INTERMEC Technologies Corporation

802MIG2 in the CK30 Hand-held Scanner

July 24, 2003

Report No. INMC0071

Report Prepared By:

1-888-EMI-CERT

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: July 24, 2003

INTERMEC Technologies Corporation
Model: 802MIG2 in the CK30 Hand-held Scanner
Report No: INMC0071

Emissions

Description	Pass	Fail
FCC 15.247, Occupied Bandwidth	\boxtimes	
FCC 15.247, Output Power	\boxtimes	
FCC 15.247, Band Edge Compliance	\boxtimes	
FCC 15.247, Spurious Conducted Emissions	\boxtimes	
FCC 15.247, Power Spectral Density	\boxtimes	
FCC 15.247, Spurious Radiated Emissions	\boxtimes	
FCC 15.207, AC Powerline Conducted Emissions	\boxtimes	

The equipment was tested in the configuration and mode(s) of operation provided by the client. The specific tests and test levels were specified by the client. Any additional tests, or product configurations that should be tested are the responsibility of the client. Product compliance is the responsibility of the client.

List of Modifications to equipment under test required to meet the requirements:

• No EMI suppression devices were added or modified. The EUT was tested as delivered.

Deviations to the test standard

No deviations were made to standard test methods.

Test Facility

The measurement facility used to collect the data is located at:
 Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124
 Phone: (503) 844-4066
 Fax: 844-3826
 This site has been fully described in a report filed with the FCC (Federal Communications Commission), and accepted by the FCC in a letter maintained in our files.

Approved By:

Don Facteau, IS Manager

This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

INMC0071 2/139

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
n.			
00	None		

INMC0071 3/139

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 200629-0, Certificate Number: 200630-0.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (A2LA)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0302C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

INMC0071 4/139

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Industry Canada: Accredited by Industry Canada for performance of radiated measurements. Our open area test sites comply with RSP 100, Issue 7, section 3.3.

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-694 and R-677, Sultan: C-905, R-871 and R-1172, North Sioux City C-1246, R-1185 and R-1217)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

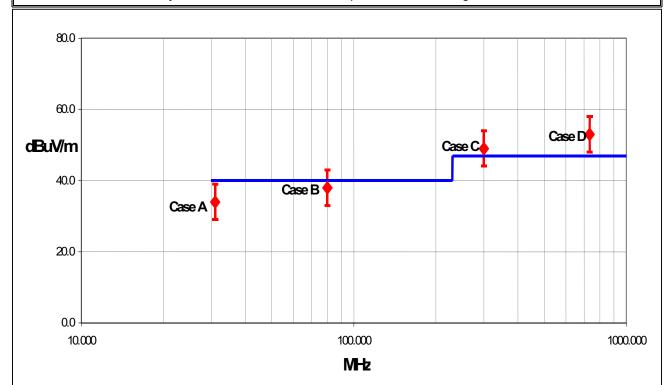
GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

INMC0071 5/139

	NVLAP	FCC	NIST	TUV PS	TUV Rheinland	Nemko	Technology International	Industry Canada	BSMI	VCCI	GOST	NATA
IEC 1000-4-2	V			V	/	V	V					
IEC 1000-4-3	V			V	V	V	V					
IEC 1000-4-4	V			V	V	V	V					
IEC 1000-4-5	V			V	V	V	V					
IEC 1000-4-6	V			V	V	V	V					
IEC 1000-4-8	V			V	V	V	V					
IEC 1000-4-11	V			V	V	V	V					
IEC 1000-3-2	V			V	V	V	V					
IEC 1000-3-3	V			V	V	V	V					
AS/NZS 3548	V											V
CNS 13438	V								V			
ISO/IEC17025	/			V	V	V	V		/			
Radiated Emissions	V			/	V	V	V	/	V	/	/	
Conducted Emissions	V			V	V	V	V	V	V	V	V	
OATS Sites	V	V		V	V	V	V	V	V	V	/	
Hillsboro 5-Meter Chamber (EV01)	V	V		V	V	V	V	V	V	V	V	
TCB for Licensed Transmitters		V										
TCB for un-Licensed Transmitters		V										
Cab for R&TTE			/									
CAB for EMC			V									
This chart represents only a parti	al NVLA for the	P Scope full NVL	, please _AP Sco	reference pe of Ac	ce <u>http://</u> creditati	<u>'ts.nist.g</u> on	ov/ts/htd	ocs/210/	214/214	.htm		

INMC0071 6/139

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

INMC0071 7/139

Revision 04/29/02

Radiated Emissions ≤ 1 GHz		Value (dB)				
	Probability	Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Ante	enna	Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
-	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty <i>U</i>	normal (k = 2)	2.10
(level of confidence ≈ 95 %)	Hormar (K – Z)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\emph{\textbf{U}}$ = combined standard uncertainty multiplied by the coverage factor: $\emph{\textbf{k}}$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

INMC0071 8/139

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

South Dakota

North Sioux City Facility

745 N. Derby Lane P.O. Box 217 North Sioux City, SD 57049 (605) 232-5267 FAX (605) 232-3873

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

INMC0071 9/139

Product Description

Revision 1/28/03

Party Requesting the Test

Company Name:	INTERMEC Technologies Corporation
Address:	6001 36th Avenue West
City, State, Zip:	Everett, WA, 98203-9280
Test Requested By:	Cheryl White
Model:	802MIG2
First Date of Test:	06-24-2003
Last Date of Test:	07-15-03
Receipt Date of Samples:	06-24-2003
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not available at time of test.
I/O Ports:	Mini PCI interface to host device

Functional Description of the EUT (Equipment Under Test):

Mini PCI radio card capable of 802.11(b) and 802.11(g) communications. Will be installed in Intermec's CK30 Handheld Scanner

Client Justification for EUT Selection:

The product is a representative production sample.

Client Justification for Test Selection

These tests are required for the FCC Certification of the radio under 15.247

INMC0071 10/139

Modifications

Revision 4/28/03

		Equip	ment modifications	
Item #	Test	Date	Modification	Note
1	Output Power	06-24-2003	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.
2	Occupied Bandwidth	06-25-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
3	Band Edge Compliance	06-25-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
4	Spurious Conducted Emissions	06-25-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
5	Spurious Radiated Emissions – Stand Alone Configuration	06-24-2003 & 06-25-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
6	Power Spectral Density	06-26-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
7	Conducted Emissions	06-26-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.
8	Spurious Radiated Emissions – Simultaneous Transmission with Bluetooth	07-14-2003 & 07-15-2003	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.

INMC0071 11/139

Occupied Bandwidth

Revision 3/12/03

Justification

Power Input Settings Investigated:

Battery

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Ba	nd Investigated:		
High	-		
Mid			
Low			
Operating Modes Investi	gated:		
802.11(b)	•		
802.11(g)			
Data Rates Investigated:			
6 Mbit			
6 Mbit 11 Mbit			
6 Mbit			
6 Mbit 11 Mbit			
6 Mbit 11 Mbit 36 Mbit			
6 Mbit 11 Mbit 36 Mbit			
6 Mbit 11 Mbit 36 Mbit			
6 Mbit 11 Mbit 36 Mbit 54 Mbit	Investigated:		
6 Mbit 11 Mbit 36 Mbit	Investigated:		

Software\Firmware Applied During Test						
Exercise software	FccTest.exe	Version	1/1/1601			
Description						
The system was tested using special software developed to test all functions of the device during the test.						
The software allowed the s	selection of transmit channe	el and data rate. These we	re varied to produce the			

The software allowed the selection of transmit channel and data rate. These were varied to produce the highest level of emissions. The OS of the host device was Ver. 0.00.00.0072

INMC0071 12/139

Occupied Bandwidth

Revision 3/12/03

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C1
Hand Held Scanner (Host for Radio)	Intermec	CK30	C1

Cables

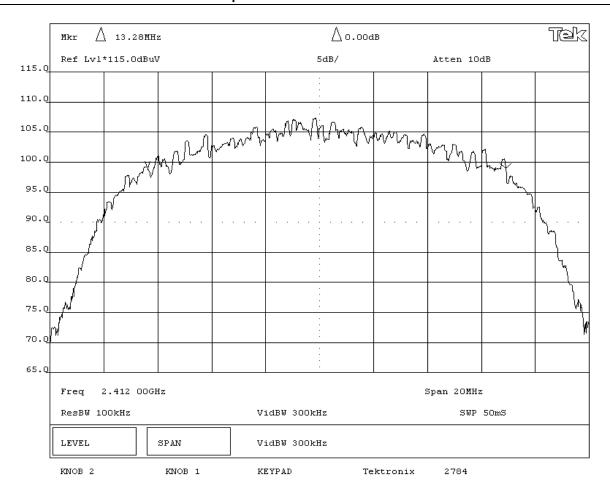
None. No cables were attached to EUT

Measurement Equipment

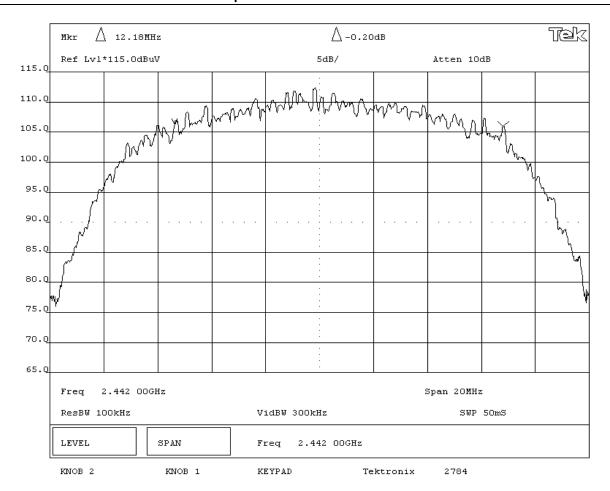
Description	Manufacturer	Model	ldentifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

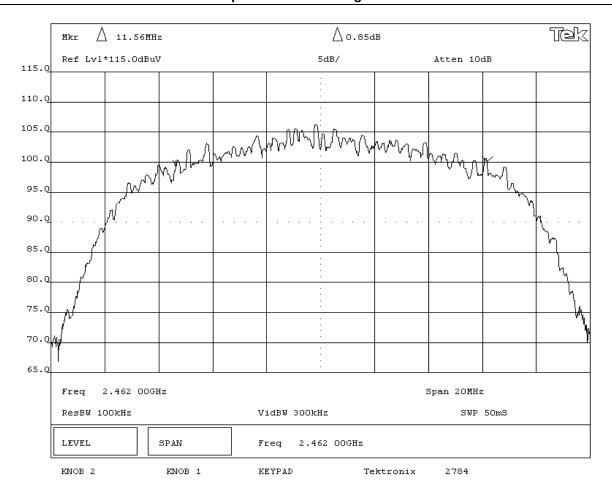
Requirement: Per 47 CFR 15.247(a)(2), the 6 dB bandwidth of a direct sequence channel must be at least 500kHz. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.


