Exhibit J: Spurious Radiated Emissions

FCC ID: HN2MG18

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low
Operating Modes Investigated:

Typical

Antennas Investigated: Integral to EUT

Data Rates Investigated: Maximum

Output Power Setting(s) Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Frequency Range Investigated										
Start Frequency	30 MHz	Stop Frequency	21.25 GHz							

Software\Firmware A	Applied During Test		
Exercise software	Intermec Core	Version	1.8.4
Description			
(C)ommon (O)bject (R)esc used to place calls to the b Microsoft Windows CE Ver	ource (E)nvironment, runnir pase station simulator (HP8 rsion 3.0.9348	ng the D15 GSM Module. T 922 test set). The software	he "Phone App" was e ran on the EUT under

Equipment Modifications

No EMI suppression devices were added or modified. The EUT was tested as delivered.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Intermec Corporation	700 GPRS	6007998
AC Adapter	Ault Inc.	PW160	None

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	2.0	No	AC Adapter	AC Mains
DC Power	PA	1.5	Yes	EUT	AC Adapter
BA = Cable is parm	anonthy attac	had to the device	Shielding on	d/or processo of forrite	may be unknown

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett- Packard	8566B	AAL	03/19/2002	12 mo
Quasi-Peak Adapter	Hewlett- Packard	85650A	AQF	03/19/2002	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APC	11/26/2001	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	12 mo
Antenna, Horn	EMCO	3115	AHC	08/24/2001	12 mo
High Pass Filter	RLC Electronics	F-100-4000-5-R (HPF>	HFF	02/04/2002	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	03/08/2001	24 mo
Pre-Amplifier 0.5-18 GHz	Miteq	AMF-4D-005180-24- 10P	APQ	04/23/2002	12 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/17/2000	36 mo
Antenna, Horn	EMCO	3160-09	AHG	01/15/2000	36 mo
Signal Generator	Hewlett- Packard	8341B	TGM	01/09/02	12 mo
Antenna, Horn	EMCO	3115	AHF	03/03/02	12 mo

Test Description

Requirement: Per 2.1053 and 24.238, the Field Strength of Spurious Radiation was measured in the farfield at an FCC Listed semi-anechoic chamber up to 21.25 GHz. Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The EUT was configured to transmit at the highest output into its integral antenna at low, mid, and high channels.

The substitution method as described in TIA/EIA-603 Section 2.2.12 was used for the highest spurious emissions. Preliminary measurements were made using the alternate limit of 84.3 dBuV/m at a 3 meter test distance and 93.8 dBuV/m at a 1 meter distance.

Test Methodology: For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a $\frac{1}{2}$ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal ¹/₂ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The final measurements must be made utilizing the substitution method described above. The 3 meter limit was calculated to be 84.3 dBuV/m at 3 meters. This was based upon an output power of 1 W.

Bandwidths Used for	or Measurements
---------------------	-----------------

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Massuramonts wara n	ado using the bandwidths	and datactors spacified No.	vidoo filtor was usod

e made using the bandwidths and detectors specified. No video filter was used.

Spurious Radiated Emissions

Revision 2/4/02

Test Setup Diagram

Completed by:

U.K.P

NC							Ap	pa	are	ent	Ρ	0\	ve	r	Da	ata	a Sh	ee	et				REV df1.90 04/23/2 <u>002</u>	/ 0 2
	E	UT: M	odel 7	00 GP	RS														V	/ork Orde	INMC00	017		
Ser	rial Numb	per: 60	07998			tion													Та	Date	4/28/02	11:2	20	4
	Attende	es: n	one	_0 00	npora							Tes	ted by	y: G	ireg k	Kiem	el		10	Humidity	: 35%			1
Cu	ist. Ref. M	lo.:											Powe	r: 1 :	20 V,	60 H	lz			Job Site	: EV01			1
EST S	SPECIFIC	ATIO	NS	220																Vee				4
ot	Meth	on: F	A/EIA-	230 603																Year	: 1998			-
AMPL	E CALC	ULAT	IONS																					
Radia Conduc COMMI	ated Emissi cted Emissi ENTS ismitting at	ions: Fie ons: Ac	eld Stren ljusted Li utput po	gth = M evel = N wer.	leasureo Aeasure	d Level	+ Anten	na Fac sducer	tor + Ca Factor	able Fac + Cable	tor - A Attenu	mplifi	er Gain Factor	i + Di + Ex	istance (ternal)	e Adju Atten	stment Facto uator	or + Ext	ternal At	tenuation				
	PERATIN	IG MO	DES EST S	TAND	ARD																			1
o devia	itions.		2010															Tes	t Dista	ance (m)	Run #			
ass																				3		1		-
Other																		,	4 0F	U.K.	P			
	40.0																		1001	cu by.			_	4
	40.0																							
	30.0 -																							
	20.0 -																							
	10.0 -																							
۶	0.0 +																						1	
dBr	-10.0 -																						1	
	-20.0 -																						-	
	-30.0 -						•1																-	
	-40.0 -						**																_	
	-50.0 -																						-	
	-60.0																							
	4000	.000		50	00.00	0		6000	000.0			700(M	0.000 Hz	I		8	000.000		9	000.000		1000	00.000	
(Freq (MHz)					Az (de	zimuth egrees)	He (me	eight eters)						Polari	ity	Detector			Power Into an Ideal Ha Wave Dipol (dBm)) lf- e Spec. Li (dBm)	mit	Compared to Spec. (dB)	Comments
57 57 56 56 55	729.308 729.308 640.600 640.600 550.600 550.600					1 1 1 1 2	57.0 28.0 57.0 23.0 51.0 23.0	1	1.6 1.7 1.3 2.3 1.7 1.4						V-Ho H-Ho V-Ho H-Ho H-Ho V-Ho	orn orn orn orn orn	PK PK PK PK PK PK			-32.0 -33.0 -33.8 -37.1 -37.7 -39.1	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0		-19.0 -20.0 -20.8 -24.1 -24.7 -26.1	"Channel 810 (1909.8 "Channel 810 (1909.8 "Channel 662 (1880.2 "Channel 662 (1880.2 "Channel 512 (1850.2 "Channel 512 (1850.2)

NORTHWEST		Ap	pare	ent F	0	we	r Da	ta	Sh	ee	t				RE df1.9 04 <u>/23/20</u> 0
EUT: Mo	del 700 GPRS										V	ork Orde	er: Il	NMC001	7
Serial Number: 600 Customer: INT	7998 ERMEC Corpora	ation									Te	Dat mperatu	te: 4 re: 6	/28/02 1	5:17
Attendees: nor	10	-			Te	sted by	: Greg Ki	emel				Humidi	ty: 3	5%	
Cust. Ref. No.:						Powe	r: 120 V, 6	0 Hz				Job Sit	te: E	V01	
Specification: FC	C 24.238											Yea	ar: 2	001	
Method: TIA	/EIA-603											Yea	ar: 1	998	
Radiated Emissions: Field Conducted Emissions: Adju DMMENTS IT transmitting at max out	I Strength = Measure sted Level = Measure put power	d Level + Anten ed Level + Trans	na Factor + Ca sducer Factor -	able Factor - ⊦ Cable Atte	Ampli nuatio	fier Gain n Factor	+ Distance A + External At	djustm tenuato	ent Facto or	r + Exte	ernal At	tenuation			
JT OPERATING MOD	ES ST STANDARD														
deviations. ESULTS										Test	Dista	ince (m)	R	Run #	
ISS												3			2
ther										A	A Test	ed By:	P		_
40.0															
30.0								_					_		_
20.0								_					_		_
10.0															
0.0													_		_
E -10.0															
-20.0			***												\neg
-30.0															
-40.0								_							
-50.0								_							
1000.000	1500.00	00	2000.000		25) N	00.000 //Hz		300	0.000		3	3500.000		4	000.000
			1	1						1					
Freq (MHz)		Azimuth (degrees)	Height (meters)				Polarity	ſ	Detector			Power In an Ideal H Wave Dip (dBm)	to alf- ole	Spec. Limit (dBm)	Compared Spec. (dB)
1989.800 1960.200 1930.200 1989.800 1960.200 1930.200		328.0 321.0 149.0 99.0 77.0 37.0	1.0 1.1 1.3 1.3 1.3				H-Horr H-Horr H-Horr V-Horr V-Horr V-Horr	ו ו ו ו	PK PK PK PK PK PK			-15.4 -15.7 -17.1 -18.4 -18.6 -18.7		-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-2.4 -2.7 -4.1 -5.4 -5.6 -5.7