Exhibit R: Spurious Radiated Emissions for Radio Outside of Printer

FCC ID: HN2EASYLAN

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:	
High	
Mid	
Low	
	_

Operating Modes Investigated: Max Modulated

Antennas Investigated:
Dipole
Omni
Patch

Data Rates Investigated:	
Maximum – only one data rate available	
Output Power Setting(s) Investigated:	
Maximum – only one power level available	

Power Input Settings Investigated:

120 VAC, 60 Hz for host device (printer).

Frequency Range Inv	vestigated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

Software\Firmware A	Applied During Test		
Exercise software	Windows 98 Hyperterminal	Version	Unknown
Description			
Windows 98 Hypertermina	I was used to communicate	e with the RF module embe	dded firmware.

Equipment Modifications

The following modifications were made to achieve compliance: a) Copper tape was added along the edge of the back RF shield, and b) copper tape was added near the rear I/O mounting screw.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EASYLAN (EUT) installed outside of	Troy Group, Inc.	00-40-17-OB-74-94	00750740
printer.			
Printer	INTERMEC	3400E400	E7/199
Dipole antenna	Centurion Inc.	066147	N/A
Patch antenna	Xertex Technologies	067262	102955
Omni Antenna	Cushcraft	063363	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Antenna Adapter	Yes	.31	No	RF Server	Cushcraft Omni- Directional Antenna / Xertex Patch Antenna
AC Power	No	2.1	No	RF Server	AC Mains
DA = Cabla is normanan	thy attached	to the device Chi	alding and/a	r processo of formite r	aay ha unknown

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	03/19/2002	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	12 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	12/03/2001	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	11/26/2001	12 mo
Antenna, Horn	EMCO	3115	AHC	08/24/2001	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	03/08/2001	24 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/17/2000	36 mo
Antenna, Horn	EMCO	3115	AHJ	05/16/2001	12 mo
High Pass Filter	RLC Electronics	F-100-4000-5-R (HPF>	HFD	02/04/2002	12 mo

Test Description

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: Each antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Measurements

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were made	using the bandwidths and o	letectors specified. No video	o filter was used except for
	average measuren	ients above 1 GHz.	

