Intermec Technologies Corporation

CDMA (SB555) in 700C with Bluetooth (8520-00080) in 6820

May 17, 2004

Report No. ITRM0026.2

Report Prepared By:

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: May 17, 2004
Intermec Technologies Corporation

Model: CDMA (SB555) in 700C with Bluetooth (8520-00080) in 6820

Emissions		
Description	Pass	Fail
FCC 22.917 Spurious Radiated Emissions:2003		
FCC 24.238 Spurious Radiated Emissions:2003		

Modifications made to the product

See the Modifications section of this report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal

Communications Commission) and Industry Canada.

Approved By:

Greg Kiemel, Director of Engineering

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0 and 200630-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: C-905, R-871, C-1784 and R-1761, North Sioux City C-1246 and R-1217)

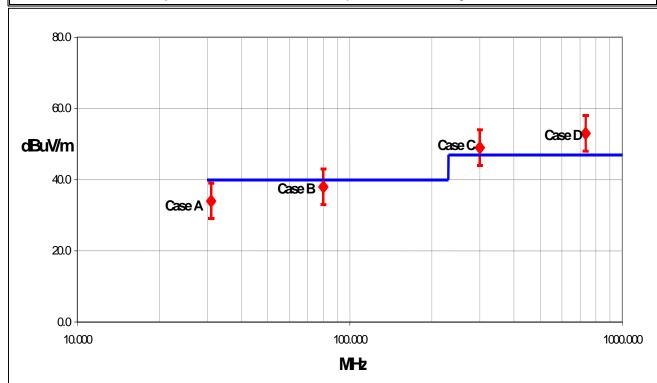
BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Probability Biconical		Log Pe	eriodic	D	ipole
	Distribution	Distribution Antenna		Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2) 2.10	
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

South Dakota

North Sioux City Facility

745 N. Derby Lane P.O. Box 217 North Sioux City, SD 57049 (605) 232-5267 FAX (605) 232-3873

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Equipment Under Test:	CDMA in 700C with Bluetooth in 6820
Model:	SB555
First Date of Test:	05-13-2004
Last Date of Test:	05-17-2004
Receipt Date of Samples:	05-13-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test.	
I/O Ports:	Serial on printer.	

Functional Description of the EUT (Equipment Under Test):

Handheld computer with 3 internal radios for inventory control that can be co-located with a bluetooth radio in the Intermec 6820 Printer when installed in the docking station.

Client Justification for EUT Selection:

The EUT is a representative production sample.

Client Justification for Test Selection:

These tests satisfy the requirements FCC 22.917 and FCC 24.238 for co-located transmitters.

EUT Photo

Modifications

Revision 4/28/03

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
	Spurious		No EMI suppression	Same	EUT was returned
1	Radiated	05/17/2004	devices were added or	configuration as	to client following
	Emissions		modified during this test.	delivered.	testing.

Revision 10/1/03

Justification

The EUT is a CDMA radio module installed inside Intermec's handheld computer, Model 700C. The 700C also contains two other previously certified radio modules, 802.11(b) and Bluetooth. The EUT has been previously certified (FCC ID: HN2SB555-2) for portable use with these two other radios (FCC ID: HN22011B-2 and FCC ID: EHABTS0080). This test demonstrates compliance with FCC 22.917 and FCC 24.238 emissions limits while the EUT is co-located with another Bluetooth radio. This new Bluetooth radio is internal to the Intermec mobile printer, Model 6820 (FCC ID: EHABTS0080). The printer serves as a docking station for the 700C handheld computer. All radios can transmit simultaneously. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the CDMA, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below:

Channels in Specif	Channels in Specified Band Investigated:		
802.11(b):	1,11		
CDMA (Cellular):	54, 55, 395, 467		
CDMA (PCS):	1, 35, 1153		
Bluetooth:	5, 11, 62, 68, 79, 80		

Operating Modes Investigated:

Bluetooth Radio in 6820 with 700C in docking station:

Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA PCS Channel 1
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA PCS Channel 1153
Simultaneous transmission of Bluetooth Channel 68, 802.11(b) Channel 11, & CDMA PCS Channel 35
Simultaneous transmission of Bluetooth Channel 62, 802.11(b) Channel 11, & CDMA PCS Channel 1153
Simultaneous transmission of Bluetooth Channel 11, 802.11(b) Channel 1, & CDMA Cellular Channel 467
Simultaneous transmission of Bluetooth Channel 5, 802.11(b) Channel 1, & CDMA Cellular Channel 395
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & CDMA Cellular Channel 55
Simultaneous transmission of Bluetooth Channel 79, 802.11(b) Channel 11, & CDMA Cellular Channel 54

Data Rates Investigated:

Maximum

Antennas Investiga	ated:
802.11(b):	2011B integral antenna (internal to 700C)
CDMA (Cellular):	805-606-102 Dual Band CDMA 900/1900MHz Antenna (SB555) (external to 700C)
CDMA (PCS):	805-666-204 Single Band CDMA 1900MHz Antenna (SB555) (external to 700C)
Bluetooth:	Integral PCB trace (internal to 6820 and 700C)

Output Power Setting(s) Investigated:
Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Revision 10/1/03

Frequency Range Invest	igated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

Software\Firmware Applied During Test										
Exercise software	Blue Test FCC_Smart 802.11 Agency Test	Version	Unknown							
Description										
The eyetem was tested us	ing enocial tost software to	avarcies the functions of th	a davice during the							

The system was tested using special test software to exercise the functions of the device during the testing such as channels, power, and modulation during simultaneous transmission.

