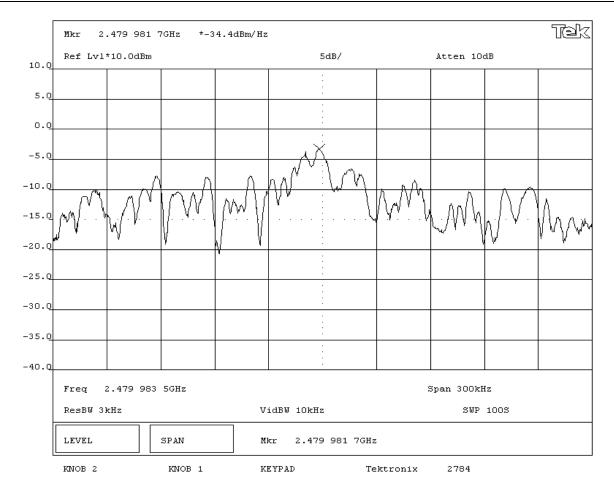
Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

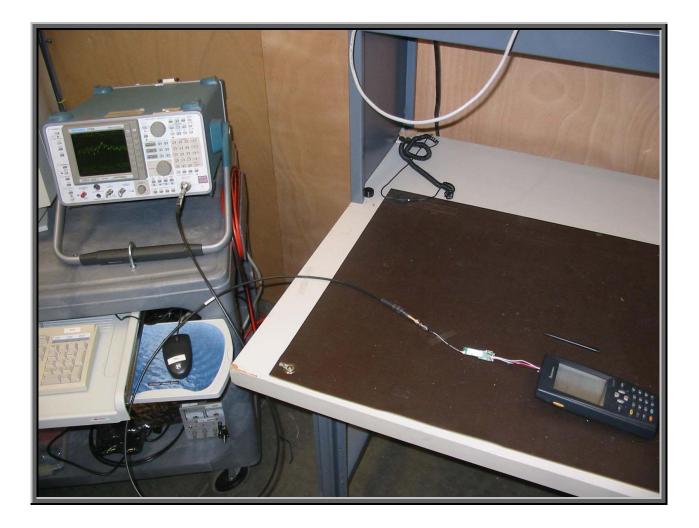

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be $1.5 \times 106 \div 3 \times 103 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

Completed by:	
ADJU.K.P	


NORTHWEST						
EMC	EMISSIONS	DATA SH	EET		Rev BETA 01/30/01	
EUT:	8520-00080			Work Order:	ITRM0020	
Serial Number:	4004703			Date:	05/21/04	
Customer:	Intermec Technologies Corporation			Temperature:	73 F	
Attendees:	none	ne Tested by: Greg Kiemel				
Customer Ref. No.:	N/A	3.3 Vdc from host	Job Site:	EV06		
TEST SPECIFICATION	IS					
Specification:	FCC 15.247(d) Power Spectral Density Year: 2003	Method:	ANSI C63.4	Year:	2001	
SAMPLE CALCULATION	ONS					
Meter reading on spec	ctrum analyzer is internally compensated for cable loss and extern	al attenuation.				
Power Spectral Densit	ty per 3kHz bandwidth = Power Spectral Density per 1 Hz bandwid	th + Bandwidth Correction	on Factor.			
Bandwidth Correction	Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB					
COMMENTS						
EUT installed outside	of Intermec Model 700C. Direct connect to antenna port					
EUT OPERATING MOI	DES					
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum output power.					
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
Maximum peak power	spectral density conducted from a DTS transmitter does not exce	ed 8 dBm in any 3 kHz b	and			
RESULTS		AMPLITUDE				
Pass		Power Spectral Densi	ty = +1.2 dBm / 3kHz			
SIGNATURE						
Tested By:	AJU.K.P					
DESCRIPTION OF TES	ST					


NORTHWEST							
EMC	EMISSI	ONS [DATA SH	EET			Rev BETA 01/30/01
EUT:	8520-00080				W	ork Order: IT	'RM0020
Serial Number:	4004703					Date: 0	5/21/04
Customer:	Intermec Technologies Corporation				Ten	perature: 7	3 F
Attendees:	none		Tested by:	Greg Kiemel		Humidity: 42	2%
Customer Ref. No.:	V/A Power: 3.3 Vdc from hos					Job Site: E	V06
TEST SPECIFICATION	IS						
Specification:	FCC 15.247(d) Power Spectral Density Yea	r: 2003	Method:	ANSI C63.4		Year: 2	001
SAMPLE CALCULATI	ONS						
Meter reading on spec	ctrum analyzer is internally compensated for cable loss	and external	attenuation.				
Power Spectral Densi	ty per 3kHz bandwidth = Power Spectral Density per 1 H	Hz bandwidth	+ Bandwidth Correctio	n Factor.			
Bandwidth Correction	Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB						
COMMENTS							
EUT installed outside	of Intermec Model 700C. Direct connect to antenna po	rt					
EUT OPERATING MOI	DES						
No hop mode. Modula	ated by PRBS at maximum data rate, at maximum output	ut power.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
Maximum peak power	spectral density conducted from a DTS transmitter do	es not exceed	d 8 dBm in any 3 kHz ba	and			
RESULTS			AMPLITUDE				
Pass			Power Spectral Densit	y = +1.5 dBm / 3kHz			
SIGNATURE							
Tested By:	AJU.K.P						
DESCRIPTION OF TES	ST						



NORTHWEST								
EMC	EMIS	SSIONS I	DATA SH	EET				Rev BETA 01/30/01
EUT:	8520-00080				Wo	ork Order:	ITRM0020	
Serial Number:	4004703					Date:	05/21/04	
Customer:	Intermec Technologies Corporation				Terr	perature:	73 F	
Attendees:	none		Tested by:	Greg Kiemel		Humidity:	42%	
Customer Ref. No.:	/A Power: 3.3 Vdc from hos					Job Site:	EV06	
TEST SPECIFICATION	IS							
Specification:	FCC 15.247(d) Power Spectral Density	Year: 2003	Method:	ANSI C63.4		Year:	2001	
SAMPLE CALCULATI	ONS							
Meter reading on spec	ctrum analyzer is internally compensated for ca	ble loss and externa	l attenuation.					
Power Spectral Densi	ty per 3kHz bandwidth = Power Spectral Densit	y per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.				
Bandwidth Correction	n Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB							
COMMENTS								
EUT installed outside	of Intermec Model 700C. Direct connect to ante	enna port						
EUT OPERATING MO	DES							
No hop mode. Modul	ated by PRBS at maximum data rate, at maximu	um output power.						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum peak power	r spectral density conducted from a DTS transm	nitter does not excee	d 8 dBm in any 3 kHz ba	and				
RESULTS			AMPLITUDE					
Pass			Power Spectral Densit	y = +0.4 dBm / 3kHz				
SIGNATURE								
Tested By:	AJU.K.P							
DESCRIPTION OF TES	ST							

Justification

The EUT is a Bluetooth radio module installed inside Intermec's handheld computer, Model 700C. The EUT is seeking Limited Modular Approval (FCC ID: EHABTS080) for portable use with three other previously certified co-located radios: CDMA (Model SB555, FCC ID: HN2SB555-2), GSM (Model SMC45, FCC ID: EHA700C-SMC45-1), and 802.11b (Model 2011B, FCC ID: HN22011B-2). This test demonstrates compliance with FCC 15.247 emissions limits for the EUT transmitting alone, or simultaneously with the co-located radios. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the CDMA, GSM, and 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below. Note that the 700C can contain either a CDMA or GSM radio – never both.:

Channels in Specif	ied Band Investigated:
CDMA (PCS):	1, 35, 1153
CDMA (Cellular):	54, 55, 395, 467
GSM/GPRS:	516, 606
802.11(b):	1, 11
Bluetooth:	2, 5, 11, 62, 67, 68, 79, 80 Low Channel (2402MHz), Mid Channel (2442MHz), High Channel (2480MHz)

Operating Modes Investigated:

Transmission of Bluetooth radio only (No hop)

Simultaneous transmission of Bluetooth (No hop), CDMA, and 802.11(b) radios

Simultaneous transmission of Bluetooth (No hop), GSM, and 802.11(b) radios

Antennas Investiga	Antennas Investigated:				
802.11(b):	Custom internal to 700C				
CDMA (Cellular):	805-606-102 Dual Band CDMA 900/1900MHz Antenna (SB555)				
CDMA (PCS):	805-666-204 Single Band CDMA 1900MHz Antenna (SB555)				
GSM/GPRS:	805-666-204 Single Band 1900MHz Antenna (SMC45)				
Bluetooth:	Integral PCB trace				

Data Rates Investigated:

Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Frequency Range Invest	igated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

Software\Firmware Applied During Test						
Exercise software	FCC_Smart 802.11 Agency Test Blue Test	Version	Unknown			
Description						
The system was tested using special test software to exercise the functions of the device during the testing including channels, data rates, and output power.						