Configuration: The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation.

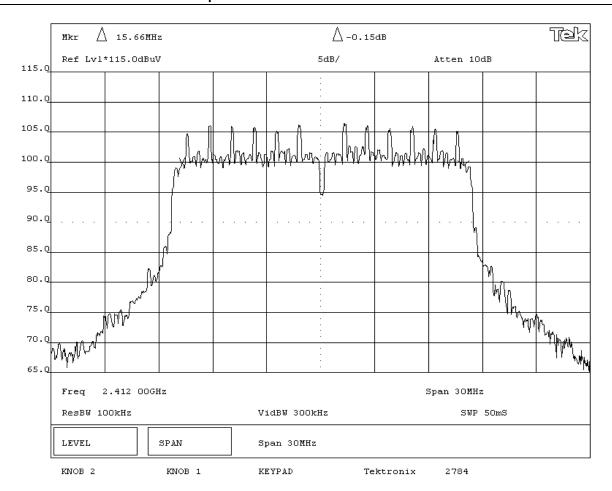
Completed by:


INMC0071 13/139

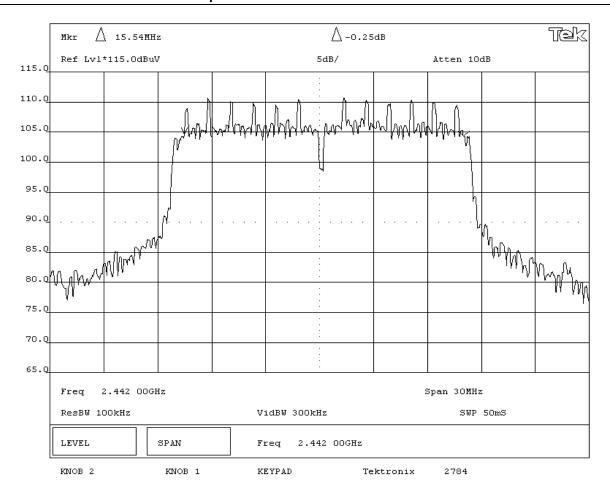
EUT: 802MIG2 Serial Number: C1 Customer: Intermec Corporation Attendees: C.D. White Customer Ref. No.: N/A EST SPECIFICATIONS	Tested by: Greg Kiemel Power: DC from Host Unit Method: FCC 97-114, ANSI C63.	Temperature: Humidity: Job Site:	06/25/03 77 degrees F 38% RH EV06
Customer: Intermec Corporation Attendees: C.D. White Customer Ref. No.: N/A	Power: DC from Host Unit	Temperature: Humidity: Job Site:	77 degrees F 38% RH EV06
Attendees: C.D. White Customer Ref. No.: N/A	Power: DC from Host Unit	Humidity: Job Site:	38% RH EV06
Customer Ref. No.: N/A	Power: DC from Host Unit	Job Site:	EV06
ST SPECIFICATIONS	Method: FCC 97-114, ANSI C63.	4 Year:	1992
	Method: FCC 97-114, ANSI C63.	4 Year:	1992
Specification: 47 CFR 15.247(a)(2) AMPLE CALCULATIONS Year: Most Current			
usted in CK-30 Handheld Scanner UT OPERATING MODES odulated by PRBS at maximum data rate, 802.11(b) modulation scheme EVIATIONS FROM TEST STANDARD one EQUIREMENTS			
ne minimum 6dB bandwidth is 500KHz			
ESULTS	BANDWIDTH		
ass	13.28 MHz		
Tested By:			
	dwidth - Low Channel		


INMC0071 14/139

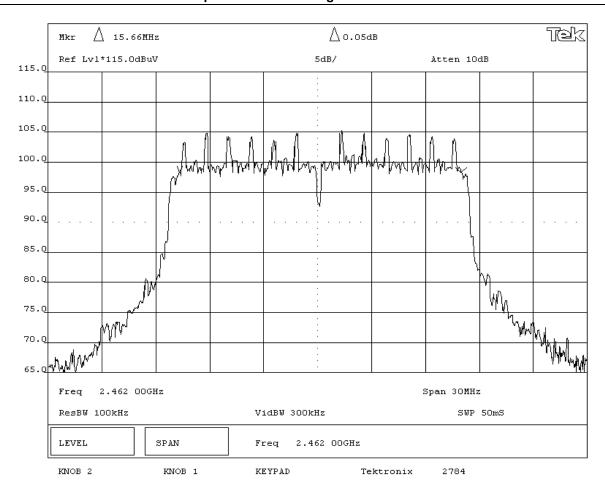
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0071			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at maximum data rate, 802.11(b) mod DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	ulation scheme						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		12.18 MHz					
Tested By: DESCRIPTION OF TEST							
DECOME TOWOF TEOT	Occupied Bandw	idth - Mid Channel					


INMC0071 15/139

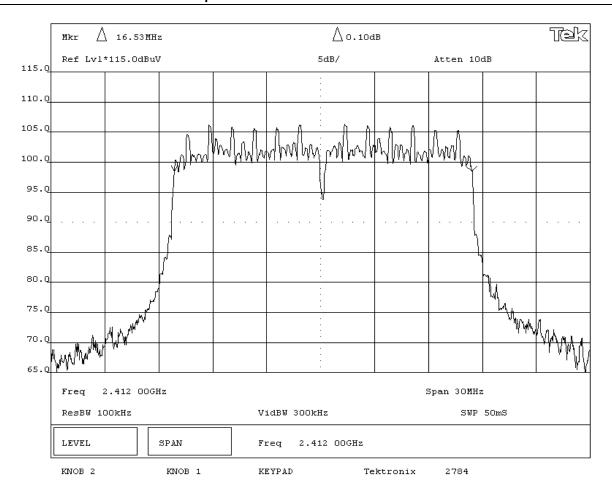
EMISSIONS DATA SHEET								
EUT: 802MIG2			Work Order:	INMC0071				
Serial Number: C1			Date:	06/25/03				
Customer: Intermec Corporation			Temperature:	77 degrees F				
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:					
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06				
TEST SPECIFICATIONS								
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992				
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at maximum data rate, 802.11(b) r DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	nodulation scheme							
The minimum 6dB bandwidth is 500KHz								
RESULTS		BANDWIDTH						
Pass		11.56 MHz						
Tested By: DESCRIPTION OF TEST								
DESCRIPTION OF TEST	Occupied Bandwi	dth High Channal						
	Occupied Bandwi	dth - High Channel						


INMC0071 16/139

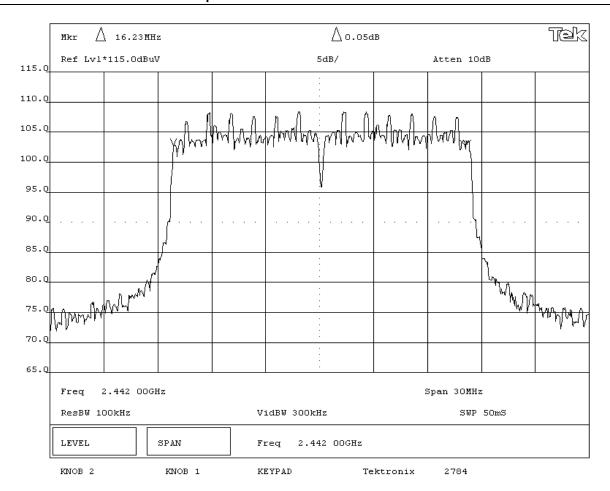
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) me DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	odulation scheme.						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		15.66 MHz					
Tested By: DESCRIPTION OF TEST							
	cupied Bandwidth	- Low Channel - 6 Mbit					


INMC0071 17/139

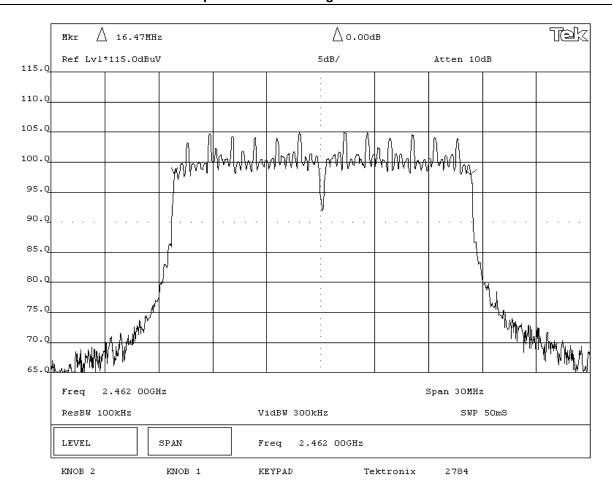
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) in DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		15.54 MHz					
Tested By: DESCRIPTION OF TEST							
	Occupied Bandwidth	- Mid Channel - 6 Mbit	<u> </u>				


INMC0071 18/139

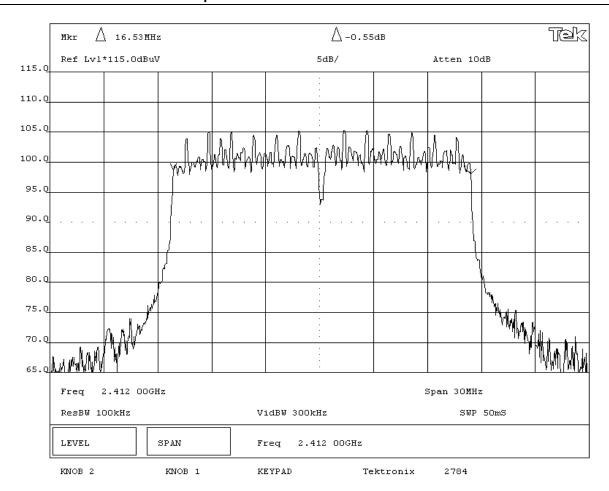
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		15.66 MHz					
Tested By:							
DESCRIPTION OF TEST							
C	Occupied Bandwidth	- High Channel - 6 Mbit					