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Radio in Printer	Intermec Technologies Corporation	8520-00080	Unknown
Printer	Intermec Technologies Corporation	6820	N/A
AC Adapter	Intermec Technologies Corporation	851-064-001	0001771
Handheld Computer with CDMA option	Intermec Technologies Corporation	700C	05400400868
Bluetooth Radio in 700C	Intermec Technologies Corporation	8520-00080	N/A
802.11(b) Radio in 700C	Intermec Technologies Corporation	2011B	N/A
CDMA Radio in 700C	Intermec Technologies Corporation	SB555	N/A

Remote Equipment Outside of Test Setup Boundary												
Description	Manufacturer	Model/Part Number	Serial Number									
Remote laptop	Dell	TS30G	7247346BYK0204A									
Equipment isolated from the	Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary											

Cables												
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2							
AC Power	No	2.0	No	AC Adapter	AC Mains							
DC Leads	PA	1.8	PA	Printer	AC Adapter							
Serial	Yes	4.0	No	Printer	Remote laptop							
PA = Cable is perm	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.											

Revision 10/1/03

Measurement Equipmen	nt				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26- 8P	APU	10/08/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/05/2004	13 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/23/2003	13 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/23/2003	13 mo
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
GSM/DCS/PCS MS Test Set	Hewlett-Packard	8922M	N/A	NCR	NA
GSM/DCS/PCS RF Interface	Hewlett-Packard	83220E	N/A	NCR	NA
Antenna, Horn	EMCO	3115	AHF	03/18/2004	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/27/2002	24 mo

Test Description

Requirement: Per 2.1053, the field strength of spurious radiation was measured in the far-field at an FCC listed semi-anechoic chamber up to 25 GHz. The applicable limits are 22.917(e) for the cellular band, and 24.238(a) for the PCS band.

Per 22.917(e), the mean power of out of band emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at least 43 + 10 log (P) dB (-13 dBm).

Per 24.238(a), on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. (-13 dBm).

Configuration: Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions.

The substitution method was described in TIA/EIA-603 Section 2.2.12 was used for the highest spurious emissions. The EUT was tested while simultaneously transmitting with co-located radios.

Revision 10/1/03

Test Methodology: For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is placed on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emissions.

Simultaneous Transmission: The EUT is a CDMA radio module installed inside Intermec's handheld computer, Model 700C. The 700C also contains two other previously certified radio modules, 802.11(b) and Bluetooth. The EUT has been previously certified (FCC ID: HN2SB555-2) for portable use with these two other radios (FCC ID: HN22011B-2 and FCC ID: EHABTS0080). This test demonstrates compliance with FCC 22.917 and FCC 24.238 emissions limits while the EUT is co-located with another Bluetooth radio. This new Bluetooth radio is internal to the Intermec mobile printer, Model 6820 (FCC ID: EHABTS0080). The printer serves as a docking station for the 700C handheld computer. All radios can transmit simultaneously. Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

All possible combinations of harmonic emissions from the CDMA, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 26 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Revision 10/1/03

Bandwidths Used for Mea	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were m	ade using the bandwidths	and detectors specified. No	video filter was used.

Holy Aling

Attendees: None Cust. Ref. No.: Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz TEST SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD No deviations. RESULTS Pass Other	Date Temperature Humidity stric Pressure Job Site: Year: Year:	: 37% e 30.03 : EV01 : 2003 : 1998	05/06/200 6
Serial Number: Customer: Intermec Technologies Corporation Attendees: Attendees: Cust. Ref. No.: Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz TEST SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALGULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuator Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuator Conducted Emissions: Adjustment Factor + External Attenuator Factor	Date Temperature Humidity stric Pressure Job Site: Year: Year:	: 05/14/04 :: 77 :: 37% e 30.03 :: EV01 :: 2003 :: 1998	
Cust. Ref. No.: Cust. Ref. No.: Tested by: Holly Ashkannejhad EST SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD No deviations. RESULTS Pass Other	Humidity stric Pressure Job Site: Year: Year: tenuation	: 37% e 30.03 : EV01 : 2003 : 1998	6
Cust. Ref. No.: Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz TEST SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD No deviations. RESULTS Pass Other	etric Pressure Job Site Year: Year: tenuation	2003 2 2003 2 1998	6
Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz TEST SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD No deviations. RESULTS Pass Other	Job Site: Year: Year: tenuation	EV01 : 2003 : 1998	6
Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD to deviations. RESULTS Pass Other	Year: Year: tenuation	2003 1998 Run #	6
Specification: FCC 24.238(a) Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD Ide deviations. RESULTS Pass Dither	Year	: 1998 Run #	6
Method: TIA/EIA-603 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS EUT Installed in Internec Model 700C handheld computer co-located with Bluetooth in Internec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD Blo deviations. RESULTS Pass Other	Year	: 1998 Run #	6
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Att Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS ULT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD To deviations. RESULTS Pass Other	tenuation	Run #	6
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator COMMENTS UT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD to deviations. RESULTS Pass Other Add Mark Add Add			6
COMMENTS UT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD It deviations. RESULTS Pass Other Add M.	ing		6
EUT Installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer EUT OPERATING MODES Bluetooth 11, 802.11b 1, CDMA 1 (PCS) in 700C. Bluetooth 11 in 6820 DEVIATIONS FROM TEST STANDARD Blo deviations. RESULTS Pass Other	ing		6
No deviations. RESULTS Pass Other ### April 19	in L		6
Pass Pass Other Holy Au	ing L		6
Pass Other Holy Au	'in M		6
Holy And	ing/		
Holy And	in 1		
Holy And	insta	\sim	
■ Tes	sted By:		_
0.0			\Box
-10.0			
-20.0			
-30.0			
E			
-40.0			
-50.0			
-60.0			
-70.0			
-70.0			
-80.0			\perp
12500.000 13500.000 14500.000 15500.000 16500.000	175	500.000	
MHz			
			Compared t
Freq Azimuth Height Polarity Detector	EIRP	Spec. Limit	
(MHz) (degrees) (meters)	(dBm)	(dBm)	(dB)
14472.000 81.0 2.2 H-Horn PK 14472.000 18.0 2.4 V-Horn PK	-42.9 -43.2		