Completed by: Completed by: Rocky to Relenge

EMC OALS DATA SHEET Oracle 2002 Image: Control of the state of the s	NOR	THWEST									0111					REV	
Unit EUT: EASYLAN Installed Outside of Printer Work Oracle 10ML0061 (5070-0) Castoneer, INTERNEC Corporation Tested by: [Rod Peloquin Humber, 12 (1910-10-1) Attendees: None Tested by: [Rod Peloquin Humber, 12 (1910-10-1) Specification: Power, 120VAC/60Hz Job Site; EV01 Specification: Specification: PCC 15.209 Year; 2201 Method; Alks CS.4 Method; Alks CS.4 Year; 2201 Year; 1992 Method; Alks CS.4 PLE CALCULATIONS Method; Alks CS.4 Year; 1992 Method; Alks CS.4 Year; 1992 Attendees: Method; Alks CS.4 Tested by: [Rod Peloty: Factor + Cable Altenuator Method; Alks CS.4 Method; Alks CS.4 Method; Alks CS.4 Year; 2001 Year; 2001 Method; Alks CS.4 Method; Alks CS.4 Year; 2001 Year; 2001 Method; Alks CS.4 Method; Alks CS.4 Year; 2001 Year; 2001 Method; Alks CS.4 Tested By: Year; 2001 Year; 2001 Method; Alks CS.4 Tested By: Tested By: Year; 2001 Motho; Year; 2001 Year; 2001<	E	MC						OA	ISL	ϽΑΙΑ	SHE	:EI				df1.8	
Image: TSP740 Date: P1102 10.41 Customer: TIVERNEC Corporation Tested by: Rod Peloquin Humdrid: 237.4 Attendes: None Power: [20VAC/GHz Job Site: [2V01 SPECIFICATION: S Power: [120VAC/GHz Job Site: [2V01 SPECIFICATION: Corporation Year: [302 Year: [392 Mathematic: Ford ANSI C63.4 Year: [392 Year: [392 Ide of Internation: Ford Stemps - Measure Level + Attender Factor - Cade Allowation Factor - Real Allowater Year: [392 Ide of Internation: Ford Stemps - Measure Level + Attender Factor - Cade Allowater Factor - Cade Allowater Factor Allowater SPECIFICATION: FOR Stemps - Measure Level + Attender Factor - Cade Allowater Factor Allowater Stemps - Mathematic Top Stemps - Measure Level + Attender Factor - Cade Allowater Factor Allowater Stemps - Mathematic Top Stemps - Measure Level + Attender Factor - Cade Allowater Factor Allowater Stemps - Mathematic Allowater Stemps - Measure Allowater Factor Allowater Stemps - Mathematic Allowater Stemps - Measure Allowater Factor Allowater Stemps - Mathematic Allowater Stemps - Measure Allowater Factor Allowater Stemps - Mathematic Allowater Stemps - Measure Allowater		EL	JT:	FASYL	AN In	stalled (Outside of I	Printer					N N	ork Order:	INMC0015	03/21/200	
Customer: INTERNEC Corporation Temperature I2 Attandess: None Tested by: Rod Palcului Job Ster EV01 SpecificAtions: Power: 120VAC/60Hz Job Ster EV01 SpecificAtion: FCC 15.00 Year: 2001 Method: Attandess: Attandess: Year: 1992 Method: Attandess: Attandess: Year: 1992 Method: Attandes: Nature Attandes: Nature Method: Attandes: Nature Attandes: Nature Method: Material Attandes: Nature Nature Nature Nature Nature Nature Nature Nature Nature SpecificAtion: Nature Nature Nature Nature Nature SpecificAtion: Nature Nature Nature Nature Nature SpecificAtion: Nature Nature Nature Nature Nature Nature Speci	Seria	al Numb	er:	750740		otuniou e								Date:	4/11/02 10	:41	
Attendes: None Tested by: Hundlify: 28% SPECIFICATION: Second and the second attended attende		Custom	er:	INTERN	IEC C	Corporat	ion						Те	mperature:	72		
Date: EVent Power: 120VAC/60Hz Job Site: EVent SpecificAlion: FCC 15 209 Vear: 2001 Vear: 1201 SpecificAlion: FCC 15 209 Vear: 1201 Vear: 1201 Method: Alistication: FCC 15 209 Vear: 1201 Vear: 1201 Method: Alistication: FCC 15 209 Vear: 1201 Vear: 1201 Method: Alistication: FCC 15 209 Vear: 1201		Attendee	es:	None						Tested by:	Rod Peloo	luin		Humidity:	28%		
SPECIFICATIONS Year: 2001 Method: JANSI CE3.4 Year: 1992 Jeach Control Links Year: 1992 Jeach Control Links<	Cus	t. Ref. N	o.:							Power:	120VAC/6	0Hz		Job Site:	EV01		