EUT and Peripherals							
Description	Manufacturer	Model/Part Number	Serial Number				
Handheld Radio/Scanner	Intermec Technologies Corporation	700C	05400400869				
Bluetooth Radio	Intermec Technologies Corporation	8520-00080	N/A				
802.11(b) Radio	Intermec Technologies Corporation	2011B	N/A				
CDMA Radio	Intermec Technologies Corporation	SB555	N/A				
GSM Radio	Intermec Technologies Corporation	SMC45	N/A				
Power Adapter	Elpac Power Systems	FW1812	014852				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter
AC Power	No	1.8	No	Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Measurement Equipment								
Description	Manufacturer	Model	Identifier	Last Cal	Interval			
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo			
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo			
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo			
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo			
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo			
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA			
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo			
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA			
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	12 mo			
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo			
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo			
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo			
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo			

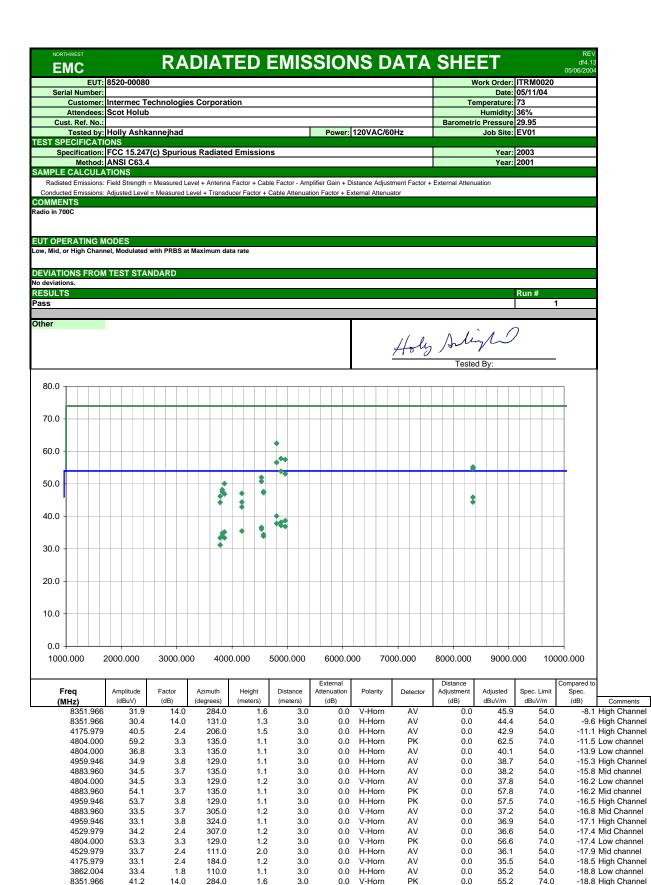
Test Description

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Simultaneous Transmission: For co-located radios, it is necessary to measure the field strength of spurious emissions, while co-located radios are transmitting simultaneously. The following is an excerpt from the FCC/TCB training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.


All possible combinations of harmonic emissions from the CDMA, GSM, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 26 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2001). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Me	asurements				
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		
Measurements were m	ade using the bandwidths	and detectors specified. No	video filter was used.		

Completed by: Holy Aling

3822.022

8351.966

33.2

40.7

112.0

131.0

1.6

14.0

1.3

1.3

3.0

3.0

0.0

0.0

H-Horn

H-Horn

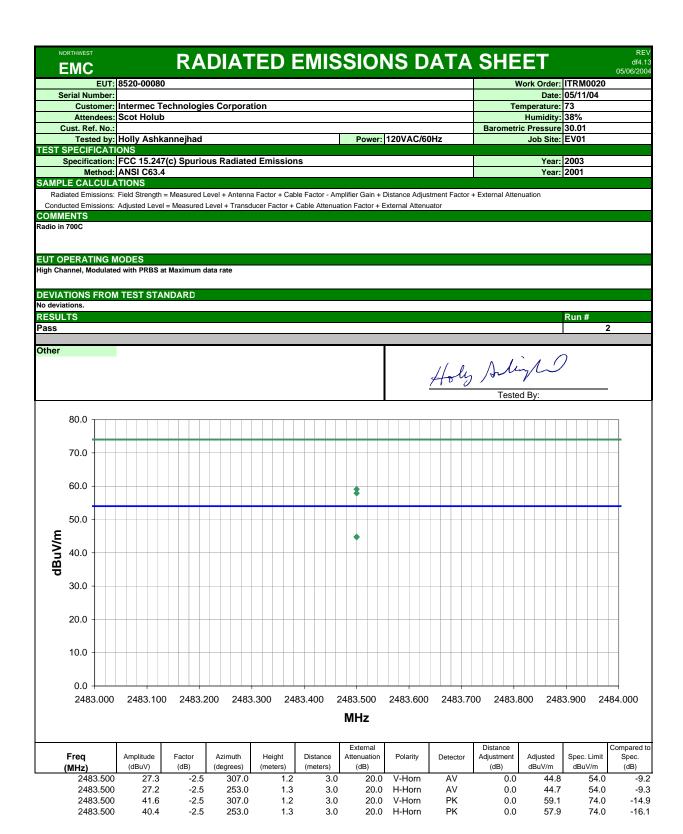
AV

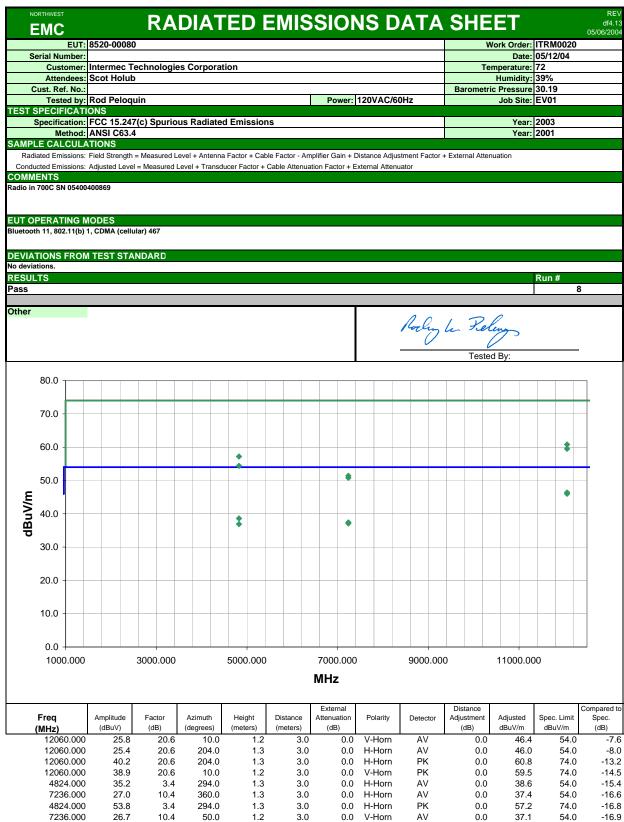
ΡK

0.0

0.0

34.8


54.7


54.0

74.0

-19.2 Mid channel

-19.3 High Channel

12060.000	38.9	20.6	10.0	1.2	3.0	0.0	V-Horn	PK	0.0	59.5	74.0	-14.5
4824.000	35.2	3.4	294.0	1.3	3.0	0.0	H-Horn	AV	0.0	38.6	54.0	-15.4
7236.000	27.0	10.4	360.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.4	54.0	-16.6
4824.000	53.8	3.4	294.0	1.3	3.0	0.0	H-Horn	PK	0.0	57.2	74.0	-16.8
7236.000	26.7	10.4	50.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.1	54.0	-16.9
4824.000	33.5	3.4	147.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.9	54.0	-17.1
4824.000	51.0	3.4	147.0	1.2	3.0	0.0	V-Horn	PK	0.0	54.4	74.0	-19.6
7236.000	41.0	10.4	360.0	1.3	3.0	0.0	H-Horn	PK	0.0	51.4	74.0	-22.6