NORTHWEST							Λr	'n	ar	on			QV.	V.G	r	ם	24	2	Q L	10	24							,
EMC							Ar	h	al (ΕΠ	L	F (JV	۷E	;[ט	al	a	JI	IE(σι							05/06
El	JT: SE	3555	Radi	o in 7	7000	C wit	h Blue	tooth	in 6	820												٧	Vork	Orde	r: IT	TRM0	026	
Serial Numb																									_	5/14/0	04	
Custom			ec Te	chno	olog	ies C	orpor	ation														Te		rature				
Attende		ne																						midity				
Cust. Ref. N				—.								- 1									Baro	metri		essur				
Tested			shka	ınnej	had									Powe	er: 1	120 \	/, 60	Hz					Jo	b Site	e: E	V01		
SPECIFICA			.000	(-)																						200		
Specification	on: FC																								r: 20			
PLE CALCU			1-603																					Yea	r: 19	998		
adiated Emission			nath -	Moon	urod	Lovol	. Anton	no Eoo	tor i C	abla F	ootor	Λ	plifior	Coin	Di	ictono	o Adiu	otmor	t Foote	or i Ev	torno	Attor	uotic	'n				
ducted Emissic																			it i acit	JI T L/	terria	Allei	iualic	,,,				
MENTS	no. rta	aotoa	20101	- mou	od: oc	2010	T Traine	Jaacoi	i doto	· Odk	710 7111	orida		doto	1 2	ttorrid	71110111	aatoi										
stalled in Inte	rmec M	odel 7	'00C h	andhe	eld c	ompu	ter co-lo	cated	with E	Blueto	oth in	Inte	rmec	Mode	el 68	20 pri	nter											
OPERATING																												
oth 11, 802.11	b 1, CD	MA 1	(PCS)	in 700	OC. F	3lueto	oth 11 i	n 6820																				
ATIONS FR	ом т	EST	MATS	NDAR	₹D																							
viations.					_																							
JLTS																									R	un #	_	
																									_			
r															T													
																						,	\$, ,	0			
																		1	1	,	Δ.	N	7/	<u>L'</u>	/			
																		H	80	りっ	/ 0 -		1					
																					Т	este	d B	<i>i</i> .				
																						00.0	ر ح ت					
0.0 —																												_
0.0																												
-10.0																												
-10.0																									Щ.			
-20.0				\perp	_																				_	1		
20.0																												
-30.0																										1		
=																												
-40.0					_																				_			_
5																												
-50.0		-	-	++	+	+		-		*		-		-	-	-	-			-	+		-		+	+	-	-
-60.0		+	-	+	+	+				+	+	+	+	+	+			\vdash		-		-	+		+	+++		+
-70.0		+	-	++	+	++		-		+	+	+	\vdash	+	+	+	+	+		-		+	+		+	++	+	-
-80.0 ⊥					_													-										_
4000.0	000	50	0.00	100	(6000	.000	70	0.000	000	8	3000	0.00	0	9	000.	000	1	0000	0.000	1	1100	0.00	00	12	2000.	.000	
													N 4 :	1-														
													MI	ΗZ														
						Т									T										\top			Compa
						1 .	-1	1	- I - I - A							Pol-	arity	l n	etector	. 1				-100	1.	Spec. L		Spe
Freq			- 1			A.	zimuth		eight							1 01	arity	-	elector			ı		IRP	٤	spec. L	-111111	Opc
Freq (MHz)							zimutn egrees)		eignt eters)							1 01	anty		elector					dBm)	١	dBn)		(dE

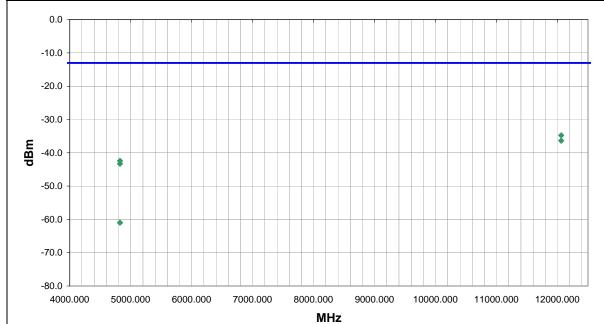
NORTHWEST	EMC Apparent Power Data Sheet												
					05/06/2004								
EUT:	SB555 Radio in 700C with Bluetooth in 6820		Work Order:	ITRM0026									
Serial Number:			Date:	05/14/04									
Customer:	Intermec Technologies Corporation	Temperature:	77										
Attendees:	None	Humidity:	37%										
Cust. Ref. No.:			Barometric Pressure	30.03									
Tested by:	Holly Ashkannejhad	Power: 120 V, 60 Hz	Job Site:	EV01									
TEST SPECIFICATI	ONS												
Specification:	FCC 24.238(a)		Year:	2003									
Method:	TIA/EIA-603	Year:	1998										
SAMPLE CALCULA	ATIONS												