Specification: JPCC 15:209 (Vari: 1209) Wethod: Allistic Ce3.4 (Vari: 1992) Le CALCULATIONS Made Ensource: Reliability of Measured Level + Anterna Factor + Cable Factor - External Attenuation duced Ensource: Reliability of Measured Level + Transducer Factor - Cable Attenuation Factor + External Attenuation duced Ensource: Reliability of Measured Level + Transducer Factor - Cable Attenuation Factor + External Attenuator Method: Adjusted Level + Measured Level + Transducer Factor - Cable Attenuation Factor + External Attenuator Method: Measure: Adjusted Level + Measured Level + Transducer Factor + External Attenuator Method: Adjusted Level + Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Method: Adjusted Level + Measured Level + Transducer Factor + External Attenuator Method: Adjusted Level + Measured Level + Transducer Factor + External Attenuator Method: Adjusted Level + Measured Level + Transducer Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Reliability of the Cable + Transducer Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Attenuation Adjustment Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Attenuation Adjustment Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Attenuation Adjustment Factor + External Attenuator Method: Adjusted Level + Transducer Factor + Cable Attenuator Method: Adjusted Level + Transducer Adjustment Factor + Cable Attenuator Method: Adjusted Level + Transducer Adjustment Adjusted Level + Transducer + Transducer + Attenue + Transducer + Attenue +	ST SP	ECIFIC	ATIC	ONS													
PLE CALCULATIONS PLE CA	Spe	cificatio	on:	FCC 1	5.209									Year:	2001		
List Control Field Strates Patterne Adjustment Factor + External Atternation Method Emission: Adjusted Level = Masured Level - Transducer Factor + Catter Atternation Method Emission: Adjusted Level = Masured Level - Transducer Factor + Catter Alternation Method Emission: Adjusted Level = Masured Level - Transducer Factor + Catter Alternation Method Emission: Adjusted Level = Masured Level - Transducer Factor + Catter Alternation Method Emission: Adjusted Emission OPERATING MODES Test Distance (m) Non # Alternation Test Distance (m) Non # ITS Test Distance (m) Non # ID0.0 Test Distance (m) Non # 00.0 Tested By: Tested By: 100.0 Tested By: <td></td> <td></td> <td>Da: /</td> <td></td> <td>63.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>rear:</td> <td>1992</td> <td></td>			Da: /		63.4									rear:	1992		
Minimize Adjusted Level + Measured Level + Transducer Factor + External Alternator MENTS Minimize Adjusted Level + Measured + Meas	Radiat	ed Emissio	ons:	Field Stre	nath =	Measured I	Level + Antenr	a Factor + Cal	ole Factor - A	molifier Gain + [Distance Adius	stment Fac	tor + External Atte	enuation			
MENTS Statiled outside of printer, channel 11, 807282 patch antenna, FFFF data: Soldered RF shields on all available ground pads, tape on lower RF shield grounded to DB-808-283 eggins OPERATING MODES Attorns FROM TEST STANDARD Julys 1 1 2 Image: Status of the s	Conduct	ed Emissio	ons: /	Adjusted	_evel =	Measured	Level + Trans	ducer Factor +	Cable Attenu	ation Factor + E	External Attenu	uator					
MENTS OPERATION MODES OPERATION MODES Totol STANDARD ATIONS FROM TEST STANDARD ATIONS FROM TEST STANDARD ATIONS FROM TEST STANDARD JUTS Tost Distance (m) Run # JUTS Tost Distance (m) # Augustus # JUTS Tost Distance (m) # JUTS Tost Distance (m) # JUTS Tost distance (m) # JUTS <th cost="" distandi<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>																
Intelled grounded to DB-30B-25 SPERATING MODES TOUS FROM TEST STANDARD Attorns Modes Total Distance (m) Run # Total Distance (m) Run # Total Distance (m) Run # Intel Distance (m) Run # Total Distance (m) Run # Intel Distance (m) Intel Distance (m) Intel Distance Intel Distance (m)	DMME	NTS															