0.0 V-Horn

ΡK

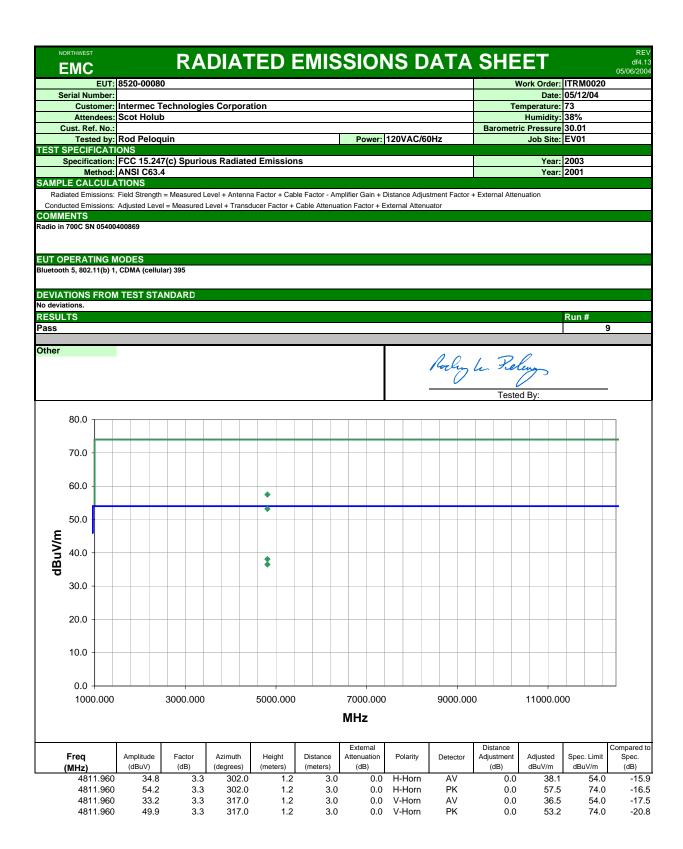
0.0

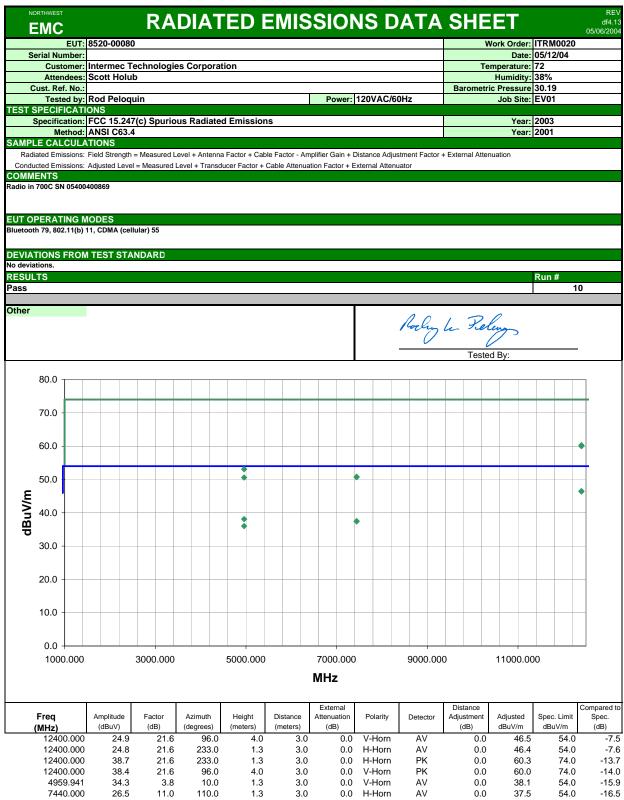
50.8

74.0

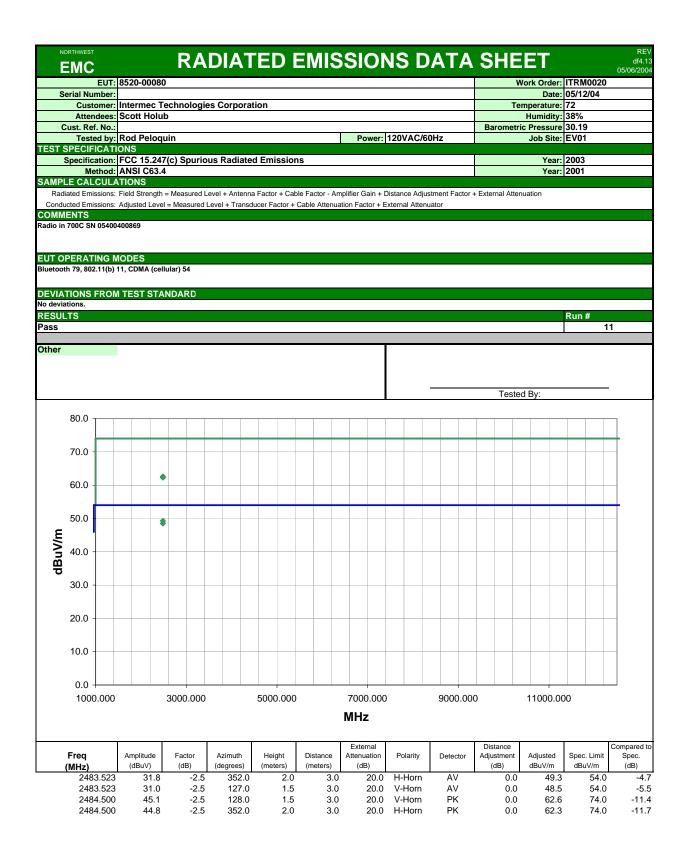
-23.2

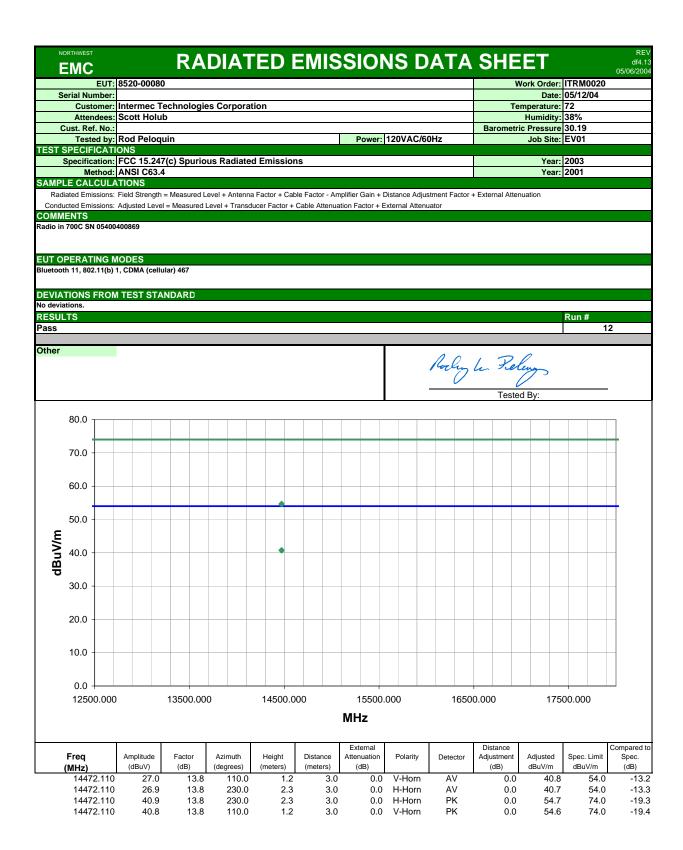
3.0

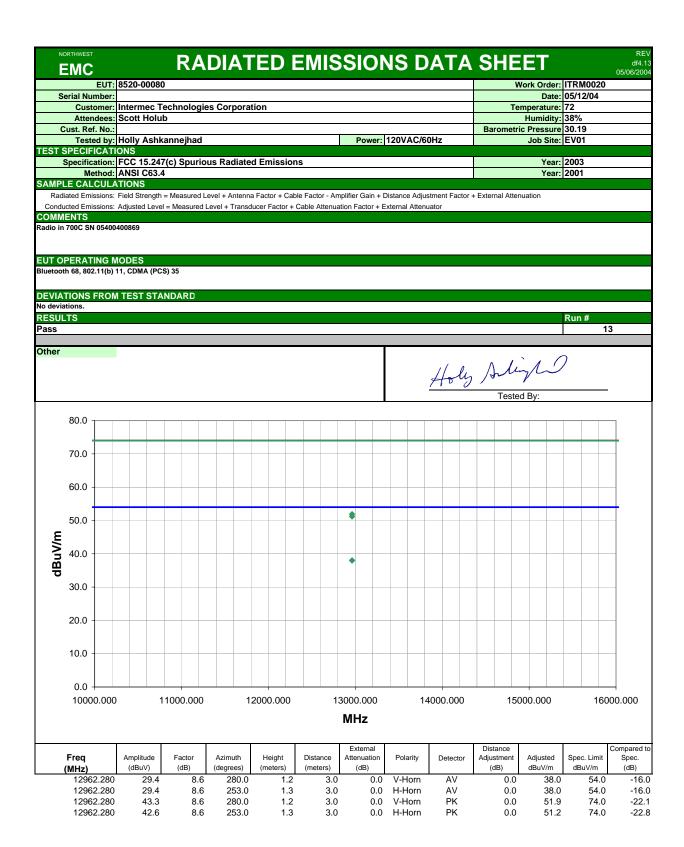

1.2

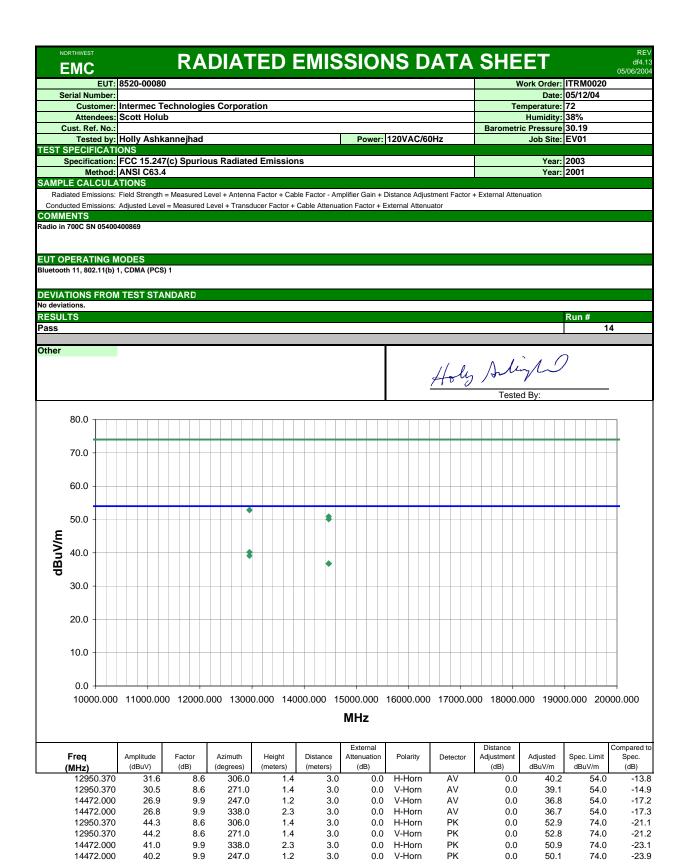

7236.000

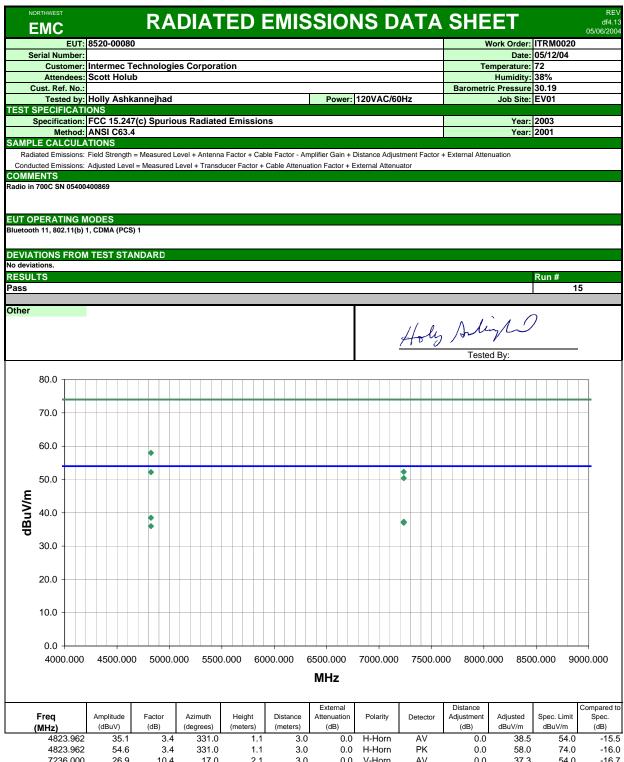
40.4

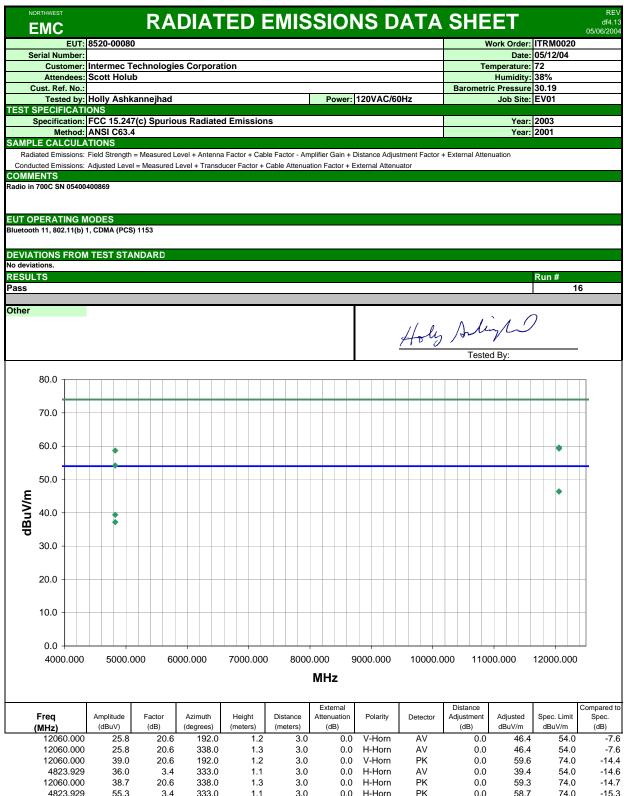

10.4


50.0






7440.000 26.4 11.0 159.0 1.6 3.0 0.0 V-Horn AV 0.0 37.4 54.0 -16.6 4959.941 32.2 3.8 145.0 1.3 3.0 0.0 H-Horn AV 0.0 36.0 54.0 -18.0 4959.941 49.3 3.8 10.0 1.3 3.0 0.0 V-Horn ΡK 0.0 53.1 74.0 -20.9 7440.000 39.8 11.0 110.0 1.3 3.0 0.0 H-Horn ΡK 0.0 50.8 74.0 -23.2 7440.000 39.7 11.0 159.0 1.6 3.0 0.0 V-Horn ΡK 0.0 50.7 74.0 -23.3 4959.941 46.8 145.0 H-Horn ΡK 50.6 74.0 3.8 1.3 3.0 0.0 0.0 -23.4



(,	. ,		,	. ,	. ,			. ,			. ,
4823.962	35.1	3.4	331.0	1.1	3.0	0.0	H-Horn	AV	0.0	38.5	54.0	-15.5
4823.962	54.6	3.4	331.0	1.1	3.0	0.0	H-Horn	PK	0.0	58.0	74.0	-16.0
7236.000	26.9	10.4	17.0	2.1	3.0	0.0	V-Horn	AV	0.0	37.3	54.0	-16.7
7236.000	26.6	10.4	50.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.0	54.0	-17.0
4823.962	32.6	3.4	270.0	1.3	3.0	0.0	V-Horn	AV	0.0	36.0	54.0	-18.0
7236.000	41.9	10.4	17.0	2.1	3.0	0.0	V-Horn	PK	0.0	52.3	74.0	-21.7
4823.962	48.8	3.4	270.0	1.3	3.0	0.0	V-Horn	PK	0.0	52.2	74.0	-21.8
7236.000	40.0	10.4	50.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.4	74.0	-23.6