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer


EUT OPERATING MODES
Bluetooth 11, 802.11b 1, CDMA 1153 (PCS) in 700C. Bluetooth 11 in 6820

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass

Other

Holy Salighe Tested By:

Freq (MHz)	Azimuth (degrees)	Height (meters)	Polarity	Detector	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)
12060.000	160.0	4.0	H-Horn	PK	-34.8	-13.0	-21.8
12060.000	97.0	3.3	V-Horn	PK	-36.4	-13.0	-23.4
4824.000	126.0	1.2	V-Horn	PK	-42.4	-13.0	-29.4
4824.000	81.0	1.3	H-Horn	PK	-43.3	-13.0	-30.3
4824.000	81.0	1.3	H-Horn	AV	-61.0	-13.0	-48.0

NORTHWEST			Ap	pare	nt	P	OV	/e	r D	at	a Sh	ee	t				d
EMC	CDEEE Dadie	in 700		_		•		_		~.	u O.I.			Warla Ord	live	MOOOC	05/06/
Serial Number	SB555 Radio) IN 700	C with Bluet	00th in 682	U									Work Orde		14/04	
	Intermec Ted	hnolog	ies Corpora	tion									т	emperatui	_	1-1/0-1	
Attendees														Humidi		%	
Cust. Ref. No.												Ba	romet	ric Pressu	re 30.	.03	
	Holly Ashkar	nnejhad	l				P	owe	r: 120 \	V, 60	Hz			Job Si	te: EV	01	
T SPECIFICAT		_															
	FCC 24.238(a	a)													ar: 20		
	TIA/EIA-603													Yea	ar: 19	98	
IPLE CALCUL		N 4	I and a Antana	- Ft O-b	I. F			0-1-	Distant	a Autor	descent France	Futer	I A44				
Radiated Emissions anducted Emissions												+ EXIE	nai Au	enuation			
MMENTS	- riajacioa Ecroi –	Wodod O	20001 7 7747100	addi i doloi i	ouble 7	ttoria	ationic	10101	Extorno	i / ttori	dicio						
installed in Interm	ec Model 700C ha	ndheld c	omputer co-loc	ated with Blu	etooth i	in Inte	ermec l	/lode	6820 pr	inter							
OPERATING I																	
tooth 68, 802.11b 1	1, CDMA 35 (PCS	6) in 700C	. Bluetooth 68	in 6820													
//ATIONS ED	4 TEOT 85	D 4 B B															
/IATIONS FROI	VITESTSTAN	DARD															
SULTS															Pu	n #	
S															IXU)
er									T								
											Holy	٨	. /	1	0		
											11-le	2 /s	he	Ly/La			
											910	//		,			
													Test	ed By:			
0.0							-										
-10.0																	H
20.0																	
-20.0																	
-30.0																	
-30.0																	
_																	
-40.0																	
8 +0.0																	
-50.0					*	_											
-60.0						+		+		-			+				Н
-70.0						+							+				H
-80.0		1 1															
4000.00	5000.00	00	6000.000	7000.00)	800	0.000		9000	.000	10000	.000	110	000.000	120	000.000	
							MH	17									
							IVI	14									
																	Compare
Freq	1		Azimuth	Height					Pol	arity	Detector			EIRP		ec. Limit	Spec
•																	
(MHz) 7407.000			(degrees)	(meters)						Horn	PK			(dBm) -47		(dBm) -13.0	(dB

	EMC							A	pķ	oa	re	n	t P	OV	ve	r l	Da	ata	a S	he	et						05/	RE df4. ⁻ /06/200
		_	B555	Rad	io in	7000	with	ı Blu	etoc	th ir	1 682	20										٧	Vork		_	M0026	6	
Se	erial Num Custor		nterm	or Ta	chn	ologi	as C	orno	ratio	'n												Т	mne	Date rature	_	15/04		
	Attend			100 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ologi	C3 C	oi po	iatic	<i>,</i> ,,,												- 10		midity		6		
C	ust. Ref.																				Baro	metr		essur				
ет с	Tested PECIFIC			aas										F	owe	r: 12	0 V,	60 I	łz				Jo	b Site	: EV)1		
	Specificat			4.238	(a)																			Year	: 200	3		
	Meti	nod:	IA/EI	A-603																					: 199			
	E CALC																											
	ated Emiss cted Emiss																			ctor + i	externa	al Atte	nuatio	n				
OMME	ENTS																											
IT insta	alled in Int	ermec	Model	700C I	handh	neld co	mput	er co-l	ocate	ed wit	h Blu	etoot	h in Int	ermec	Mode	I 6820) prin	ter										
JT OF	PERATIN	IG M	DDES																									
uetooth	h 68, 802.1	1b 11,	CDMA	35 (PC	CS) in	700C.	Blue	tooth	68 in	6820																		
EVΙΔΤ	TIONS F	ROM	TEST	STA	NDA	RD																						
deviat	tions.	to		0171																								
ESUL	TS																								Rui		10	
ass																											16	
her																Т					_	_						
																			("	1//	Offa	<						
																				and D								
																						Teste	d By	:			_	
	0.0 T								1				-							-				-		$\overline{}$	\neg	
	-10.0																											
	10.0																										-	
	-20.0																											
	-30.0																											
_																												
dBm	-40.0																											
늉																												
	-50.0																											
	-60.0																											
	-70.0																									$\perp \perp \downarrow$	_	
	00.0																											
	-80.0 ¹	000		100	00.0	100		2000	· ·	20		210	00.00	nO		2000	2 00	^	22	200 0	00		240	20 00	^	25		200
	10000	.000		190	UU.U	iuu		2000	.0.00	<i>J</i> U		∠ 10	00.00			200 0	.00	U	23	0.000	UU		∠4 U	00.00	U	20	000.0	500
														MH	Ηz													
	Eroc:							dan de		11-2	h.4						Del-		Б.				_	IDD	0			pared
	Freq (MHz)							imuth grees)	,	Heig (mete							Polar	ity	Detec	tor				IRP IBm)		ec. Limit dBm)		Spec. (dB)
- 1							, 400	J. 200)		,	1.0					- 1		Horr					10	,	,) \	·/