INMC0071 19/139

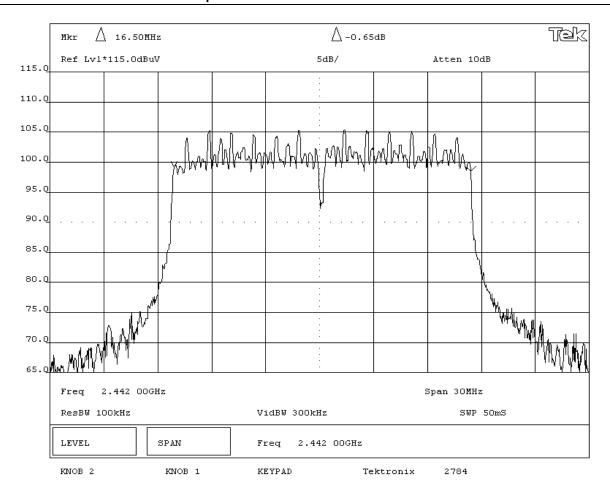
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		16.53 MHz					
SIGNATURE Tested By:							
DESCRIPTION OF TEST							
0	ccupied Bandwidth -	Low Channel - 36 Mbit					


INMC0071 20/139

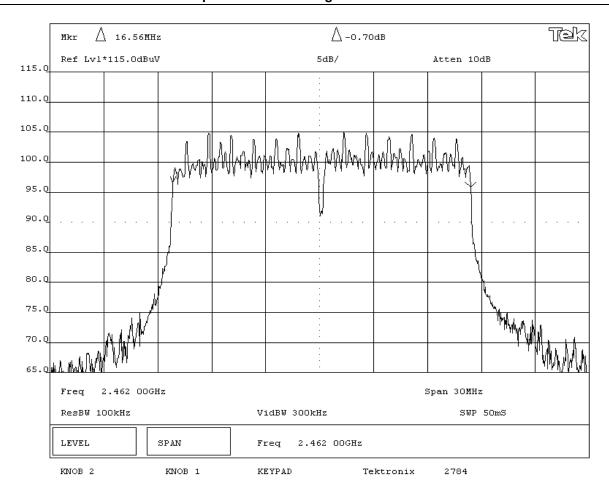
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS) modulation scheme.						
The minimum 6dB bandwidth is 500KHz							
RESULTS		BANDWIDTH					
Pass		16.23 MHz					
Tested By:							
DESCRIPTION OF TEST							
(Occupied Bandwidth	- Mid Channel - 36 Mbit					


INMC0071 21/139

NORTHWEST		EMICCIONE		EET		
EMC		EMISSIONS I	JAIA SI	CCI		Rev BETA 01/30/01
EUT:	802MIG2				Work Ord	er: INMC0081
Serial Number:	C1				Dat	e: 06/25/03
Customer:	Intermec Corporation				Temperatui	e: 77 degrees F
Attendees:				Greg Kiemel		y: 38% RH
Customer Ref. No.:			Power:	DC from Host Unit	Job Si	e: EV06
TEST SPECIFICATION						
	47 CFR 15.247(a)(2)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Ye	ar: 1992
SAMPLE CALCULATION	ONS					
COMMENTS						
Tested in CK-30 Hand	held Scanner					
EUT OPERATING MOD	DES					
Modulated by PRBS at	t indicated data rate, 802.11(g) mod	lulation scheme.				
DEVIATIONS FROM TI	EST STANDARD					
None						
REQUIREMENTS						
The minimum 6dB bar	ndwidth is 500KHz					
RESULTS			BANDWIDTH			
Pass			16.47 MHz			
SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TES	т					
	Осс	upied Bandwidth -	High Channe	el - 36 Mbit		


INMC0071 22/139

NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS) modulation scheme.			
The minimum 6dB bandwidth is 500KHz				
RESULTS		BANDWIDTH		
Pass	<u> </u>	16.53 MHz		
Tested By:				
DESCRIPTION OF TEST				
C	Occupied Bandwidth -	· Low Channel - 54 Mbit		


INMC0071 23/139

NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.			
The minimum 6dB bandwidth is 500KHz				
RESULTS		BANDWIDTH		
Pass	·	16.5 MHz		
Tested By:				
	ccupied Bandwidth	- Mid Channel - 54 Mbit		

INMC0071 24/139

NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(a)(2) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.			
The minimum 6dB bandwidth is 500KHz				
RESULTS		BANDWIDTH		
Pass		16.56 MHz		
Tested By:				
DESCRIPTION OF TEST				
0	ccupied Bandwidth -	High Channel - 54 Mbit		

INMC0071 25/139

Peak Transmit Power

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated:
802.11(b)
802.11(g)

Data Rates Investigated:
6 Mbit
11 Mbit
36 Mbit
54 Mbit

Output Power Setting(s) Investigated:
Maximum

Power Input Settings Investigated:	
Battery	

Software\Firmware Applied During Test				
Exercise software	FccTest.exe	Version	1/1/1601	
Description				
The system was tested using appoint software developed to test all functions of the device during the test				

The system was tested using special software developed to test all functions of the device during the test. The software allowed the selection of transmit channel and data rate. These were varied to produce the highest level of emissions. The OS of the host device was Ver. 0.00.00.0072

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C1
Hand Held Scanner (Host for Radio)	Intermec	CK30	C1

INMC0071 26/139

Peak Transmit Power

Revision 3/12/03

Cables

None. No cables were attached to EUT

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
RF Detector Diode	RLC Electronics	CR-133-R	ZZA	NCR	NA
Oscilloscope	Tektronix	TDS3052	TOE	07/16/2002	12 mo
Power Meter	Hewlett Packard	E4418A	SPA	06/21/2002	24 mo
Power Sensor	Hewlett-Packard	8481H	SPB	06/21/2002	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	12/20/2002	12 mo

Test Description

Requirement: Per 47 CFR 15.247(b)(3), the maximum peak output power must not exceed 1 Watt.

Configuration: The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The EUT was transmitting at its maximum output power. The data rate of the radio was varied to determine the level that produced the highest output power.

The measurement was made using a direct connection between the RF output of the EUT and a RF detector diode. The DC output of the diode was measured with the oscilloscope. The signal generator, tuned to the transmit frequency, was then substituted for the EUT. The CW output of the signal generator was adjusted until the DC output of the RF detector diode match the peak level produced when connected to the EUT. To further reduce measurement error, the power meter and sensor were then used to measure the output power level of the signal generator.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Completed by:

INMC0071 27/139

EMC	EMISSIONS	DATA SHEET	Rev Bt 01/30/0	
EUT: 802MIG2			Work Order: INMC0071	
Serial Number: C1			Date: 06/24/03	
Customer: Intermec Corporation			Temperature: 75 degrees F	
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity: 37% RH	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site: EV06	
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(b)(3) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	3.4 Year: 1992	
COMMENTS Tested in CK-30 Handheld Scanner				
EUT OPERATING MODES				
Modulated by PRBS at maximum data rate, at maxin	num output power. 802.11(b) modu	lation scheme. No change in output power n	oted at lower data rates	
DEVIATIONS FROM TEST STANDARD				
None				
REQUIREMENTS				
Maximum peak conducted output power does not ex	cceed 1 Watt			
RESULTS		AMPLITUDE		
Pass		54.1 mW		
SIGNATURE Tested By:				
DESCRIPTION OF TEST	Output Power - Low,	Mid, & High Channels		
Frequency (MH	z)	Power	r (mW)	
2412		17	7.0	
2442		54	4.1	
2462		12	2.5	

INMC0071 28/139

NORTHWEST	DATA QUEET					
EMC EMISSIONS	DATA SHEET		Rev BETA 01/30/01			
EUT: 802MIG2		Work Order:	INMC0081			
Serial Number: C1		Date:	06/24/03			
Customer: Intermec Corporation		Temperature:	75 degrees F			
Attendees: C.D. White	Tested by: Greg Kiemel	Humidity:	37% RH			
Customer Ref. No.: N/A	Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(b)(3) Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATIONS						
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at maximum data rate, at maximum output power. 802.11(g) mod	Iulation scheme.					
DEVIATIONS FROM TEST STANDARD						
None						
NOIS REQUIREMENTS						
Maximum peak conducted output power does not exceed 1 Watt						
RESULTS	AMPLITUDE					
Pass	47.7 mW					
SIGNATURE						
An U. Kil						
7 1/4						
Tested By:						
DESCRIPTION OF TEST						
Output Power - Low	, Mid, & High Channels					

Data Rate = 6 Mbit

Frequency (MHz)	Power (mW)
2412	16.1
2442	47.7
2462	11.5

Data Rate = 36 Mbit

Frequency (MHz)	Power (mW)
2412	14.9
2442	27.5
2462	12.4

Data Rate = 54 Mbit

Frequency (MHz)	Power (mW)
2412	12.4
2442	12.2
2462	12.4

INMC0071 29/139

Band Edge Compliance of RF Conducted Emissions

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Low
Operating Modes Investigated:
802.11(b)
802.11(g)
(J)
Data Rates Investigated:
6 Mbit
11 Mbit
36 Mbit
54 Mbit
Output Power Setting(s) Investigated:
Maximum
Power Input Settings Investigated:
Battery

Software\Firmware Applied During Test						
Exercise software	FccTest.exe	Version	1/1/1601			
Description						
The system was tested using special software developed to test all functions of the device during the test.						
The software allowed the selection of transmit channel and data rate. These were varied to produce the						
highest level of emissions.	The OS of the host device	e was Ver. 0.00.00.0072				

INMC0071 30/139

Band Edge Compliance of RF Conducted Emissions

Revision 3/12/03

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C1
Hand Held Scanner (Host for Radio)	Intermec	CK30	C1

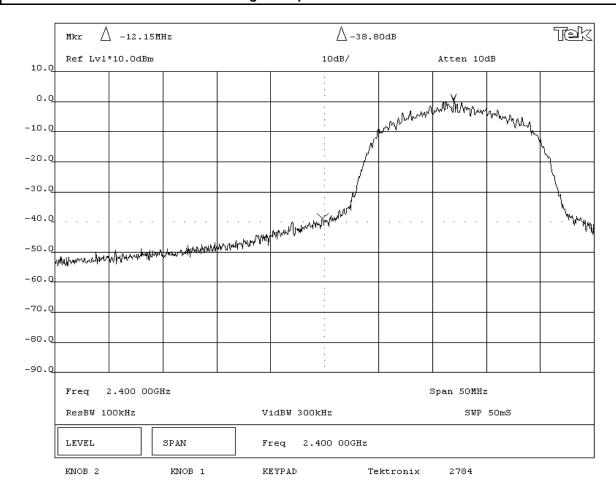
Cables

None. No cables were attached to EUT

Measurement Equipment

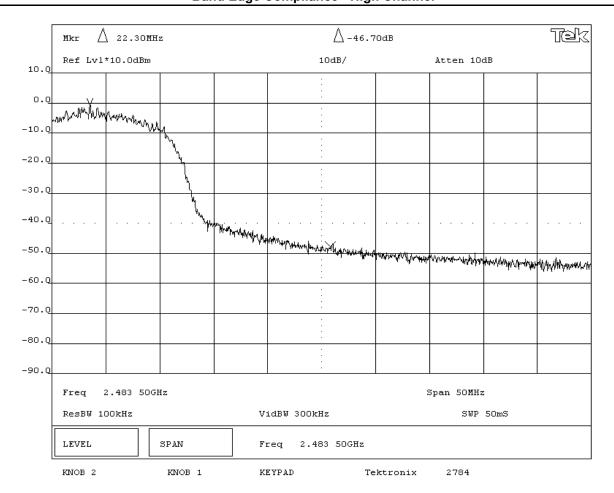
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