DEPARTING MODES ATIONS FROM TEST STANDARD Attrinos. JLTS Test Distance (m) Run # 2	JT instal ound nir	led outsid 15	le of	printer, c	hanne	11,06726	2 patch anter	na, FFFF data	a: Soldered R	RF shields on a	ll available gr	ound pad	s, tape on lower	RF shield gro	unded to DB-	9/DB-25	
OPERATING MODES ATIONS FROM TEST STANDARD JLTS Test Distance (m) Run # I 2 Access to a standard stan	, and pri																
ATIONS FROM TEST \$TANDARD JLT3 Test Distance (m) Run # 1 2 Markins. Test Distance (m) Run # 1 2		ERATIN	GΜ	ODES													
Artons From Test Distance (m) Run # 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 100.0 Tested By: 100.0 1000 60.0 1000 100.0 1000.000 100.0 1000.000 100.0 1000.000 1000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 12000.000 10000.000 1000.000 10000.000 1000.000 </td <td></td>																	
Interview Test Distance (m) Run # Interview In	VIATI	ONS FR	OM	TEST S	STAN	DARD											
Interview Test Distance (m) K0h # 2 1 2 1 2 Interview	deviatio	ons.											Toot Diete	mco (m)	Due #		
Image: Constraint of the sector of	ISS	5											Test Dista	nce (m) 1	Kull#	2	
Mach Below Tested By: 100.0 90.0																-	
$\frac{M_{\rm constraint}}{I_{\rm constraint}} = \frac{M_{\rm constraint}}{M_{\rm constraint}} = M_$	her												No. of Concession, Name	0			
Tested By: 100.0 00												Roll	- Le Pre	lena			
Tested By: 100.0 90.0 1000.000 15000.000 16000.000 17000.000 18000.000 Mitz												6	1	1			
Image:												~	Test	od Pvr		-	
100.0 00.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>reste</td><td>ей Ву:</td><td></td><td></td></t<>													reste	ей Ву:			
No.0 Polo 90.0 80.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 80.0 90.0 60.0 90.0 60.0 90.0 60.0 90.0 40.0 90.0 30.0 90.0 90.0 100.0 90.0 100.0 90.0 100.0 90.0 1000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 1000.000 12000.000 12376.000 32.3 12.3 290.0 1.0 1.0 0.0 1461 6		100.0															
90.0 60.0 70.0 60.0 50.0 40.0 50.0 40.0 50.0 40.0 50.0 40.0 50.0 10.0		100.0															
90.0 0																	
80.0 60.0 70.0 70.0 <th< td=""><td></td><td>90.0 +</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		90.0 +															
80.0 70.0 60.0 70.0 60.0 70.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
To.0 Image: Compared Structure Azimuth (degrees) Height (meters) Distance (meters) External (meters) Polarity Detector Adjustent Adjustent (dBuV/m) Compared Spec. Limit (BuV/m) Compared Spec. Limit (Compared Spec. Limit (Comp		80.0 +															
To.0 To.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
60.0 50.0 40.0 30.0 20.0 10.0 10.0 10.0 10.0 1000.000 1200.000 1300.000 14000.000 15000.000 16000.000 17000.000 18000.000 MHz Treq Amplitude Factor Azimuth Height Distance Azimuth Height Distance Atternation Compared Atternation Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Compared Com		70.0 +														-	
60.0 100.0 1000.000 12000.000 13000.000 14000.000 15000.000 16000.000 17000.000 18000.000 MHz Treq Amplitude Factor Caimuth Compared MHz T2376.000 Adjusted Spec. Limit Compared T2376.000 Adjusted Spec. Limit Compared T2376.000 Adjusted Spec. Limit Compared																	
50.0 40.0 30.0 40.0 <th< td=""><td>~</td><td>60.0 +</td><td></td><td></td><td>+</td><td></td><td></td><td>♦ </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></th<>	~	60.0 +			+			♦								_	
50.0 40.0 40.0 30.0 20.0 10.0	'n/							▲									
Image: Add of the second se	2	50.0 +										+				_	
40.0 40.0	ā							▲									
30.0 30.0	σ	40.0 +														_	
30.0																	
Construction Construction <th< td=""><td></td><td>30.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		30.0															
20.0 Image: Constraint of the second sec		55.0											$ \top$		$ \top$		