	EMC						ļ	۱þ	p	ar	e	nt	P	0	W	er	. [)a	ta	a S	hε	e	t						05	REV df4.13 /06/2004
		JT: SB	555 R	adio	in 70	0C v	vith E	Bluet	oot	h in (6820)												Wo				/10026		
Se	erial Numb	_	0 F PO 0 6	Too	hnala	aios			tion															T			05/1	5/04		
	Custom			rec	moic	gies	COI	рога	tioi	1																ture:	42%			
С	ust. Ref. N																					Bai	rome				30.0			
	Tested I			ıs											Po	wer:	120	V, 6	0 H	z					Job :	Site:	EV01	1		
	SPECIFIC/	_		200/-	,																						0000			
	Specification	on: FC)																						2003 1998			
SAMPL	E CALCL			005																					<u>'</u>	cai.	1550			
Radia	ated Emissio	ns: Fiel	d Stren	gth = N	/leasure	ed Lev	vel + A	ntenn	a Fa	ctor +	Cabl	e Fac	tor - A	mplif	ier G	ain +	Dista	nce Ad	just	ment Fa	ctor +	Exter	nal At	ttenua	ation					
	cted Emissio	ns: Adju	usted Le	evel = I	Measu	ed Le	evel + 1	Franso	lucer	Facto	or + C	Cable	Atten	uatior	n Fact	tor + I	Exterr	nal Atte	enua	ator							_			
	alled in Inte			0C har	ndheld	com	puter (co-loc	ated	with	Blue	tooth	in In	terme	ес Мо	odel 6	820 p	orinter												
	PERATINO h 11, 802.11			3 (PC	S) in 70	00C. I	Blueto	oth 1	1 in (6820																				
DEVIAT No deviat RESUL		OM TE	ST S	TANE	DARD																						Run	#		
Pass																													17	
Other																			-	("	mil	gu		sted	Bv:				_	
																							163	ieu	Бу.					
	0.0 —							-					1				_				_				-		$\overline{}$	$\overline{}$	\neg	
	-10.0																													
	10.0																												\rightarrow	
	-20.0																										_		-	
	-30.0																		+									-	-	
dBm	-40.0																													
	-50.0																													
	-60.0																												-	
	-70.0																										_	$\perp \downarrow$	-	
	-80.0																										\perp			
	18000.	000	1	19000	0.000		20	0000	.000)	2	2100	0.00		ЛΗ2		000.	000		23	0.00.0)00		24	1000	0.000		250	000.0)00
	Freq (MHz)						Azim			Height neters								olarity		Detec					EIR (dBn			c. Limit Bm)	S	pared to Spec. (dB)
	19296.0 19296.0							0.0			1.0							gh Ho gh Ho		PK PK						46.9 49.1		-13.0 -13.0		-33.9 -36.1

NORTHWEST **Apparent Power Data Sheet EMC** Work Order: ITRM0026 EUT: SB555 Radio in 700C with Bluetooth in 6820 Serial Number Date: 05/15/04 Customer: Intermec Technologies Corporation Temperature: 72 Attendees: None Humidity: 42% Cust. Ref. No.: Barometric Pressure 30.05 Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz Job Site: EV01 SPECIFICATIONS Specification: FCC 24.238(a) Method: TIA/EIA-603 Year: 2003 Year: 1998 SAMPLE CALCULATIONS Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth in Intermec Model 6820 printer **EUT OPERATING MODES** Bluetooth 62, 802.11b 11, CDMA 1153 (PCS) in 700C. Bluetooth 62 in 6820 DEVIATIONS FROM TEST STANDARD RESULTS 18 Pass Other Holy Aligh 0.0 -10.0 -20.0 • -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 10000.000 1000.000 MHz Compared to Azimuth Height Polarity EIRP Spec. Limit Freq Detector Spec. (dB) (degrees) (meters) (dBm) (dBm) (MHz) 3815.200 141.0 1.2 V-Horn -20.9 -13.0 -7.9 1050.766 136.0 V-Horn PΚ -25.2 -13.0 -12.2 1050.766 97.0 1.6 H-Horn PΚ -25.3 -13.0 -12.3 3815.200 H-Horn -12.7 59.0 2.0 -25.7 -13.0 2483.500 -1.0 1.0 V-Horn PΚ -37.8 -13.0 -24.8