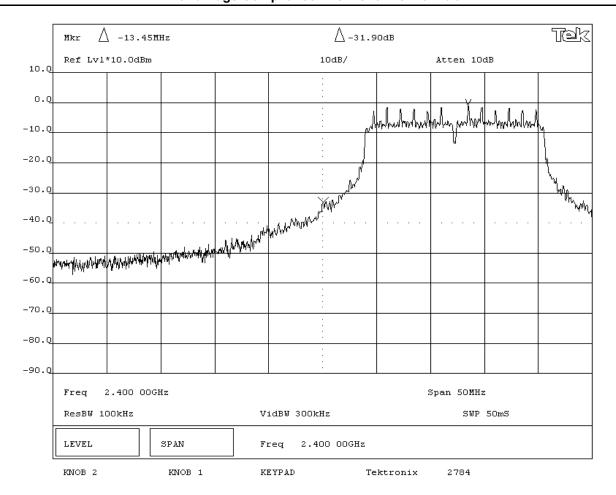

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

Configuration: The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 25 MHz below the band edge to 25 MHz above the band edge.

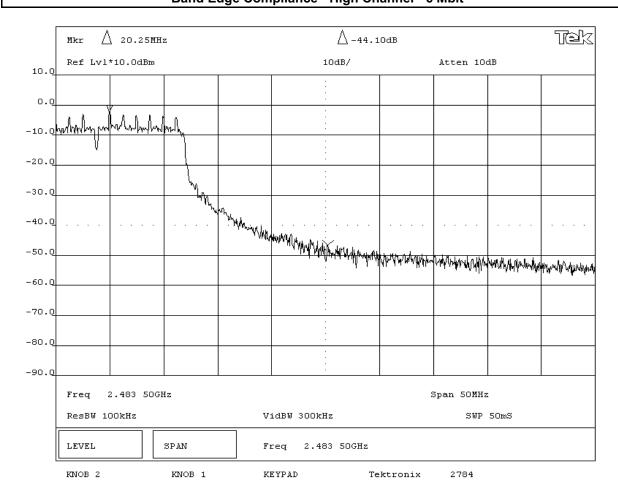
Completed by:


INMC0071 31/139

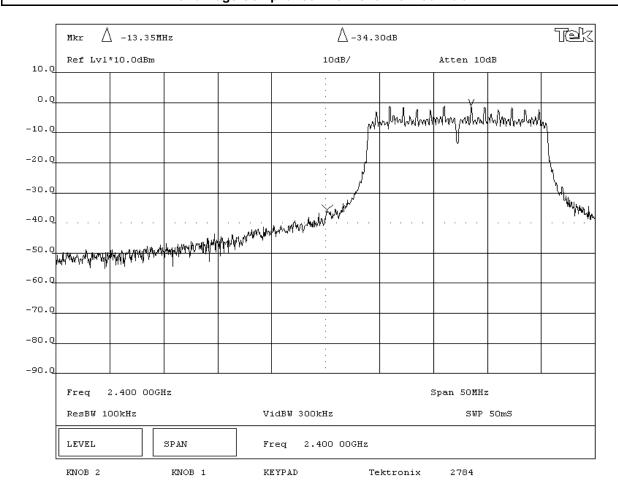
NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01	
EUT: 802MIG2			Work Order:	INMC0071	
Serial Number: C1			Date:	06/25/03	
Customer: Intermec Corporation			Temperature:	77 degrees F	
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	4 Year:	1992	
COMMENTS SESSENT OF THE PROPERTY OF THE PROPER	nodulation scheme				
Maximum level of any spurious emission at the edge of	of the authorized band is 20 dB dow	n from the fundamental			
RESULTS		AMPLITUDE			
Pass	·	-38.8 dB		·	
SIGNATURE Tested By:					
DESCRIPTION OF TEST					
Band Edge Compliance - Low Channel					


INMC0071 32/139

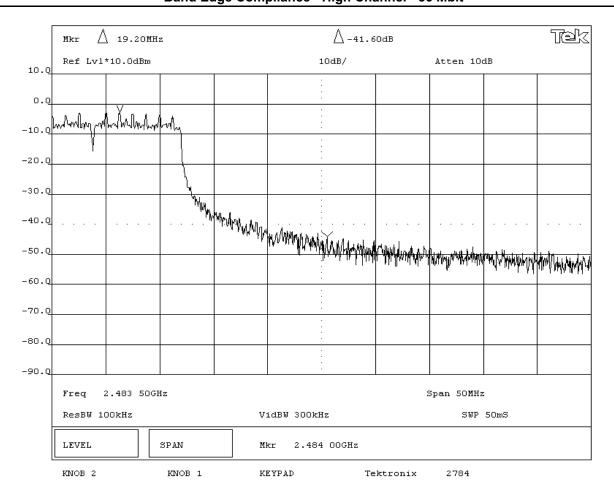
EMISSIONS DATA SHEET					
EUT: 802MIG2			Work Order:	INMC0071	
Serial Number: C1			Date:	06/25/03	
Customer: Intermec Corporation			Temperature:	77 degrees F	
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS					
Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
Modulated by PRBS at maximum data rate, 802.11(b) m	odulation scheme				
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum level of any spurious emission at the edge of	f the authorized band is 20 dB dow	n from the fundamental			
RESULTS		AMPLITUDE			
Pass		-46.7 dB			
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Band Edge Compliance - High Channel					


INMC0071 33/139

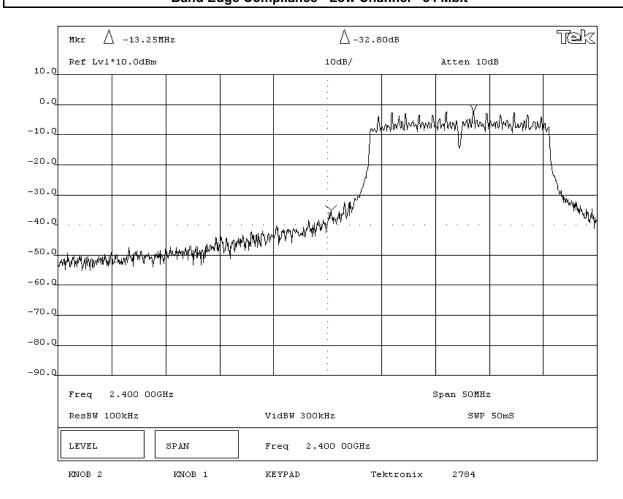
NORTHWEST EMC	EMISSIONS I	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
AMPLE CALCULATIONS				
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.			
Maximum level of any spurious emission at the edge	e of the authorized band is 20 dB dow	n from the fundamental		
RESULTS		AMPLITUDE		
Pass -31.9 dB				
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
B	and Edge Compliance	e - Low Channel - 6 Mbit		


INMC0071 34/139

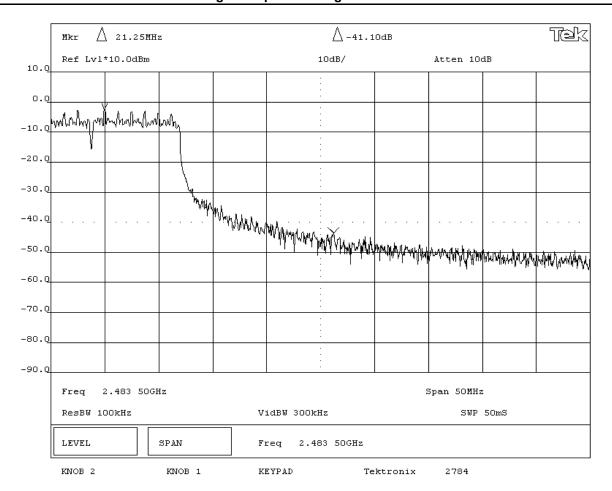
EMISSIONS DATA SHEET					
EUT: 802MIG2			Work Order:	INMC0081	
Serial Number: C1			Date:	06/25/03	
Customer: Intermec Corporation			Temperature:	77 degrees F	
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:		
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD None REQUIREMENTS	modulation scheme.				
Maximum level of any spurious emission at the edge	of the authorized band is 20 dB dow	n from the fundamental			
RESULTS		AMPLITUDE			
Pass		-44.1 dB			
Tested By:					
DESCRIPTION OF TEST					
Ba	nd Edge Compliance	e - High Channel - 6 Mbit			


INMC0071 35/139

NORTHWEST EMC	EMISSIONS [DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
AMPLE CALCULATIONS				
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(c) DEVIATIONS FROM TEST STANDARD NONE REQUIREMENTS	j) modulation scheme.			
Maximum level of any spurious emission at the ed	ge of the authorized band is 20 dB dow	n from the fundamental		
RESULTS		AMPLITUDE		
Pass	-34.3 dB			
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
Band Edge Compliance - Low Channel - 36 Mbit				


INMC0071 36/139

NORTHWEST	_	MICOLONICE	SATA OLI			
EMC	E	MISSIONS [JATA SH	EEI		Rev BETA 01/30/01
EUT:	802MIG2				Work Ord	er: INMC0081
Serial Number:	C1				Dat	e: 06/25/03
Customer:	Intermec Corporation				Temperatui	e: 77 degrees F
Attendees:	C.D. White			Greg Kiemel		y: 38% RH
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Si	e: EV06
TEST SPECIFICATION	S					
Specification:	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Ye	ır: 1992
SAMPLE CALCULATION	DNS					
COMMENTS						
Tested in CK-30 Handl	neld Scanner					
EUT OPERATING MOD	ES					
Modulated by PRBS at	indicated data rate, 802.11(g) modulat	ion scheme.				
DEVIATIONS FROM TE	EST STANDARD					
None						
REQUIREMENTS						
Maximum level of any	spurious emission at the edge of the a	uthorized band is 20 dB down	from the fundamental		•	•
RESULTS			AMPLITUDE			
Pass	-41.6 dB					
SIGNATURE						
Tested By:						
DESCRIPTION OF TES	т					
	Band Ed	dge Compliance	- High Chanr	nel - 36 Mbit		