4823.929

4823.929

33.8

50.8

3.4

3.4

289.0

289.0

1.2

1.2

3.0

3.0

0.0

0.0

V-Horn

V-Horn

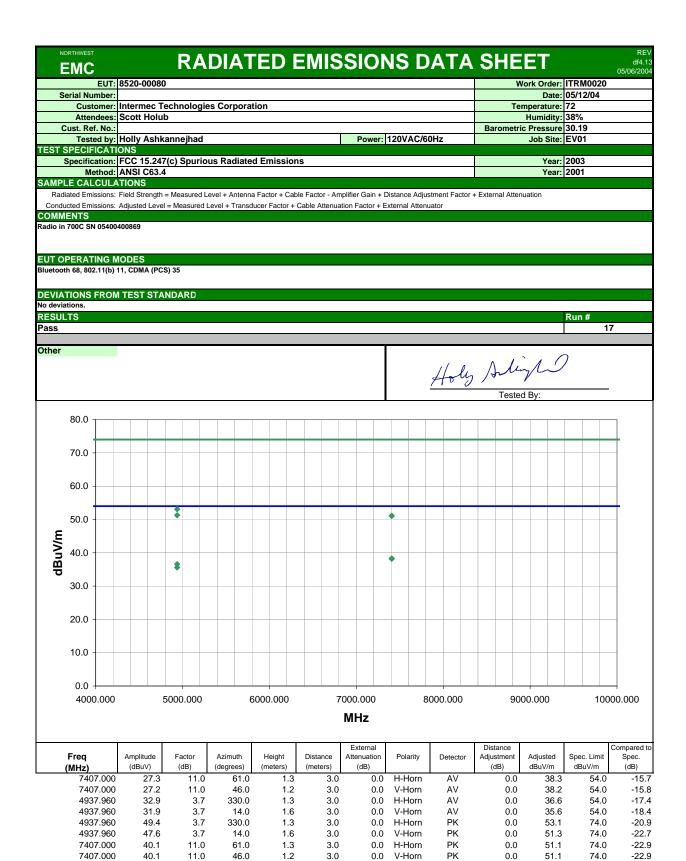
AV

ΡK

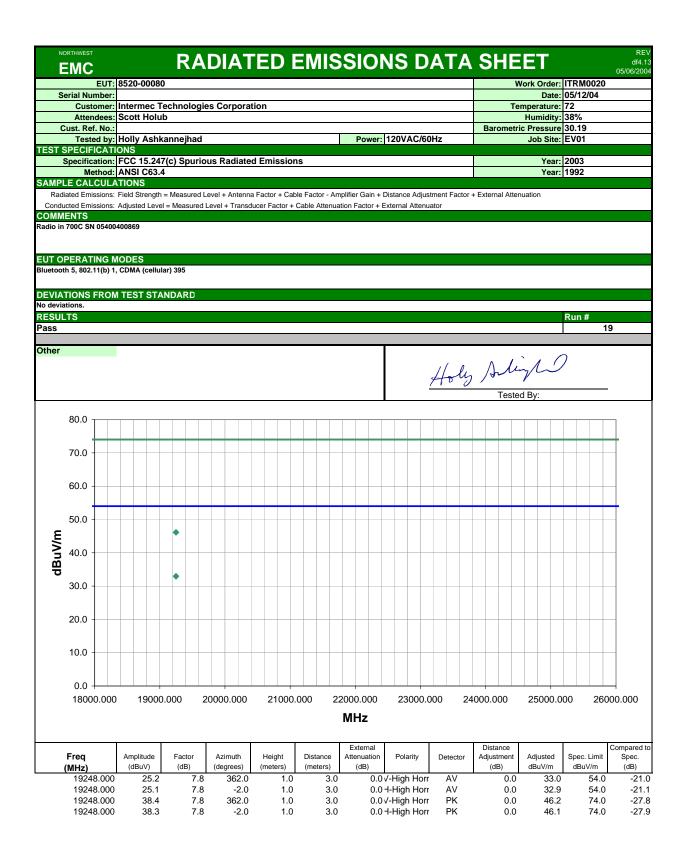
0.0

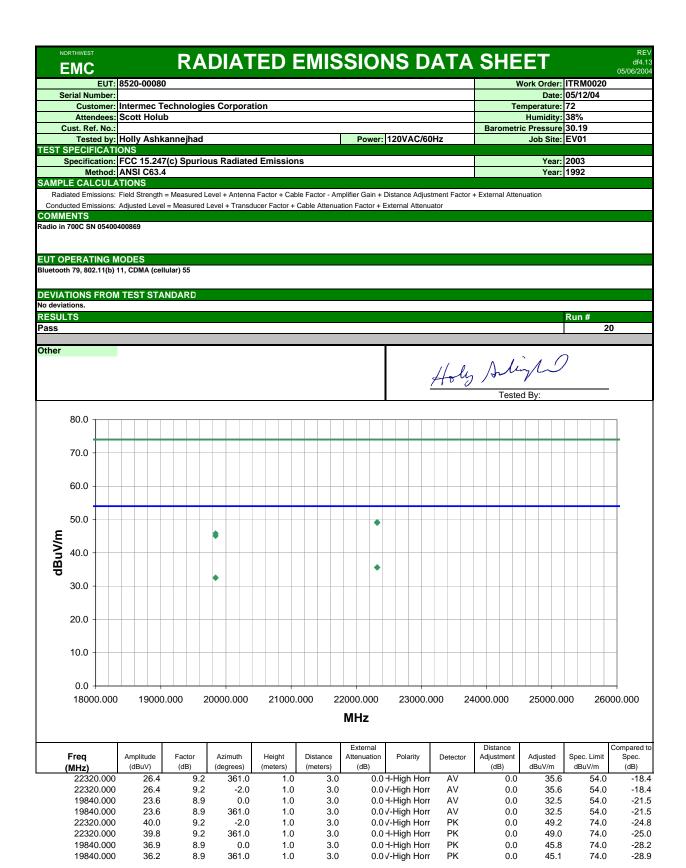
0.0

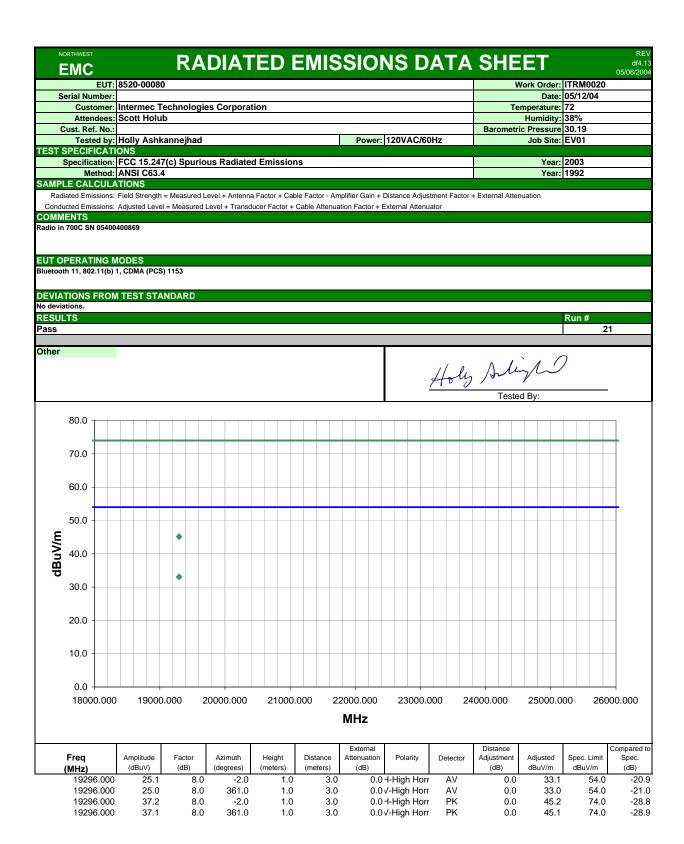
37.2

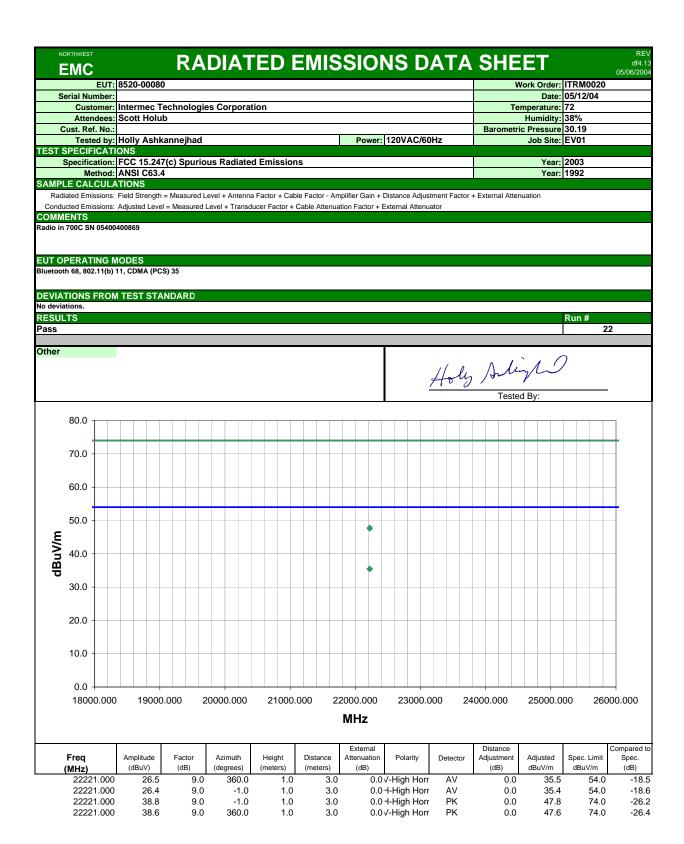

54.2

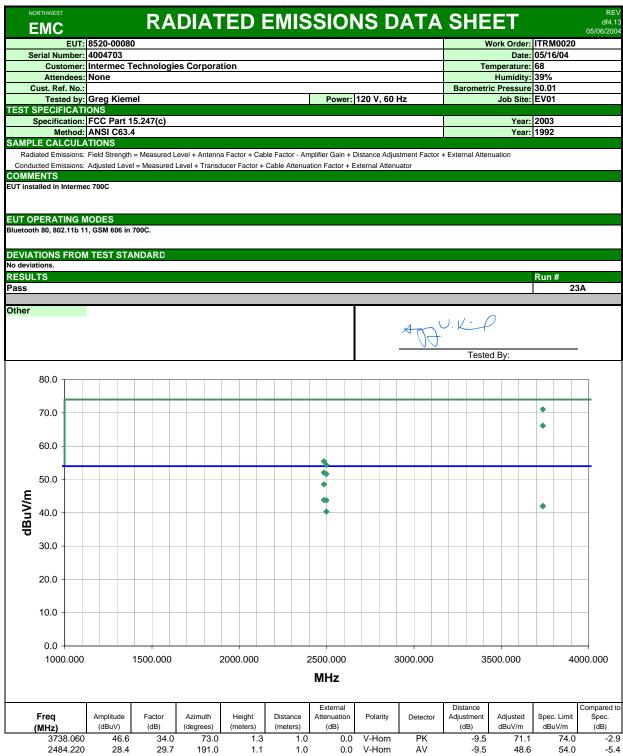
54.0

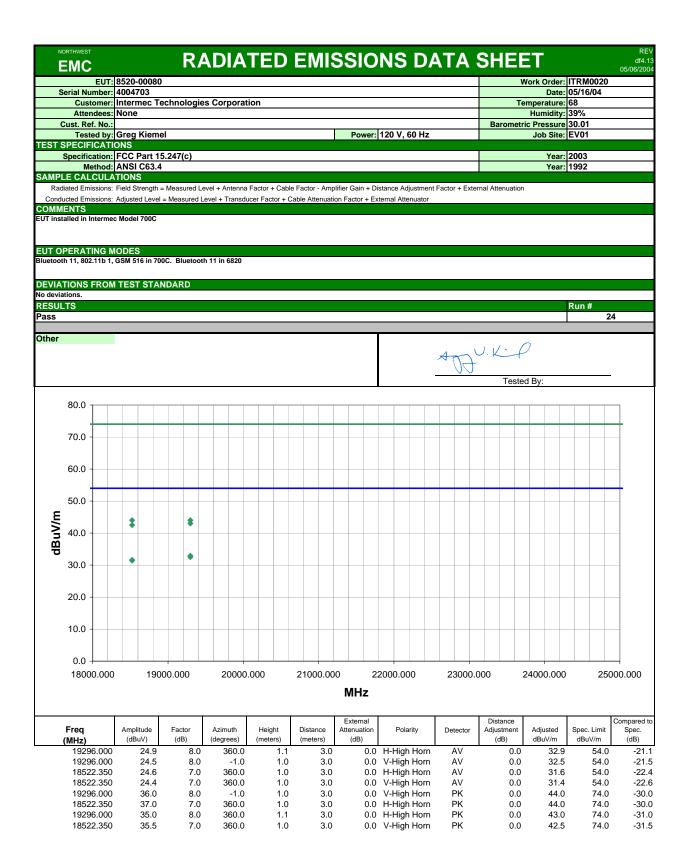

74.0

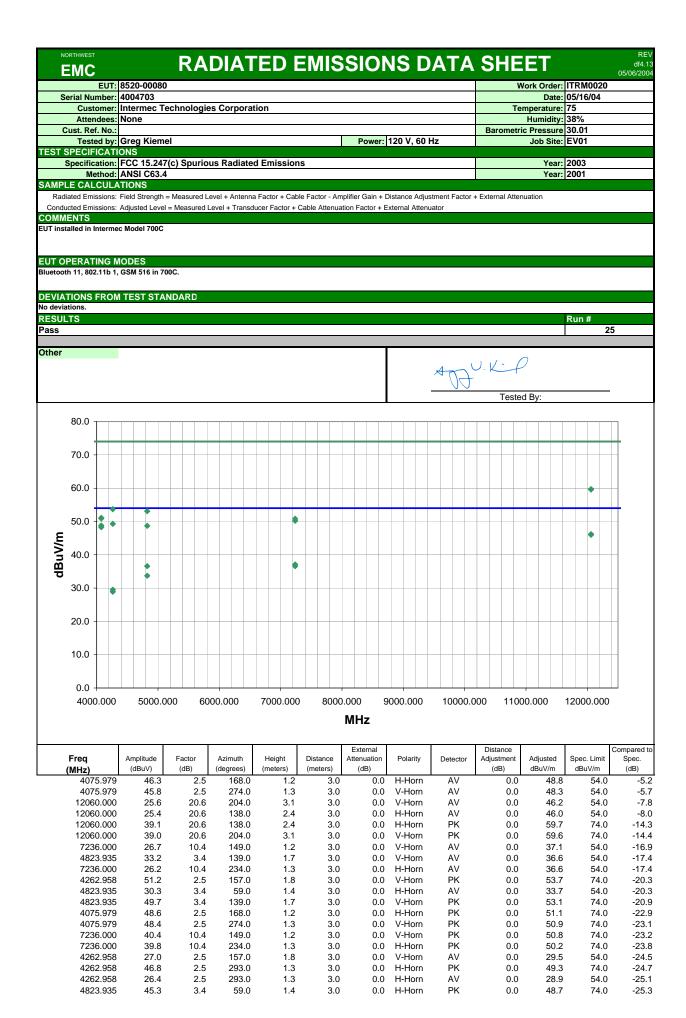

-16.8

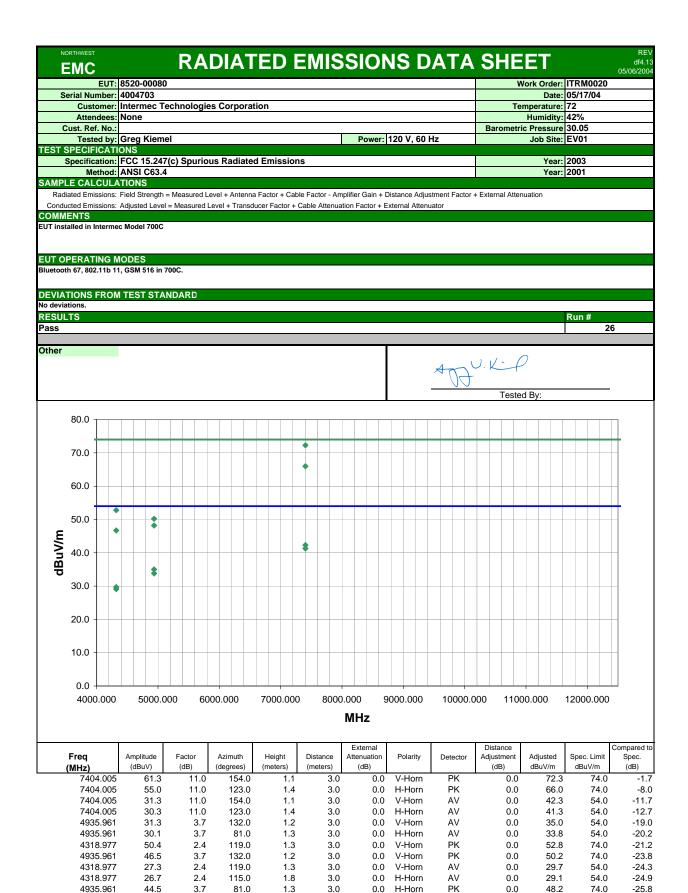

-19.8










	orthwest			RA	DIAT	ED	EMIS	SIO	NS [ΟΑΤΑ	SHE	ET		REV df4.13
		EU T	8520-00080										TDM0022	05/06/2004
9	erial Nun		8520-00080)							,	Nork Order:	05/13/04	
- U	Custo		Intermec T	echnologi	es Corpora	tion					Te	emperature:		
	Attend		Scott Holu									Humidity:		
C	ust. Ref.										Barometr	ic Pressure		·
			Rod Peloq	uin				Power:	120VAC/	60Hz		Job Site:	EV01	
	SPECIFI										- 1			
;					ous Radiate	d Emission	ıs					Year:		
CAMD			ANSI C63.4									Year:	2001	
	LE CALO			- Measured I	evel + Antenn	a Eactor + Cat	le Eactor - An	polifier Gain + I	Distance Adi	ustment Eactor	+ External Atte	nuation		
								ation Factor + E			+ LAternal Atte	Indation		
СОММ	ENTS		,											
Radio in	700C SN	054004	100869											
EUT O	PERATI		ODES											
			1, CDMA (PC	S) 1153										
2.00100			.,	0,1100										
DEVIA	TIONS	ROM	TEST STA	NDARD										
No devia														
RESUL	TS												Run #	
Pass													2	23
Other										10	10	0		
										Portin	he Re	leng		
										0				
											Teste			•