PΚ

ΑV

 AV

AV

H-Horn

V-Horn

H-Horn

H-Horn

V-Horn

-26.4

-32.2

-32.6

-37.4

-37.5

-13.0

-13.0

-13.0

-13.0

-13.0

-39.4

-45.2

-45.6

-50.4

-50.5

2483.500

1050.766

1050.766

2483.500

2483.500

335.0

136.0

97.0

335.0

2.6

1.1

1.6

2.6

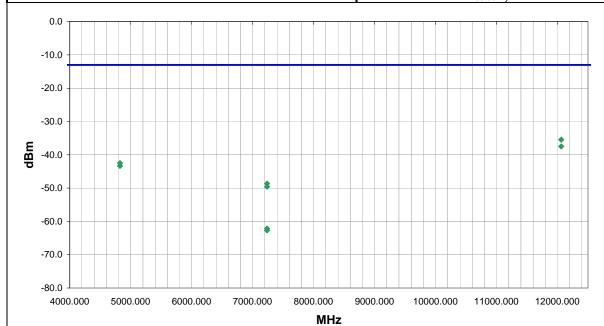
EMC				A	pp	are	ent	P)W	⁄er	Da	ıta	a S	he	et				05/	R df4 06/2
	: SB555 in	700C w	ith Bl	uetooth	n in 6	320										Wor	k Order:	ITRM002	26	_
Serial Number																		05/14/04		
	: Intermed	Techno	ologie	s Corpo	oratio	n											erature:			
Attendees Cust. Ref. No.															Param		umidity: ressure			
	: Holly As	hkannai	had						D,	owor.	120 V, (en F	17		Barom		ressure ob Site:			—
T SPECIFICAT		iikaiiiiej	IIau						F	ower.	120 V,	00 F	12				ob Site.	EVUI		
Specification		17(e)															Year:	2003		_
	: TIA/EIA-6																	1998		_
PLE CALCUL	ATIONS																			
adiated Emissions	: Field Streng	gth = Meas	ured Le	vel + Ante	enna Fa	actor + Ca	ble Facto	or - Am	plifier G	Gain + [Distance A	Adjus	tment Fa	ctor + E	xternal A	Attenuat	ion			
nducted Emissions	: Adjusted Le	vel = Meas	sured Le	evel + Tra	ansduce	er Factor +	Cable A	ttenuat	ion Fa	ctor + E	xternal At	tenu	ator							_
OPERATING both 11, 802.11b		(cellular)	in 700C	. Blueto	oth 11	in 6820														
ATIONS FRO	M TEST ST	TANDAR	RD															D#		
ULTS																		Run #	5	
																			J	
r																				_
												•	Ho	ly	Te	sted E	A.C.		_	
0.0																				
-10.0																				
-20.0																				
-30.0																				
-40.0						•														
-50.0																				
-60.0																				
-70.0																				
-80.0 12500.00	00	1350	00.00)		14500.	000		1 MH	5500 Z	.000		1	6500	000		175	600.000		
Freq (MHz)				Azimuth (degrees		Height (meters)					Polarit	у	Detec	tor			EIRP (dBm)	Spec. Lim		pare pec
)			70	2.0	1.2					V-Hor		PK		_		-42.8	-13	0	-2

NORTHWEST **Apparent Power Data Sheet EMC** EUT: SB555 in 700C with Bluetooth in 6820 Work Order: ITRM0026 Date: 05/14/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 77 Attendees: None Humidity: 37% Cust. Ref. No.: Barometric Pressure 30.03 Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 22.917(e) Method: TIA/EIA-603 Year: 2003 Year: 1998 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth radio in Intermec Model 6820 printer

EUT OPERATING MODES


Bluetooth 11, 802.11b 1, CDMA 467 (cellular) in 700C. Bluetooth 11 in 6820

DEVIATIONS FROM TEST STANDARD

RESULTS Pass

Other

Holy Saligh Tested By:

Eroa	Azimuth	Llaight		Delevity	Detector	EIRP		Compared to
Freq	Azımum	Height		Polarity	Detector	EIKP	Spec. Limit	Spec.
(MHz)	(degrees)	(meters)				(dBm)	(dBm)	(dB)
12060.000	91.0	2.5		H-Horn	PK	-35.5	-13.0	-22.5
12060.000	250.0	1.2		V-Horn	PK	-37.5	-13.0	-24.5
4824.000	59.0	1.3		H-Horn	PK	-42.5	-13.0	-29.5
4824.000	255.0	1.2		V-Horn	PK	-43.3	-13.0	-30.3
7236.000	7.0	1.3		H-Horn	PK	-48.6	-13.0	-35.6
7236.000	180.0	1.2		V-Horn	PK	-49.6	-13.0	-36.6
7236.000	7.0	1.3		H-Horn	AV	-62.1	-13.0	-49.1
7236.000	180.0	1.2		V-Horn	AV	-62.7	-13.0	-49.7