INMC0071 37/139

Rev BETA Rev BETA							
EMC		EMISSIONS I	DATA SHEET		Rev BETA 01/30/01		
EUT:	802MIG2			Work Order:	INMC0081		
Serial Number:	C1	Date:	06/25/03				
Customer:	Intermec Corporation			Temperature:	77 degrees F		
Attendees:	C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.:	N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATION	S						
	47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
SAMPLE CALCULATION	ONS						
COMMENTS							
Tested in CK-30 Hand							
EUT OPERATING MOD							
	t indicated data rate, 802.11(g) mod	dulation scheme.					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
	spurious emission at the edge of	the authorized band is 20 dB dow					
RESULTS		·	AMPLITUDE				
Pass			-32.8 dB				
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	ST						
	Band Edge Compliance - Low Channel - 54 Mbit						

INMC0071 38/139

NORTHWEST		EMISSIONS I	DATA SH	FFT		Rev BETA	
EMC		Limitodiono i				01/30/01	
EUT:	802MIG2				Work O	rder: INMC0081	
Serial Number:	C1					Date: 06/25/03	
Customer:	Intermec Corporation				Tempera	ture: 77 degrees F	
Attendees:				Greg Kiemel		idity: 38% RH	
Customer Ref. No.:			Power:	DC from Host Unit	Job	Site: EV06	
TEST SPECIFICATION							
	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4	Year: 1992	
SAMPLE CALCULATION	ONS						
COMMENTS	held Scanner						
Tested in CK-30 Hand	held Scanner						
EUT OPERATING MOD							
	t indicated data rate, 802.11(g) mod	Iulation scheme.					
DEVIATIONS FROM TI	EST STANDARD						
None							
REQUIREMENTS							
-	spurious emission at the edge of t			I			
RESULTS			AMPLITUDE				
Pass			-41.1 dB				
Tested By:							
DESCRIPTION OF TES							
	Band Edge Compliance - High Channel - 54 Mbit						

INMC0071 39/139

Spurious RF Conducted Emissions

Revision 3/12/03

Justification

Maximum

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low
Operating Modes Investigated:
802.11(b)
802.11(g)
Data Rates Investigated:
6 Mbit
11 Mbit
36 Mbit
54 Mbit
Output Power Setting(s) Investigated:
· · · · · · · · · · · · · · · · · · ·

Power Input Settings Investigated:
Battery

Frequency Range In	vestigated		
Start Frequency	0 MHz	Stop Frequency	25 GHz

Software\Firmware	Applied During Test		
Exercise software	FccTest.exe	Version	1/1/1601
Description			

The system was tested using special software developed to test all functions of the device during the test. The software allowed the selection of transmit channel and data rate. These were varied to produce the highest level of emissions. The OS of the host device was Ver. 0.00.00.0072

INMC0071 40/139

Spurious RF Conducted Emissions

Revision 3/12/03

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C1
Hand Held Scanner (Host for Radio)	Intermec	CK30	C1

Cables

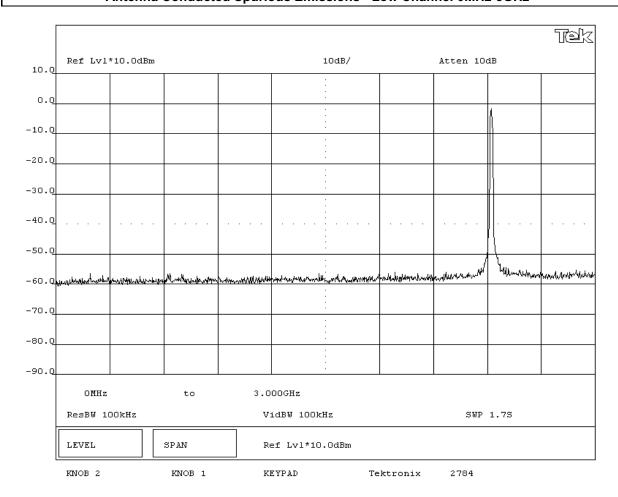
None. No cables were attached to EUT

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

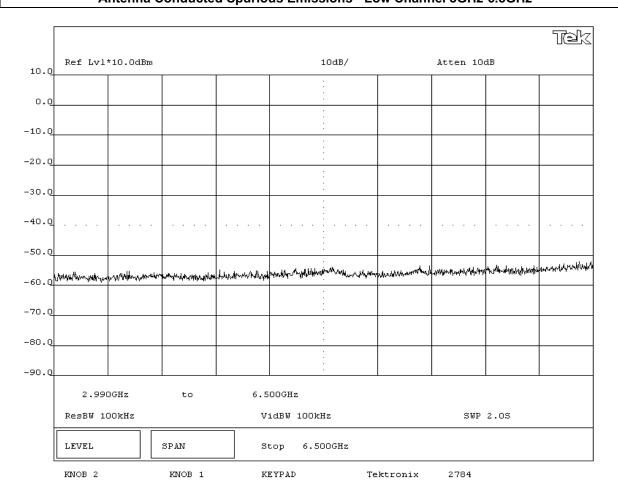
Test Description

Requirement: Per 47 CFR 15.247(c), in any 100 kHz bandwidth outside the authorized band, the maximum level of radio frequency power must be at least 20dB down from the highest emission level within the authorized band. The measurement is made with the spectrum analyzer's resolution bandwidth set to 100 kHz, and the video bandwidth set to greater than or equal to the resolution bandwidth.

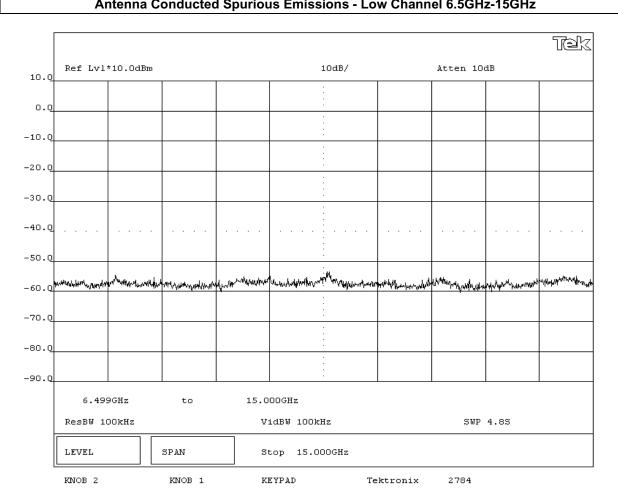

Configuration: The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

Completed by:

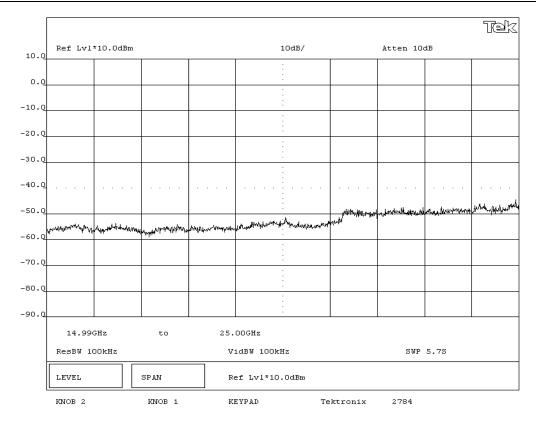
J. K.P


INMC0071 41/139

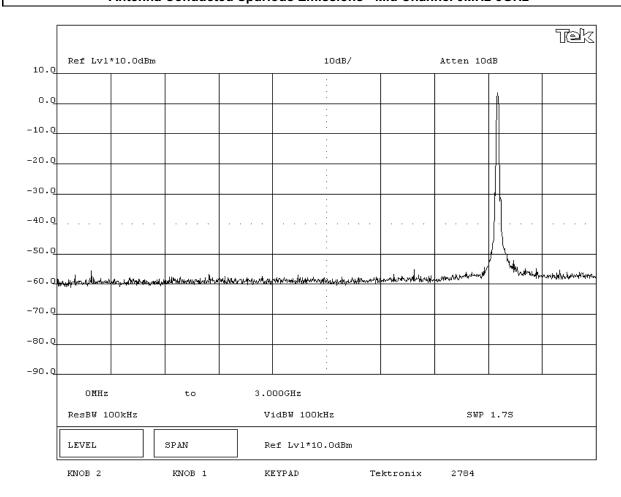
EMC EMISSIONS DATA SHEET							
EUT: 802MIG2				Work Order:	INMC0071		
Serial Number: C1				Date:	06/25/03		
Customer: Intermec Corporation				Temperature:	77 degrees F		
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate, 802.11(b)	modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None REQUIREMENTS							
Maximum level of any spurious emission outside of t	he authorized hand is 20 dB down fr	om the fundamental					
RESULTS	ne danonzea bana 13 zo ab down n	om the fundamental					
Pass SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
Antenna Con	Antenna Conducted Spurious Emissions - Low Channel 0MHz-3GHz						


INMC0071 42/139

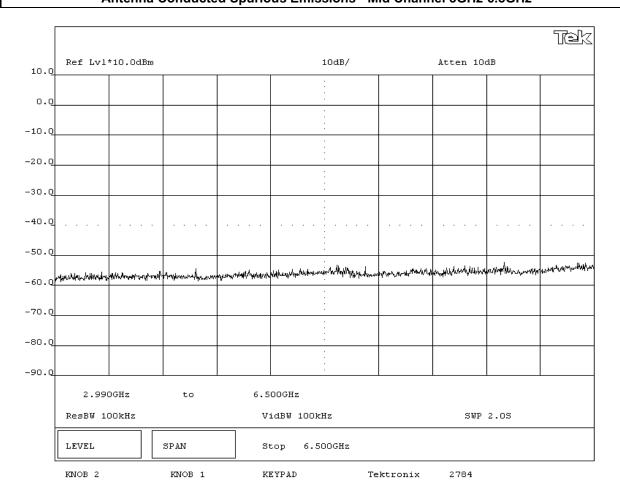
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0071			
Serial Number: C1	Date:	06/25/03					
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS		<u>, </u>					
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS Tested in CK-30 Handheld Scanner							
COMMENTS							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate, 802.11(b)	modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside of t	he authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
Antenna Cond	ucted Spurious Emis	ssions - Low Channel 3GF	lz-6.5GHz	_			