	80.0 _T					1								_
	l i													+
	70.0 -													-
	60.0						•							
	00.0													
	- +													-
	50.0 -						•							_
2														
1 5														
n,	40.0													_
dBuV/m														
-	30.0													
	00.0													
	20.0 -													_
	10.0 -													-
	0.0 +													
	1000.	000											100	000.000
	1000	.000											100	000.000
								MHz						
		1	r					External			Distance			Compared to
	Freq		Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	2483		27.3	-2.5	75.0	1.7	3.0		H-Horn	AV	0.0	50.8	54.0	-3.2
	2483		27.2	-2.5		3.8	3.0		V-Horn	AV	0.0	50.7	54.0	-3.3 -9.8
	2483 2483		40.7 40.3	-2.5 -2.5		1.7 3.8	3.0 3.0			PK PK	0.0 0.0	64.2 63.8	74.0 74.0	-9.8 -10.2
	- 100		10.0	2.0	100.0	0.0	0.0	20.0			0.0	00.0	7 1.0	10.2

3738.060	46.6	34.0	73.0	1.3	1.0	0.0	V-Horn	PK	-9.5	71.1	74.0	-2.9
2484.220	28.4	29.7	191.0	1.1	1.0	0.0	V-Horn	AV	-9.5	48.6	54.0	-5.4
3738.060	41.7	34.0	304.0	1.5	1.0	0.0	H-Horn	PK	-9.5	66.2	74.0	-7.8
2484.220	23.7	29.7	91.0	1.3	1.0	0.0	H-Horn	AV	-9.5	43.9	54.0	-10.1
2498.830	23.5	29.8	183.0	1.2	1.0	0.0	V-Horn	AV	-9.5	43.8	54.0	-10.2
3738.060	17.6	34.0	304.0	1.5	1.0	0.0	H-Horn	AV	-9.5	42.1	54.0	-11.9
3738.060	17.5	34.0	73.0	1.3	1.0	0.0	V-Horn	AV	-9.5	42.0	54.0	-12.0
2498.830	20.1	29.8	91.0	1.3	1.0	0.0	H-Horn	AV	-9.5	40.4	54.0	-13.6
2484.220	35.3	29.7	191.0	1.1	1.0	0.0	V-Horn	PK	-9.5	55.5	74.0	-18.5
2498.830	34.1	29.8	183.0	1.2	1.0	0.0	V-Horn	PK	-9.5	54.4	74.0	-19.6
2484.220	31.9	29.7	91.0	1.3	1.0	0.0	H-Horn	PK	-9.5	52.1	74.0	-21.9
2498.830	31.4	29.8	91.0	1.3	1.0	0.0	H-Horn	PK	-9.5	51.7	74.0	-22.3