NORTHWEST **Apparent Power Data Sheet EMC** EUT: SB555 in 700C with Bluetooth in 6820 Work Order: ITRM0026 Date: 05/14/04 Serial Number: Customer: Intermec Technologies Corporation Temperature: 77 Attendees: None Humidity: 37% Cust. Ref. No.: Barometric Pressure 30.03 Tested by: Holly Ashkannejhad Power: 120 V, 60 Hz Job Site: EV01 TEST SPECIFICATIONS Specification: FCC 22.917(e) Method: TIA/EIA-603 Year: 2003 Year: 1998 SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

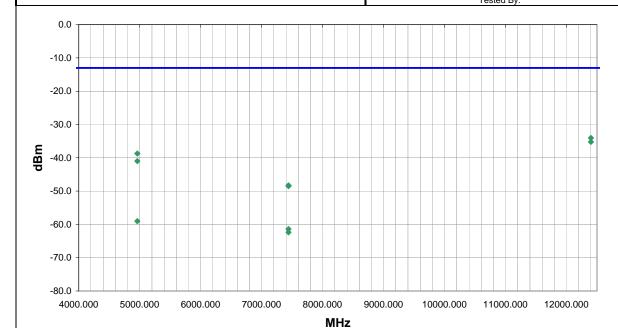
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

EUT installed in Intermec Model 700C handheld computer co-located with Bluetooth radio in Intermec Model 6820 printer

EUT OPERATING MODES

Bluetooth 79, 802.11b 11, CDMA 55 (cellular) in 700C. Bluetooth 79 in 6820


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 11

Other

Holy Arling Tested By:

Freq	Azimuth	Height		Polarity	Detector	EIRP	Spec. Limit	Compared to Spec.
(MHz)	(degrees)	(meters)		· olamy	Detector	(dBm)	(dBm)	(dB)
12400.000	66.0	1.9		H-Horn	PK	-34.0	-13.0	-21.0
12400.000	221.0	1.2		V-Horn	PK	-35.2	-13.0	-22.2
4960.000	117.0	1.2		V-Horn	PK	-38.7	-13.0	-25.7
4960.000	21.0	1.3		H-Horn	PK	-41.0	-13.0	-28.0
7440.000	125.0	1.2		V-Horn	PK	-48.3	-13.0	-35.3
7440.000	233.0	1.3		H-Horn	PK	-48.5	-13.0	-35.5
4960.000	117.0	1.2		V-Horn	AV	-59.0	-13.0	-46.0
7440.000	233.0	1.3		H-Horn	AV	-61.4	-13.0	-48.4
7440.000	125.0	1.2		V-Horn	AV	-62.4	-13.0	-49.4

	MC	Ap	parent l	Power	Data	a She	eet			RE' df4.1 05/06/200
	EUT:	SB555 in 700C with Bluetooth i	n 6820				W		ITRM0026	
Ser	rial Number:	Intermed Technologies Corner	otion				Ton	Date:	05/15/04	
	Attendees:	Intermec Technologies Corpora None	ation				Tel	Humidity:		
Cu	ıst. Ref. No.:						Barometric			
ет ег	Tested by: PECIFICATI	Dan Haas		Power:	120 V, 60 I	lz		Job Site:	EV01	
		FCC 22.917(e)						Year:	2003	
	Method:	TIA/EIA-603						Year:		
	E CALCULA		5	A 177 O :	S		F			
		Field Strength = Measured Level + Anteni Adjusted Level = Measured Level + Trans					External Attenu	uation		
ОММЕ										
T instal	lled in Interme	ec Model 700C handheld computer co-lo	cated with Bluetooth ra	dio in Intermec M	odel 6820 prir	nter				
Т ОР	ERATING N	MODES								
etooth	79, 802.11b 1	1, CDMA 54 (cellular) in 700C. Bluetoot	h 79 in 6820							
VIAT deviati		M TEST STANDARD								
SULT									Run#	
SS									1;	3
ner										
ici						Panil	and			
						Samila	mar			
								L Down		
							Tested	і Бу:		
	0.0									7
	-10.0									
	-20.0									-
	-30.0									
			•							
Ε	40.0		*							
dBm	-40.0									
	-50.0									
	-60.0									
	-70.0									
	-10.0									
	-80.0									_
	1000.000)							100	00.000
				MHz						
						I	1		I	Compared t
	req	Azimuth	Height		Polarity	Detector		EIRP	Spec. Limit	Spec.
(N	VHz) 2483.500	(degrees)	(meters) 1.2		V-Horn	PK		(dBm) -35.3	(dBm) -13.0	(dB) -22.
	2483.500				H-Horn	PK		-35.3 -37.6	-13.0	-22. -24.

NORTHWEST EMC			Ap	pare	ent	Po	we	r I	Data	a Shee	t		d: 05/06/:
	SB555 in	700C with	Bluetooth is	_								er: ITRM0026	
Serial Number:												te: 05/15/04	
		Technolog	jies Corpora	tion							Temperatu		
Attendees:	None									_		ity: 42%	
Cust. Ref. No.: Tested by:	Dan Haar						Dowe	r. 12	0 V, 60 H		rometric Pressi	te: EV01	
T SPECIFICATI		•					Fowe	1. 12	0 V, 00 F	12	300 31	ite. EVOI	
Specification:		17(e)									Ye	ar: 2003	
	TIA/EIA-6											ar: 1998	
MPLE CALCULA	ATIONS												
Radiated Emissions: onducted Emissions: MMENTS installed in Interme	Adjusted Let	vel = Measure	d Level + Trans	ducer Factor -	- Cable Att	enuation	Factor	+ Exte	rnal Attenu		nal Attenuation		
OPERATING Note tooth 79, 802.11b 1	1, CDMA 55		00C. Bluetooth	79 in 6820									
eviations. SULTS												Run#	
S													14
0.0											Tested By:		
0.0													
-10.0													_
-20.0													
-30.0													
E -40.0									•				
-50.0			*						•				
-60.0													
-70.0													
-80.0 18000.00	0 19	9000.000	20000	.000	21000		2 I Hz	2000	0.000	23000.000	24000.0	000 25	000.000
						IV	11 12						