INMC0071 43/139

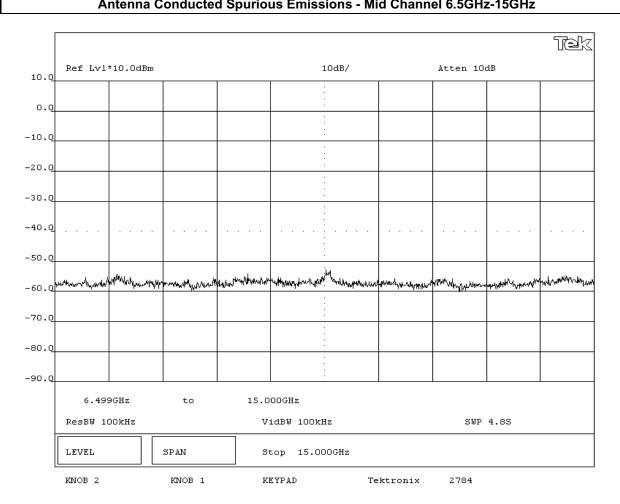
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0071			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate, 802.11(b) modulation scheme						
DEVIATIONS FROM TEST STANDARD	,						
None							
REQUIREMENTS							
Maximum level of any spurious emission outside of	the authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
Antenna Conducted Spurious Emissions - Low Channel 6.5GHz-15GHz							


INMC0071 44/139

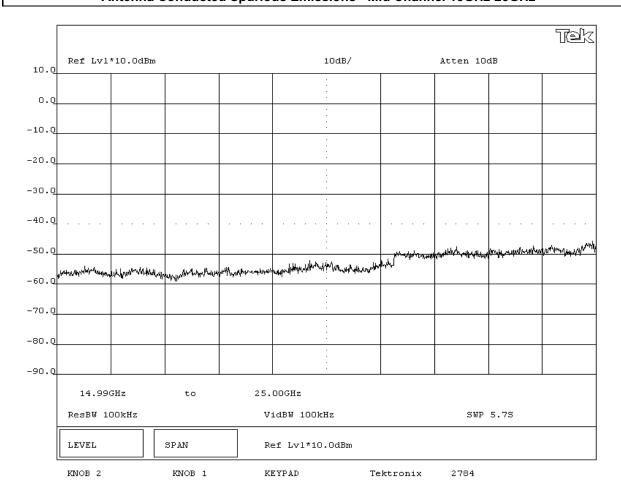
NORTHWEST EMC	EMISSIONS	DATA SHE	ΞET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0071
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation					77 degrees F
Attendees: C.D. White		Tested by: 0	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: D	OC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: F	CC 97-114, ANSI C63.	4 Year:	1992
COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at maximum data rate, 802.11(b) m DEVIATIONS FROM TEST STANDARD	odulation scheme				
None REQUIREMENTS					
Maximum level of any spurious emission outside of the	authorized band is 20 dB down fro	m the fundamental			
RESULTS					
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Condu	cted Spurious Emis	sions - Low C	hannel 15GI	Hz - 25GHz	-


INMC0071 45/139

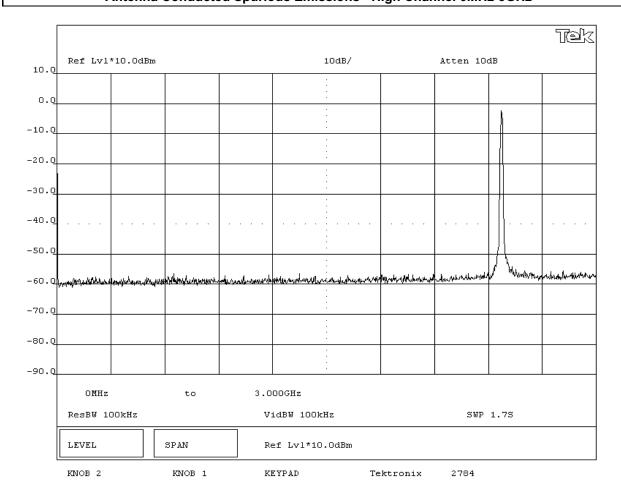
EMC EMISSIONS DATA SHEET Rev E						
EUT: 802MIG2				Work Order:	INMC0071	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992	
SAMPLE CALCULATIONS						
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at maximum data rate, 802.11(I	o) modulation scheme					
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS						
Maximum level of any spurious emission outside o	f the authorized band is 20 dB down fr	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Co	nducted Spurious Em	issions - Mid	Channel 0M	Hz-3GHz	<u> </u>	


INMC0071 46/139

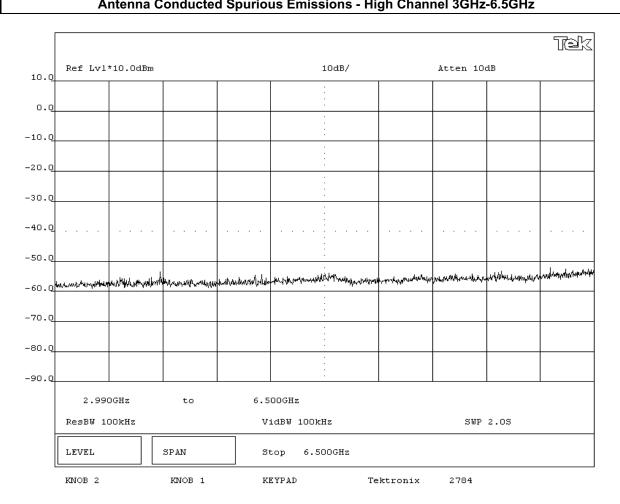
EMC EMISSIONS DATA SHEET Rev BETA 01/30001						
EUT: 802MIG2				Work Order:	INMC0071	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at maximum data rate, 802.11(b) mod	dulation scheme					
DEVIATIONS FROM TEST STANDARD						
None REQUIREMENTS						
REQUIREMENTS Maximum level of any spurious emission outside of the a	outhorized hand is 20 dP down fr	om the fundamental				
RESULTS	iddionized band is 20 db down ii	om the fundamental				
Pass		_				
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Condu	cted Spurious Emi	ssions - Mid	Channel 3GH	z-6.5GHz		


INMC0071 47/139

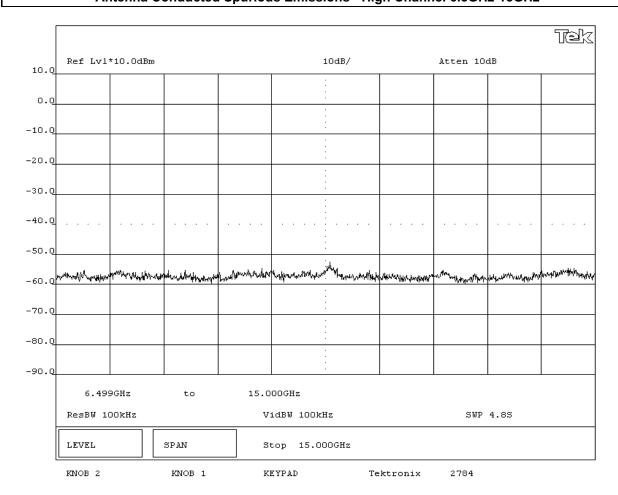
EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0071			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate, 802.11(o) modulation scheme						
DEVIATIONS FROM TEST STANDARD	-,						
None							
REQUIREMENTS							
Maximum level of any spurious emission outside o	f the authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST	duated Spurious Emis	ssions - Mid Channel 6.5G	Uz 15CUz				


INMC0071 48/139

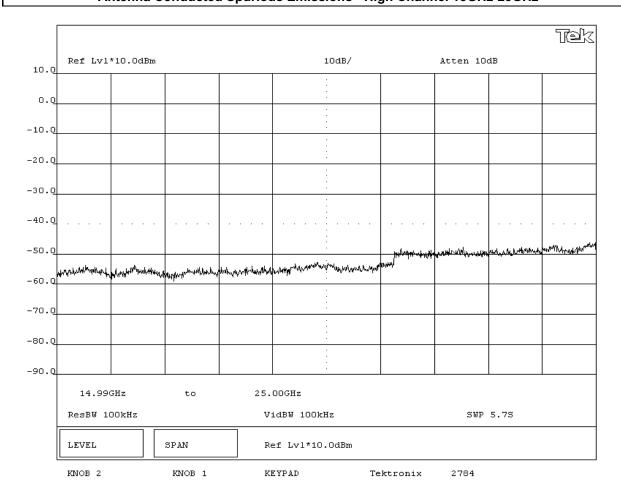
EMC EMISSIONS DATA SHEET						
EUT: 802MIG2				Work Order:	INMC0071	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
SAMPLE CALCULATIONS						
Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at maximum data rate, 802.11(I DEVIATIONS FROM TEST STANDARD None REQUIREMENTS Maximum level of any spurious emission outside o	,	om the fundamental				
RESULTS						
Pass		<u> </u>				
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Con	ducted Spurious Emi	ssions - Mid (Channel 15G	Hz-25GHz		


INMC0071 49/139

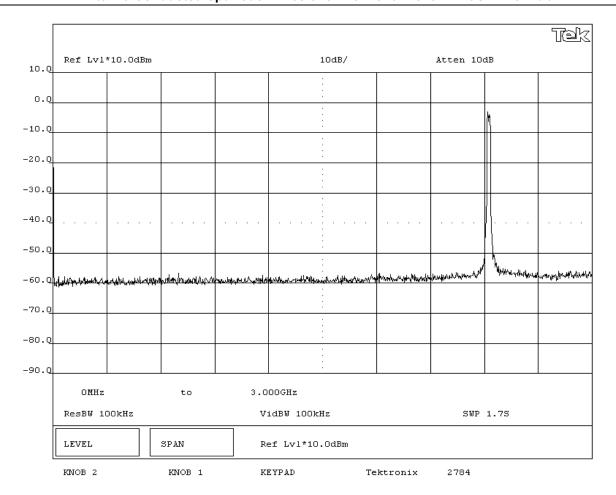
EMC EMISSIONS DATA SHEET Rev BE 01/30/C						
EUT: 802MIG2				Work Order:	INMC0071	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at maximum data rate, 802.11(b	modulation scheme					
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS Maximum level of any spurious emission outside of	the authorized hand is 20 dB down fr	om the fundamental				
RESULTS	the authorized band is 20 db down in	on the fundamental				
Pass SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Con	ducted Spurious Em	issions - Higl	n Channel 0M	lHz-3GHz		