H-Horn

0.0

ΡK

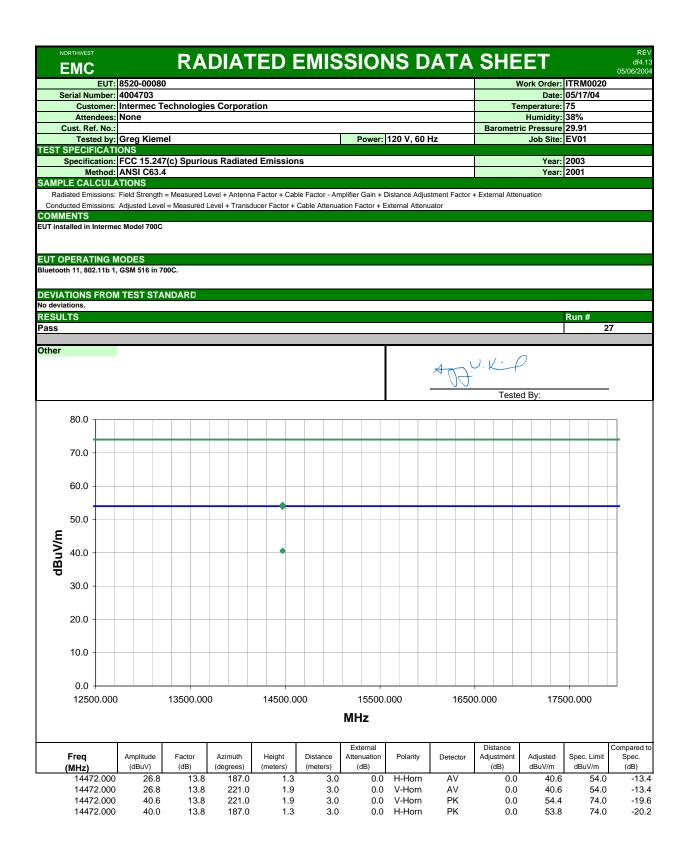
46.7

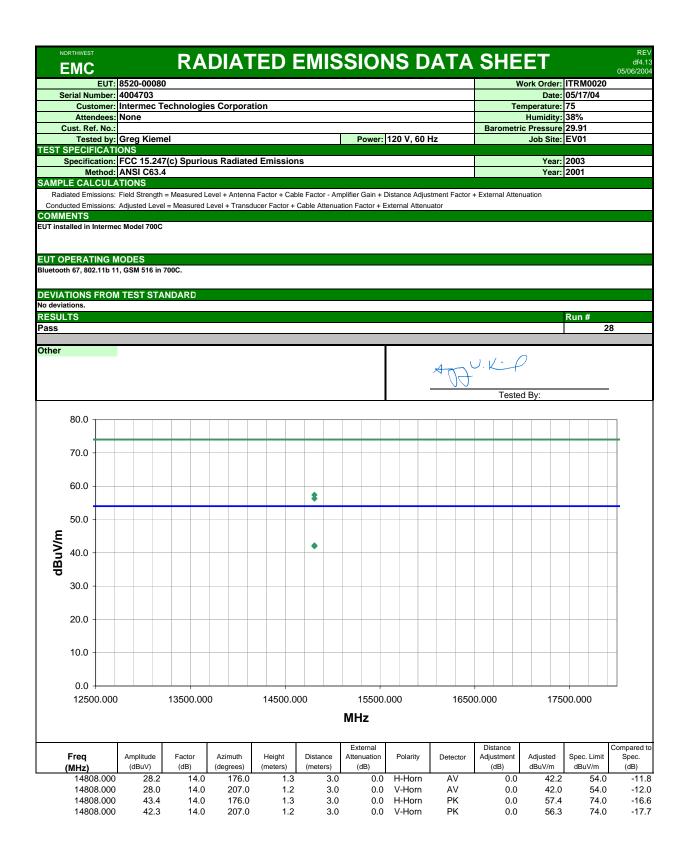
0.0

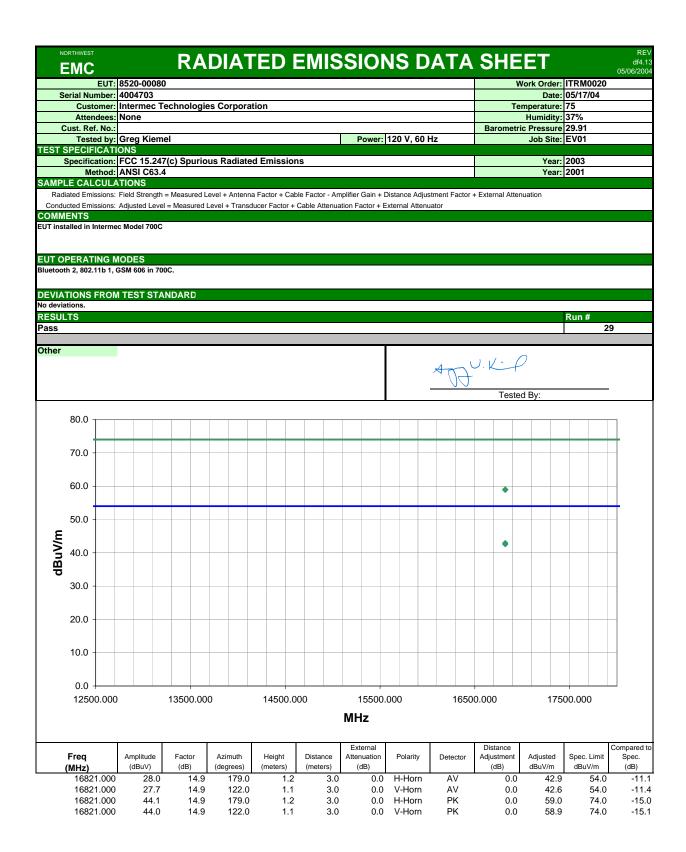
74.0

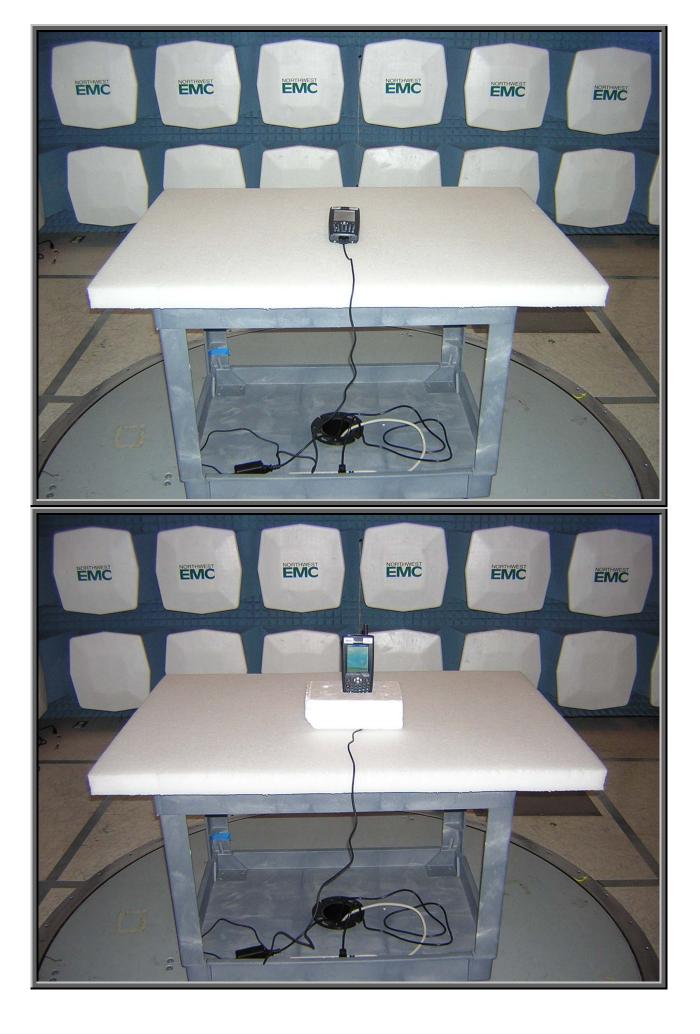
-27.3

4318.977


44.3


2.4


115.0


1.8

3.0

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

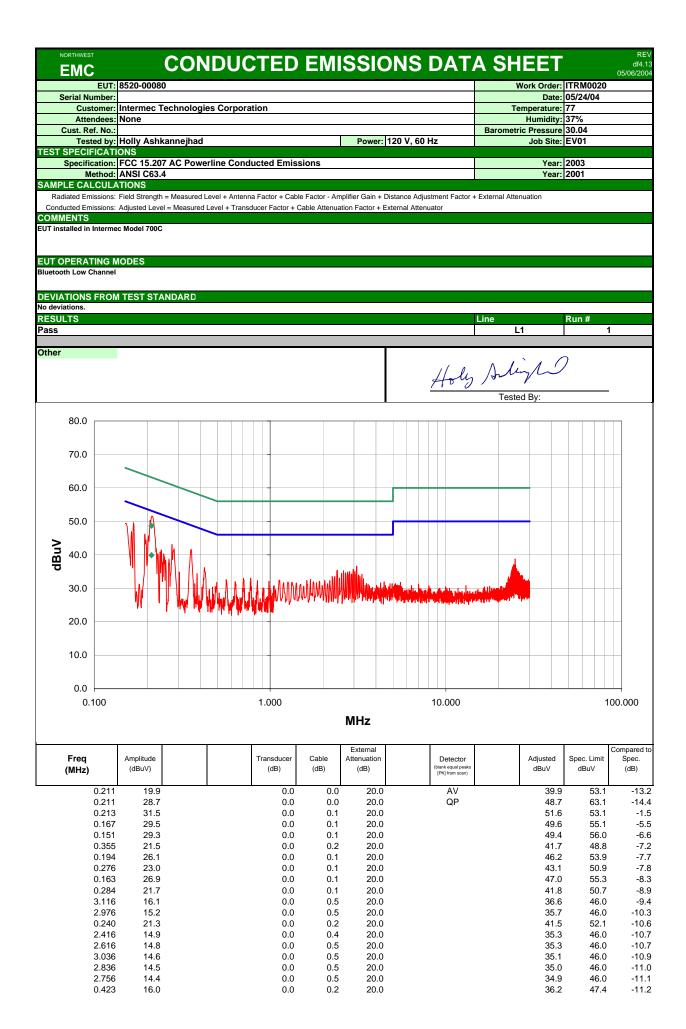
120 VAC, 60 Hz.

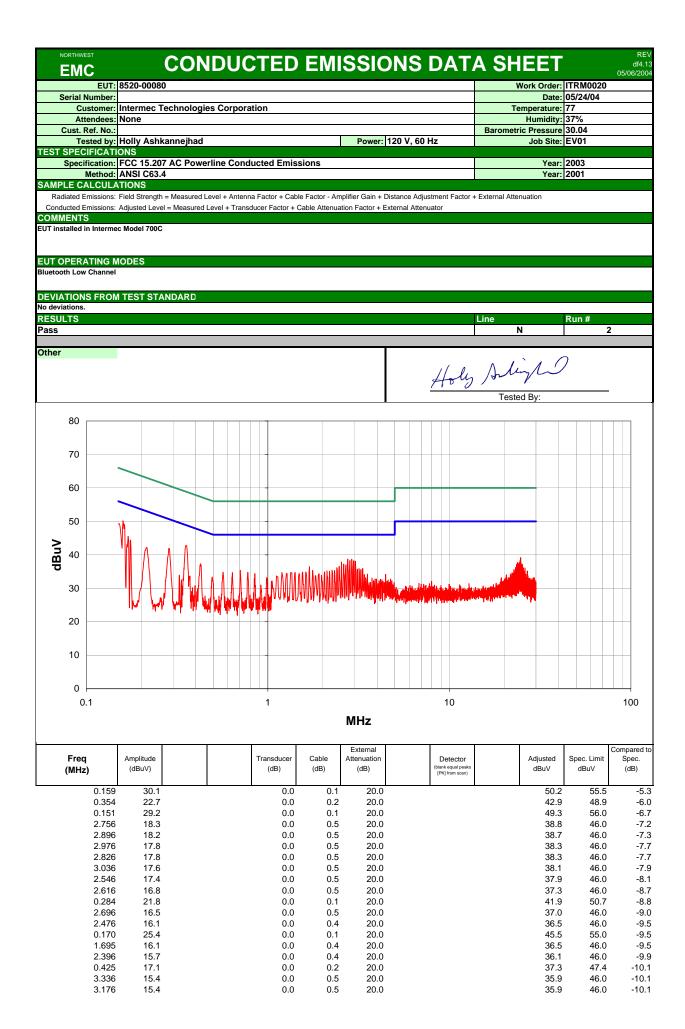
Other Settings Investigated: Bluetooth only