Freq Amplitude Factor Azimuth Height Distance External Polarity Detector Distance Adjusted Spec. Limit Compared Spec. (dB) Compared Spec. Limit Spec. Limit Compared Spec. Limit Spec. Limit Compared Spec. Limit Spec. Limit Spec. Limit Spec. Limit Spec. Limit Spe		20.0															
IO.0		20.0 +															
IU.0 IU.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
D.0 Index I		10.0 +														_	
0.0 Image: Constraint of the second sec																	
10000.000 11000.000 12000.000 13000.000 14000.000 15000.000 16000.000 17000.000 18000.000 Freq (MHz) Amplitude (dBUV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) External Attenuation (dB) Polarity (dB) Detector Distance Adjustment (dB) Adjusted BUV/m Spec. Limit BUV/m Compared Spec. (dB) 12376.000 42.3 12.3 290.0 1.0 0.0 H-Horn AV 0.0 54.6 63.5 -88 12376.000 46.2 12.3 290.0 1.0 0.0 H-Horn AV 0.0 58.5 83.5 -25		0.0 +															
Freq (MHz)Amplitude (dB)Factor (dB)Azimuth (degrees)Height (meters)Distance (meters)External Attenuation (dB)Polarity (dB)DietectorDistance (Adjustment (dB)Adjusted (dB)Spec. Limit (Spec. (dB)Compared (Spec. (dB)12376.00042.312.3290.01.01.00.0H-Horn 0.0AV0.054.663.5-812376.00033.812.3295.01.01.00.0V-Horn 0.0AV0.046.163.5-1712376.00046.212.3290.01.01.00.0H-HornPK0.058.583.5-25		10000	.000) 1	1000.	000	12000.000	13000	0.000	14000.000	15000.	000	16000.000	17000.0	000 18	000.000	
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) External Attenuation (dB) Polarity (dB) Detector Distance (dB) Adjusted (dB) Spec. Limit (dB) Compared Spec. (dB) 12376.000 42.3 12.3 290.0 1.0 1.0 0.0 H-Horn 0.0 AV 0.0 54.6 63.5 -8 12376.000 33.8 12.3 290.0 1.0 1.0 0.0 H-Horn 0.0 AV 0.0 46.1 63.5 -17 12376.000 46.2 12.3 290.0 1.0 1.0 0.0 H-Horn 0.0 AV 0.0 58.5 83.5 -25										MH-							
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) External Attenuation (dB) Polarity Detector Distance (dB) Adjusted (dB) Spec. Limit dBuV/m Compared Spec. (dB) 12376.000 42.3 12.3 290.0 1.0 0.0 H-Horn AV 0.0 54.6 63.5 -8 12376.000 33.8 12.3 290.0 1.0 0.0 V-Horn AV 0.0 46.1 63.5 -17 12376.000 46.2 12.3 290.0 1.0 0.0 H-Horn PK 0.0 58.5 83.5 -25																	
Freq (MHz)Amplitude (dBUV)Factor (dB)Azimuth (degrees)Height (meters)External Distance (meters)Polarity (dB)DetectorDistance (dB)Distance (dB)Compared Spec. LimitCompared Spec. (dB)12376.00042.312.3290.01.01.00.0H-HornAV0.054.663.5-812376.00033.812.3295.01.01.00.0V-HornAV0.046.163.5-1712376.00046.212.3290.01.01.00.0H-HornPK0.058.583.5-25							T							T			
(MHz) regime regime </td <td>-</td> <td>roa</td> <td>ſ</td> <td>Amplit</td> <td></td> <td>Factor</td> <td>Azimuth</td> <td>Height</td> <td>Distance</td> <td>External</td> <td>Polority</td> <td>Detect</td> <td>Distance</td> <td>Adjusted</td> <td>Spec Limit</td> <td>Compared to</td>	-	roa	ſ	Amplit		Factor	Azimuth	Height	Distance	External	Polority	Detect	Distance	Adjusted	Spec Limit	Compared to	
12376.000 42.3 12.3 290.0 1.0 1.0 0.0 H-Horn AV 0.0 54.6 63.5 -8 12376.000 33.8 12.3 295.0 1.0 1.0 0.0 V-Horn AV 0.0 54.6 63.5 -8 12376.000 33.8 12.3 295.0 1.0 1.0 0.0 V-Horn AV 0.0 46.1 63.5 -17 12376.000 46.2 12.3 290.0 1.0 1.0 0.0 H-Horn PK 0.0 58.5 83.5 -25	г (N	IEY (Hz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	Foldrity	Detecto	(dB)	dBuV/m	dBuV/m	(dB)	
12376.000 33.8 12.3 295.0 1.0 1.0 0.0 V-Horn AV 0.0 46.1 63.5 -17 12376.000 46.2 12.3 290.0 1.0 1.0 0.0 H-Horn PK 0.0 58.5 83.5 -25		12376.0	000	4	2.3	12.3	290.0	1.0	1.0	0.0	H-Horn	AV	0.0	54.6	63.5	-8.9	
12376.000 46.2 12.3 290.0 1.0 1.0 0.0 H-Horn PK 0.0 58.5 83.5 -25		12376.0	000	3	33.8 12.3 295.0		1.0	1.0	0.0	V-Horn	AV	0.0	46.1	63.5	-17.4		
		12376.0	000	4	6.2	12.3	290.0	1.0	1.0	0.0	H-Horn	PK	0.0	58.5	83.5	-25.0	
12376.000 41.8 12.3 295.0 1.0 1.0 0.0 V-Horn PK 0.0 54.1 83.5 -29		12376.0	000	4	1.8	12.3	295.0	1.0	1.0	0.0	V-Horn	PK	0.0	54.1	83.5	-29.4	