INMC0071 50/139

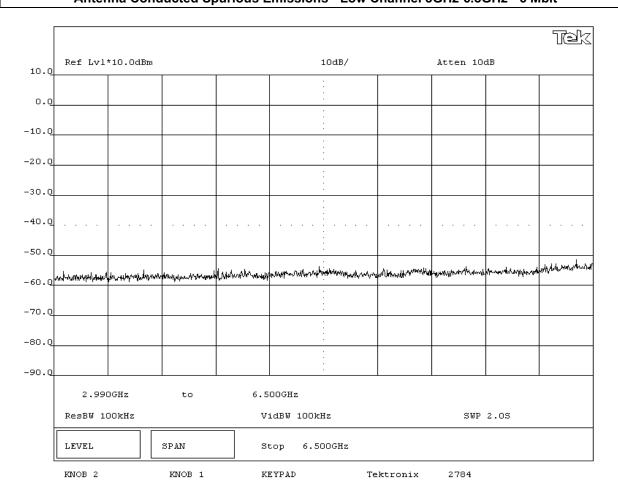
NORTHWEST EMC	EMISSIONS I	DATA SHEET		Rev BETA 01/30/01
	802MIG2		Work Order:	
Serial Number:	C1		Date:	06/25/03
Customer:	Intermec Corporation		Temperature:	77 degrees F
Attendees:	C.D. White	Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.:	N/A	Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATION	IS .			
Specification:	47 CFR 15.247(c) Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
SAMPLE CALCULATION	ONS			
COMMENTS Tested in CK-30 Hand EUT OPERATING MOI Modulated by PRBS a				
DEVIATIONS FROM T				
None				
REQUIREMENTS				
Maximum level of any	spurious emission outside of the authorized band is 20 dB down from	om the fundamental		
RESULTS				
Pass				
SIGNATURE				
Tested By:	ADU.K.P			
DESCRIPTION OF TES	ST .			
	Antenna Conducted Spurious Emis	sions - High Channel 3GI	1z-6 5GHz	


INMC0071 51/139

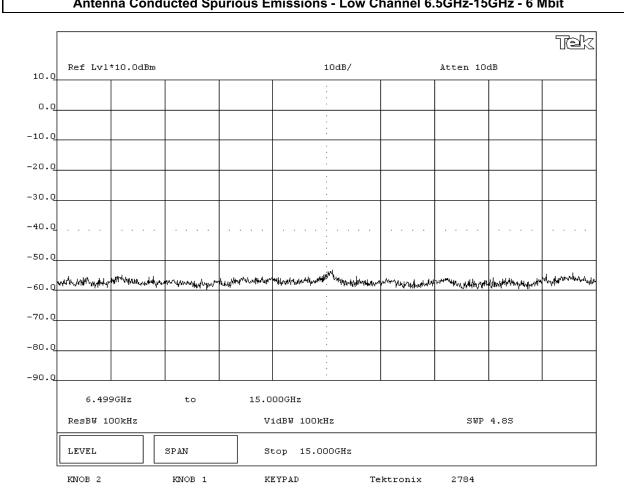
NORTHWEST EMC	EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0071
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation				Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992
COMMENTS					
Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
Modulated by PRBS at maximum data rate, 802.11(b) mod	dulation scheme				
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum level of any spurious emission outside of the a	uthorized band is 20 dB down fr	om the fundamental			
RESULTS					
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Conduc	ted Spurious Emis	sions - High	Channel 6.5G	Hz-15GHz	


INMC0071 52/139

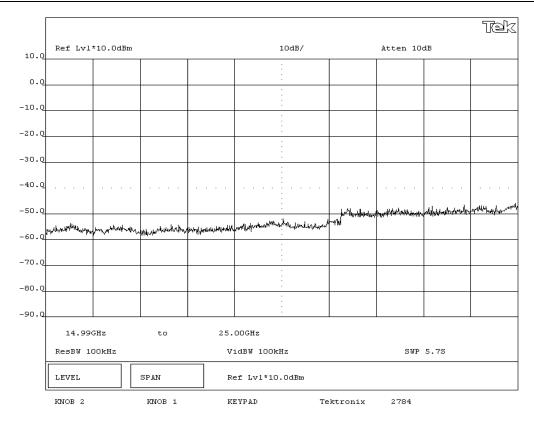
EMISSIONS DATA SHEET REV. 01/36						
EUT: 802MIG2				Work Order:	INMC0071	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES	40)					
Modulated by PRBS at maximum data rate, 802.1	1(b) modulation scheme					
DEVIATIONS FROM TEST STANDARD None						
REQUIREMENTS						
Maximum level of any spurious emission outside	e of the authorized band is 20 dB down fr	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:	7					
DESCRIPTION OF TEST						
Antenna Cor	nducted Spurious Emis	ssions - High	Channel 15G	Hz-25GHz		


INMC0071 53/139

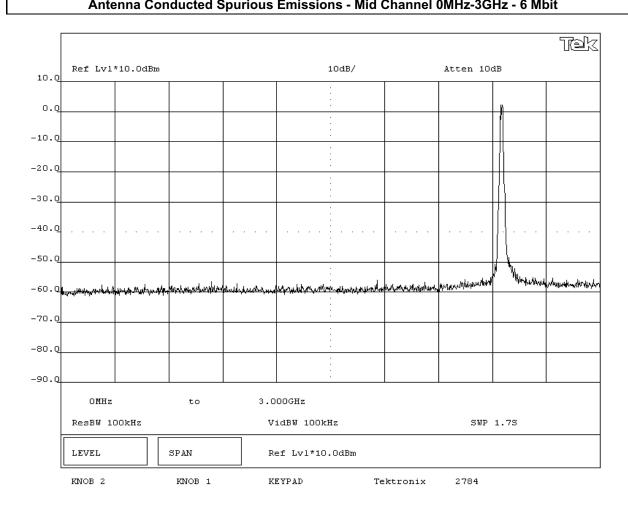
NORTHWEST EMC	EMISSIONS D	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
COMMENTS				
ested in CK-30 Handheld Scanner				
EUT OPERATING MODES				
Modulated by PRBS at indicated data rate, 802.11(c	i) modulation scheme			
DEVIATIONS FROM TEST STANDARD				
None				
REQUIREMENTS				
Maximum level of any spurious emission outside o	f the authorized band is 20 dB down fro	m the fundamental		
RESULTS				
Pass				
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
Antenna Conduc	cted Spurious Emissio	ns - Low Channel 0MHz-3	BGHz - 6 Mbit	t


INMC0071 54/139

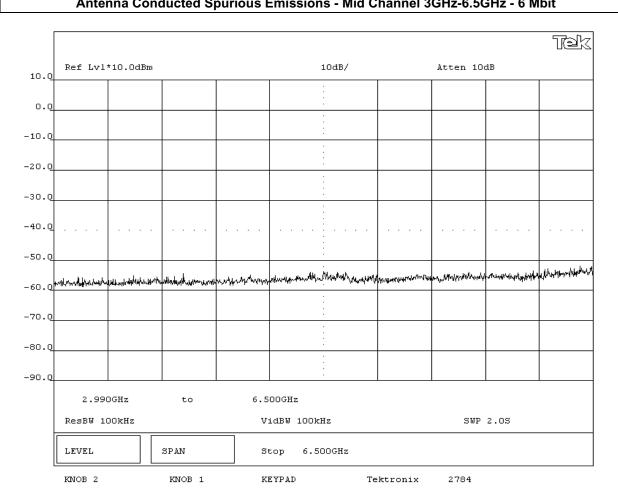
REVIEW EMISSIONS DATA SHEET REV BE 01/30/K						
EUT: 802MIG2			Work Order:	INMC0081		
Serial Number: C1			Date:	06/25/03		
Customer: Intermec Corporation			Temperature:	77 degrees F		
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at indicated data rate, 802.11(g) m	odulation scheme					
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS						
Maximum level of any spurious emission outside of th	e authorized band is 20 dB down fr	om the fundamental				
RESULTS	·	<u>.</u>				
Pass SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
	d Spurious Emissio	ns - Low Channel 3GHz-6.	5GHz - 6 Mb	i+		


INMC0071 55/139

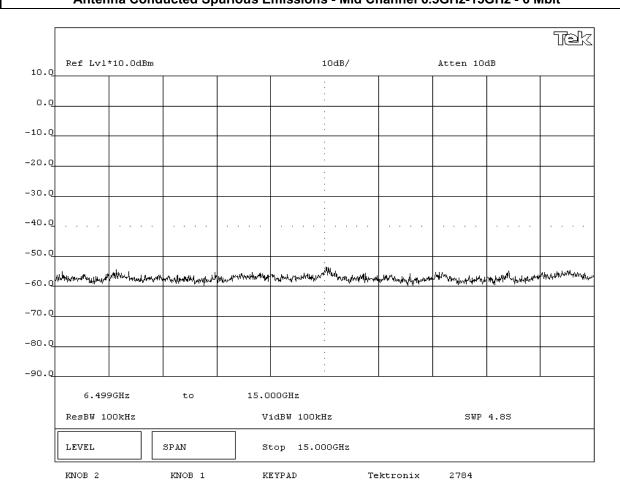
EMC EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS Tested in CK-30 Handheld Scanner							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at indicated data rate, 802.11	g) modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside	of the authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST	ted Causiana Emissian	ns - Low Channel 6.5GHz-	15CU- CM	.:4			


INMC0071 56/139

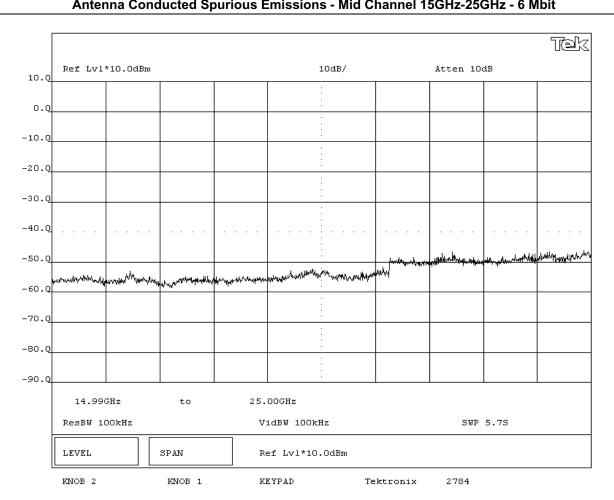
NORTHWEST EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT:	802MIG2				Work Order:	INMC0081
Serial Number:	C1				Date:	06/25/03
Customer:	Intermec Corporation				Temperature:	77 degrees F
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATION	S					
Specification:	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	4 Year:	1992
DEVIATIONS FROM TE	DES i indicated data rate, 802.11(g) mo	dulation scheme				
None REQUIREMENTS						
	anusiana amianian antaida af tha	authorized band is 20 dB down fro	m the fundamental			
RESULTS	spurious emission outside of the	authorized band is 20 dB down iro	in the fundamental			
Pass SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TES	T					
	Antenna Conducted	d Spurious Emissio	ns - Low Cha	nnel 15GHz -	25GHz 6 Mb	oit