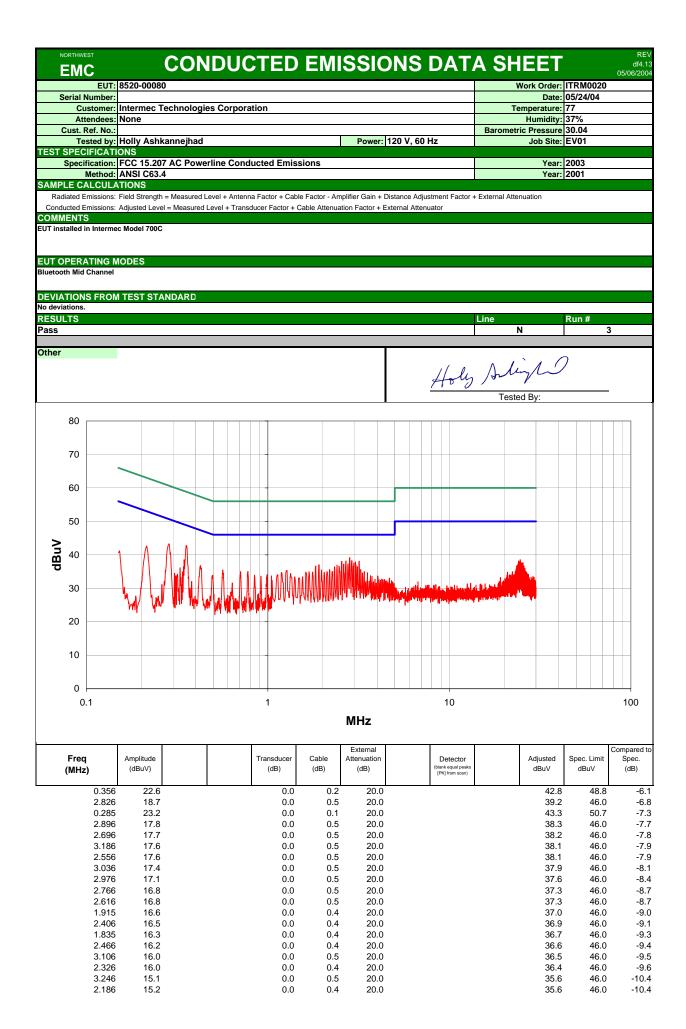
Software\Firmware Applied During Test					
Exercise software	BlueTest	Version	Unknown		
Description					
The system was tested using special test software to exercise the functions of the device during the					
testing including channels, data rates, and output power.					

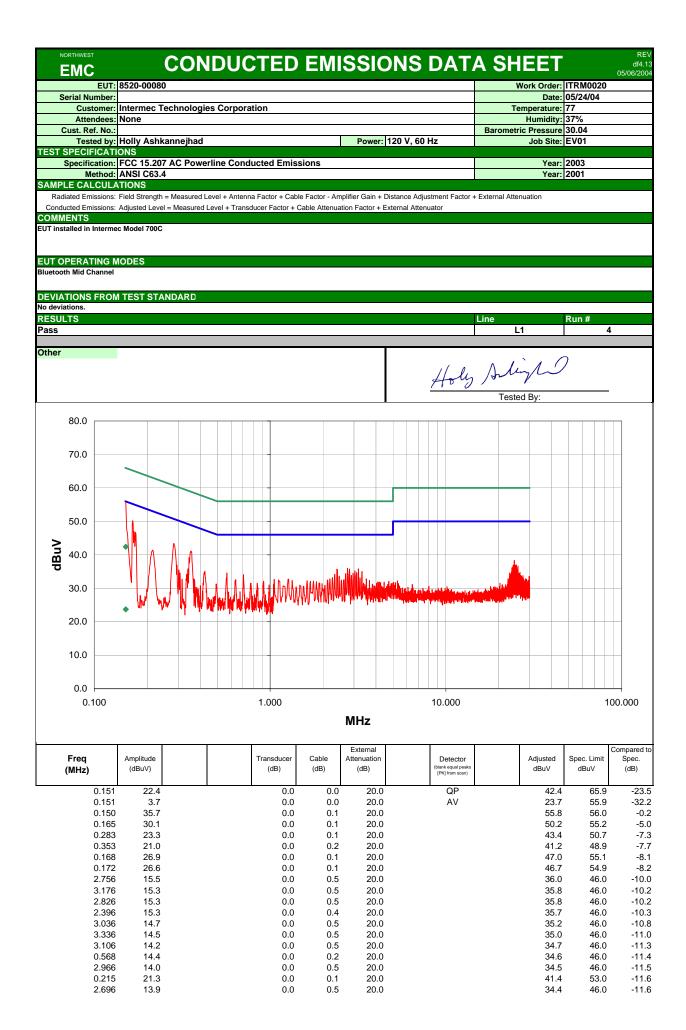
EUT and Peripherals					
Description	Manufacturer	Model/Part Number	Serial Number		
Bluetooth Radio (EUT)	Intermec Technologies Corporation	8520-00080	4004703		
Handheld Radio/Scanner (Host)	Intermec Technologies Corporation	700C	05400400869		
Power Adapter	Elpac Power Systems	FW1812	014852		

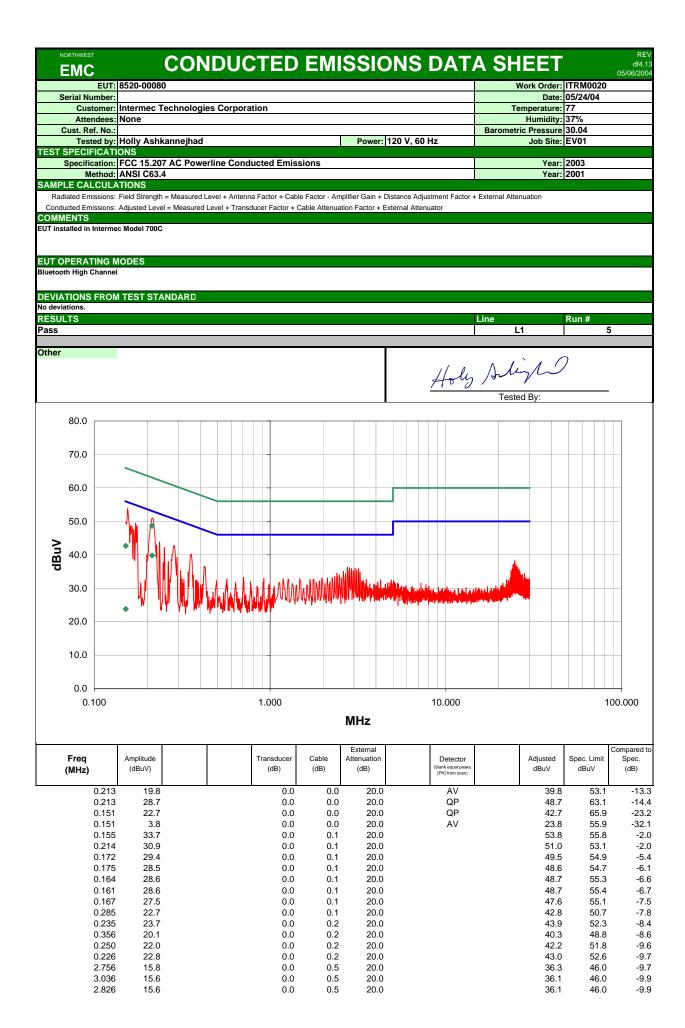
Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Leads	PA	1.8	PA	Handheld Radio/Scanner	Power Adapter
AC Power	No	1.8	No	Power Adapter	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

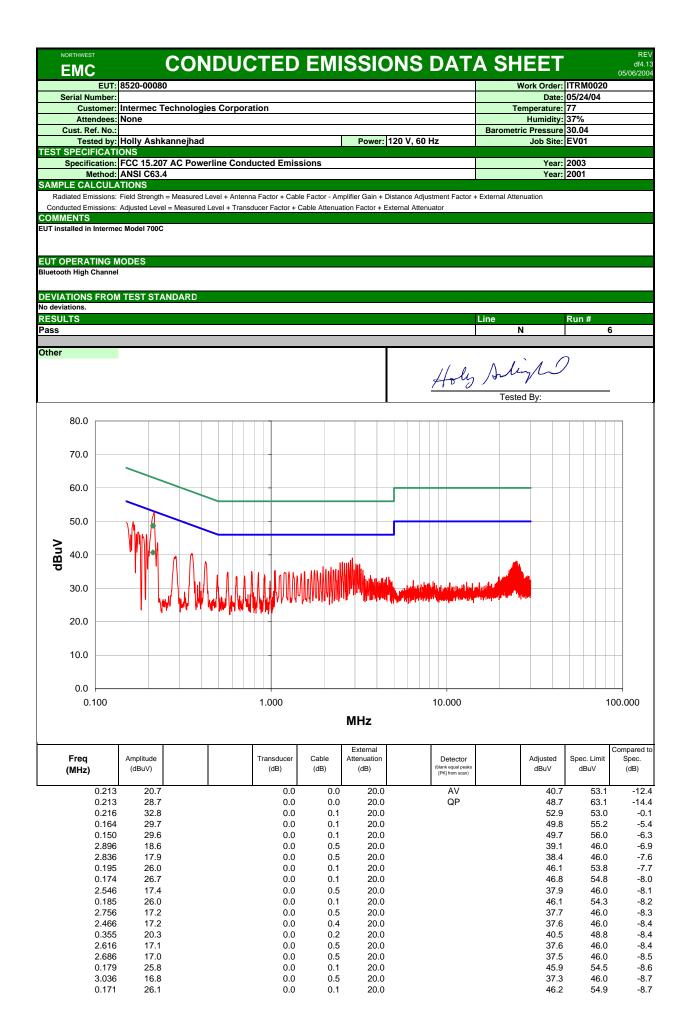

Measurement Equipment					
Description	Manufacturer	Model	Identifier	Last Cal	Interval
LISN	Solar	9252-50-R-24-BNC	LIN	12/16/2003	13 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	02/01/2004	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo


Test Description


<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.


<u>Configuration</u>: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-1992.


Completed by: Holy Aling



BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 - 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection

2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = 625 μ s * 1600 1/s / 79 * 30s = 0.3797s (in a 30s period) For multi-slot packet the hopping is reduced according to the length of the packet. Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = 5 * 625 μ s * 1600 * 1/5 *1/s / 79 * 30s = 0.3797s (in a 30s period) This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.