Freq (MHz)		Azimuth (degrees)	Height (meters)		Polarity	Detector	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)
22320.000)	0.0	1.0		V-High Horr	PK	-42.5	-13.0	-29.5
22320.000)	0.0	1.0		H-High Horr	PK	-45.7	-13.0	-32.7
19840.000)	0.0	1.0		V-High Horr	PK	-47.9	-13.0	-34.9
19840.000)	0.0	1.0		H-High Horr	PK	-49.9	-13.0	-36.9

Freq Azimuth Height Polarity Detector EIRP Spec. Limit Sper	NORTHWEST EMC			A	ppa	re	nt	Po	W	er	D	at	a S	he	et			Date: 05/15/04		R df4 05/06/2	
Custs General Intermee Technologies Corporation	EUT	: SB555 in 70	00C with	Bluetooth	in 6820)										W	ork Or	der:	ITRMO	026	
Attendess: None	Serial Number	:															D	ate:	05/15/	04	
Tested by: Dan Haas	Customer	: Intermec Te	chnolog	gies Corpo	ration											Tei	mperati	ure:	72		
Tested by: Dan Haas Power: 120 V, 60 Hz Job Site: EV01																					
State Specification Fice 22.917(e) Year: 2003 MPLEC ALDUATIONS Year: 1998 MRIDGE TAILER-403 Year: 1998 MPLEC ALDUATIONS Flat distribution Year: 1998 MPLEC ALDUATIONS Year: 1998 MPLEC ALDUATIONS Year: 1998 MPLEC ALDUATIONS Year: 1998 MPLEC ALDUATIONS Teacher External Attenuation Patricy External Attenuation Patricy External Attenuation Patricy Pat															Baro	metri		_			
Specification: FCC 22.917(e) Year: 2003 Method: TAPICA-603 Year: 1998 MPLEC CALCULATIONS Year: 1998 MPLEC CALCULATIONS Year: 1998 MPLEC CALCULATIONS Year: 1998 MPLECALCULATIONS Year: 1998 Year:									Po	wer:	120 \	V, 60 I	Ηz				Job S	ite:	EV01		
Method: TAVEIA-603																					
MPLE CALCULATIONS Management Managemen																					
Radiated Emissions: Field Strength – Measured Level + Antenua Fator + Cable Factor - Amplifer Claim + Distance Adjustment Factor + External Attenuation Fator + Cable Factor - Amplifer Claim + Distance Adjustment Factor + External Attenuation Fator + Cable Factor - Cable Factor - Amplifer Claim + Distance Adjustment Factor + External Attenuation Fator + External			3														Y	ear:	1998		
Conditional Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator MIMENTS Final Registration Factor																					
MIMENTS														tor + E	xterna	al Atten	uation				
Toperating Modes 100		: Adjusted Level	= Measure	d Level + Trai	nsducer Fa	actor +	Cable A	Attenuatio	n Fac	tor + E	xterna	ıl Attenu	ıator								
### Price Pr		ec Model 700C h	nandheld o	computer co-	located w	ith Blu	etooth	radio in	Intern	nec Mo	odel 68	820 prii	nter								
No. State			llular) in 7	00C. Bluetoc	oth 11 in 6	820															
Tested By:		M TEST STAN	NDARD																		
Tested By:																			Run #		
Tested By:																				15	5
Tested By: -10.0 -20.0 -30.0 -60.0 -70.0 -80.0 18000.000 19000.000 20000.000 22000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spee																					
-10.0 -20.0 -30.0 -30.0 -60.0 -70.0 -80.0 -18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spe														<u></u>							
-20.0 -30.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0	0.0																				7
-30.0 -40.0 -50.0 -60.0 -70.0 -80.0	-10.0																				_
## -40.0	-20.0																				
-50.0 -60.0 -70.0 -80.0 18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spec	-30.0																				
-50.0 -60.0 -70.0 -80.0 18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spec	변 -40.0																				
-70.0 -80.0 18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spec	-50.0		*																		
-80.0 18000.000 19000.000 20000.000 21000.000 22000.000 23000.000 24000.000 25000.000 MHz Freq Azimuth Height Polarity Detector EIRP Spec. Limit Spec.	-60.0																				
18000.000 19000.000 20000.000 22000.000 23000.000 24000.000 25000.000 MHz Polarity Detector EIRP Spec. Limit Compar Spec Limit Spec <	-70.0																				
Freq Azimuth Height Polarity Detector EIRP Spec. Limit Sper		00 1900	00.000	2000	00.000		2100	0.000		220	0.00	000	230	00.00	00		24000.	000		250	00.000
Freq Azimuth Height Polarity Detector EIRP Spec. Limit Sper								I	MH	Z											
\ <u>-</u>	(MHz)			(degrees)) (met	ters)						-		or			(dBm)	(dBr	_imit n)	Compared Spec. (dB)

Intermec 6820 Printer with 700C