١	NORT	HWEST										6		T						11-									REV
	E١	ΛС										C	A		5	יונ		A	St	16	: E								df1.87 03/21/2002
•		L NI	EUT:	EAS		N Ins	stall	ed O	utsi	ide o	of Pr	inter												W	ork O	Order:	INMO	C0015	; 40
Se	eria C	Nun	nber:	7507 INTE	40 RMF	-0.0	orn	orati	on															Ter	nnera	Date:	4/3/0 72	2 19:	16
	A	ttend	lees:	None)		0.0	oradi	011							Tes	sted k	by:	Rod Pe	pole	uin				Hum	idity:	28%		
С	ust	Ref.	No.:														Powe	er:	120VA	C/60	Hz				Job	Site:	EV01	1	
ST	SP	ECIF	CATION:		15 '	200																				Voar	2001		
-	spe	Met	thod:	ANS	C63	3.4																				Year:	1992		
MP	۷LE	CAL	CULA	TION	S																								
Ra	diate	d Emis d Emis	sions:	Field S	Streng	gth = M	Measu	ured L	evel	+ Ant	enna	Facto	+ Cat	ile Fai Cable	ctor - / Atten	Amplif	ier Gair	ו + D + ד	Distance /	Adjust	tment F ator	actor	+ Exte	mal Atter	nuation	ı			
00110	10010		5510115.	najuot			Meas	Jurcu I			11500			oubic	7	uutioi	i i detoi		Atoma 7										
OMN	MEN	ITS				7000				-					(- -	F			D a lal a ma d	DE -	la la la la					da tau			E a bladd
ound	stalle led to	o DB-9	side of /DB-25	grour	r, 06 Id pir	7262 1S	pater	n ante	nna,	char	inels	noted	in coi	nmen	ts bei	ow, F	FFF da	ita: s	Soldered	RFS	nields	on al	availa	ible gro	und pa	ids, tap	e on lo	ower R	Fshield
JT C	OPE	RAT	NG M	ODE	S																								
			ROM	TES	T ST	ΓΔΝΙ		חי																					
dev	iatio	ns.	KOW	TL0	101		DAN																						
ESU	LTS	3																					Test	Dista	nce (r	m)	Run	#	
SS		_		_	_		_	_	_	_	_	_	_	_					_	_		_	<u> </u>	3	3				4
her																													
																					Roy	Q_	1.	Per	l.				
																						0	n		0	2			
																				-	_			Teste	ed By:				-
																									,				
	8	0.0 -																											
		_																											
	7	0.0 -																											
	~	~ ~																											
	0	0.0 -																											
																				•						•			<u> </u>
	5	0.0 -																-		2						1			
, m																										4			
2	4	0.0 -			_		_											+											
B																													
Ū	3	0.0 -																											
	Ũ	0.0																											
	~																												
	2	0.0 -									$\uparrow \uparrow$																		
	1	0.0 -	++		+	+	-		+	_	+			_		+		-	+										+
		0.0 -			-																	_							
		4000	.000	40	20.0	000	40	040.0	000	4(060.	000	40	80.0	00	410	0.00)	4120.	000	41	40.0	00	4160.	000	418	0.000) 4	200.000
																M	1H7												
						Т											Externa	ıl		I			Dis	tance					Compared to
	Fr	eq		Amp	litude		Facto	or	Az	zimutł	n,	Hei	ght	Dis	tance	At	tenuati	on	Polari	ty	Dete	ector	Adju	stment	Adju	usted	Spec	Limit	Spec.
	(M	Hz) 4124	5 484	(dB	uV)	3	(dB) 4 8	(de	gree:	s) 1 ()	(met	ers) 1 7	(m	eters) २	0	(aB)	0	H-Ho	rn	٨	V	(0 N O	dBu	1V/m	dBu	1V/m 54 0	(dB)
		417	5.483		44.	9		4.8		303	3.0		1.3		3.	0	().0).0	H-Ho	rn	A	V		0.0		49.7		54.0	-3.9
		407	5.483		43.	3		4.7		327	7.0		1.5		3.	0	(0.0	H-Ho	rn	A	V		0.0		48.0		54.0	-6.0
		412	5.484		40. ⊿o	6 6		4.8 ⊿ ∘		50).0 1 0		1.1		3.	0	().0) 0	V-Ho	rn rn	A	V		0.0		45.4 45.4		54.0	-8.6
		407	5.483		40. 38.	4		4.0 4.7		284 74	+.0 4.0		1.1		3. 3.	0	().0).0	v-rio V-Ho	rn	A	V		0.0		43.1		54.0 54.0	-ö.b -10.9
		412	5.484		48.	5		4.8		324	1.0		1.7		3.	0	(0.0	H-Ho	rn	P	K		0.0		53.3		74.0	-20.7
		417	5.483		48.	4		4.8		303	3.0		1.3		3.	0	(0.0	H-Ho	rn	P	K		0.0		53.2		74.0	-20.8
		4073	0.483		41.	4 0		4./ 4.8	.7 327.0 1.5 8 50.0 1.1			3. 3	0	() ()) ()	H-H0 V-Ho	rn	Р Р	ĸ		0.0	0.0 52.1			74.0 74.0	-21.9			
		412	5.484		40	3									· · · ·	~					-					<u> </u>			
		412 417	5.484 5.483		45. 45.	5		4.8		284	4.0		1.1		3.	0	(0.0	V-Ho	rn	P	K		0.0		50.3		74.0	-23.7