INMC0071 57/139

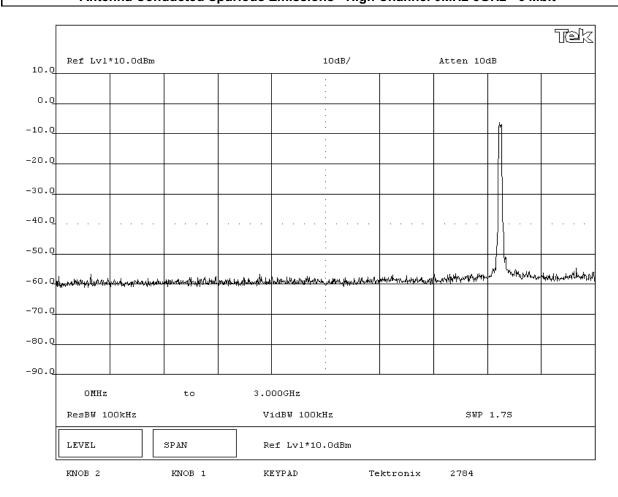
NORTHWEST	EMISSIONS [DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	4 Year:	1992
COMMENTS				
Tested in CK-30 Handheld Scanner				
EUT OPERATING MODES				
Modulated by PRBS at indicated data rate, 802.11(g	g) modulation scheme			
DEVIATIONS FROM TEST STANDARD				
None				
REQUIREMENTS				
Maximum level of any spurious emission outside o	the authorized band is 20 dB down fro	om the fundamental		
RESULTS				
Pass				
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
Antenna Condu	cted Spurious Emissic	ons - Mid Channel 0MHz-3	GHz - 6 Mbit	


INMC0071 58/139

EMISSIONS DATA SHEET						
EUT: 802MIG2			Work Order:	INMC0081		
Serial Number: C1			Date:	06/25/03		
Customer: Intermec Corporation			Temperature:	77 degrees F		
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS						
Tested in CK-30 Handheld Scanner EUT OPERATING MODES						
BOT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(a) modulation cohomo					
DEVIATIONS FROM TEST STANDARD	g) modulation scheme					
None						
REQUIREMENTS						
Maximum level of any spurious emission outside	of the authorized band is 20 dB down fr	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST	cted Spurious Emissio	ons - Mid Channel 3GHz-6.	5GHz - 6 Mb	it		


INMC0071 59/139

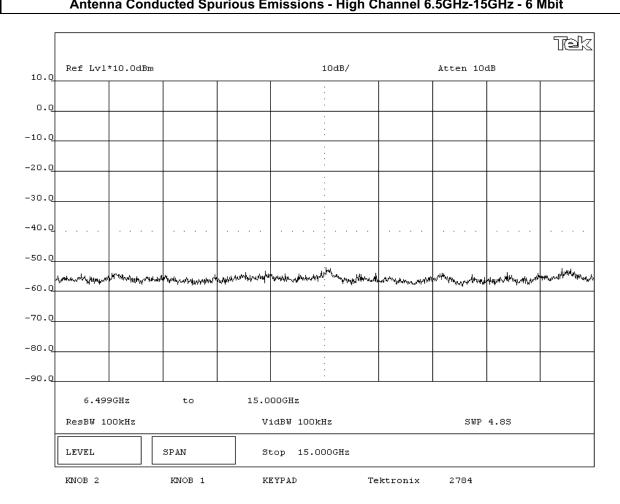
EMISSIONS DATA SHEET						
EUT: 802MIG2			Work Order:	INMC0081		
Serial Number: C1			Date:	06/25/03		
Customer: Intermec Corporation			Temperature:	77 degrees F		
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
BOT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) modulation cohomo					
DEVIATIONS FROM TEST STANDARD) inodulation scheme					
None						
REQUIREMENTS						
Maximum level of any spurious emission outside of	the authorized band is 20 dB down fr	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST	ad Spurious Emission	ns - Mid Channel 6.5GHz-1	15GHz - 6 Mh	ait .		


INMC0071 60/139

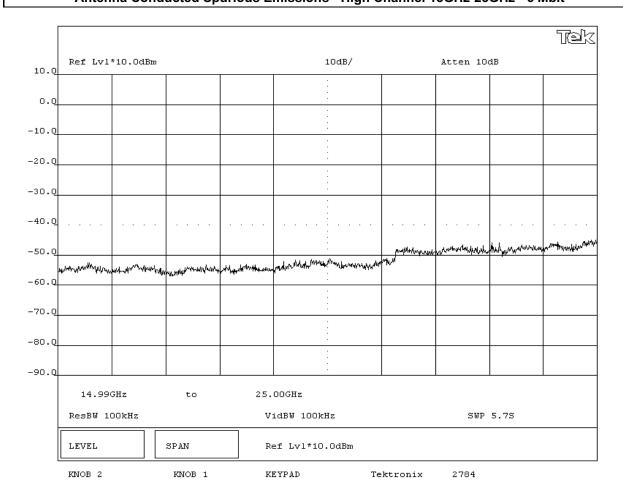
NORTHWEST		EMICCIONC	DATA CHE	r T		
EMC		EMISSIONS I	JATA SHE	El		Rev BETA 01/30/01
EUT:	802MIG2				Work C	Order: INMC0081
Serial Number:	C1					Date: 06/25/03
Customer:	Intermec Corporation				Tempera	ature: 77 degrees F
Attendees:	C.D. White		Tested by: Gre	eg Kiemel		idity: 38% RH
Customer Ref. No.:			Power: DC	from Host Unit	Job	Site: EV06
TEST SPECIFICATIONS						
	47 CFR 15.247(c)	Year: Most Current	Method: FC0	C 97-114, ANSI C63.	4	Year: 1992
SAMPLE CALCULATION	DNS	·				
COMMENTS						
Tested in CK-30 Handh						
EUT OPERATING MOD						
	indicated data rate, 802.11(g) mo	dulation scheme				
DEVIATIONS FROM TE	ST STANDARD					
None						
REQUIREMENTS						
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Conducted Spurious Emissions - Mid Channel 15GHz-25GHz - 6 Mbit						


INMC0071 61/139

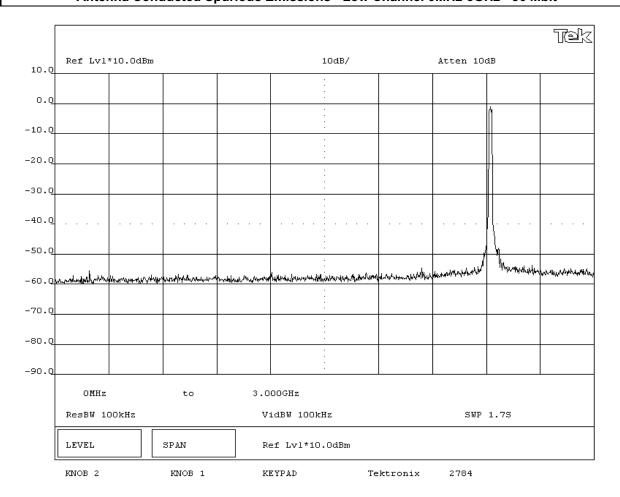
NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63.	4 Year:	1992
SAMPLE CALCULATIONS				
COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD	modulation scheme			
None				
REQUIREMENTS Maximum level of any spurious emission outside of	the authorized band is 20 dB days for	om the fundamental		
	the authorized band is 20 dB down in	om the fundamental		
RESULTS				
Pass				
SIGNATURE Tested By:				
DESCRIPTION OF TEST				
Antenna Conduc	ted Spurious Emission	ons - High Channel 0MHz-	3GHz - 6 Mbi	t


INMC0071 62/139

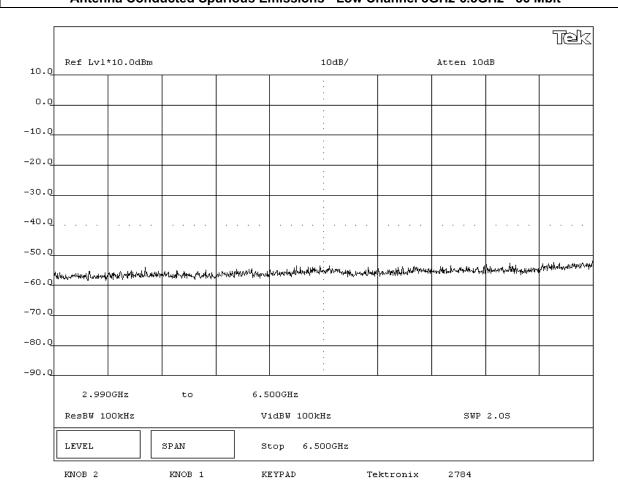
NORTHWEST EMC	EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0081
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation				Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992
COMMENTS					
COMMENTS					
Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
Modulated by PRBS at indicated data rate, 802.11(g) me	odulation scheme				
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum level of any spurious emission outside of the	e authorized band is 20 dB down fr	om the fundamental			
RESULTS					
Pass SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Conducted	Spurious Emissio	ns - High Cha	nnel 3GHz-6	.5GHz - 6 Mb	it


INMC0071 63/139

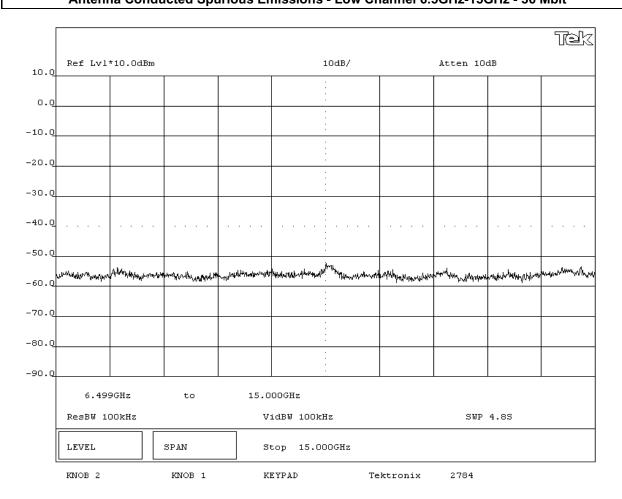
EMC EMISSIONS DATA SHEET						
EUT: 802MIG2			Work Order:	INMC0081		
Serial Number: C1			Date:	06/25/03		
Customer: Intermec Corporation			Temperature:	77 degrees F		
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme					
DEVIATIONS FROM TEST STANDARD	<i>-</i> ,					
None						
REQUIREMENTS						
Maximum level of any spurious emission outside o	of the authorized band is 20 dB down fr	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST	ad Spurious Emission	ns - High Channel 6.5GHz-	15CU- 6 MI	a i 4		


INMC0071 64/139

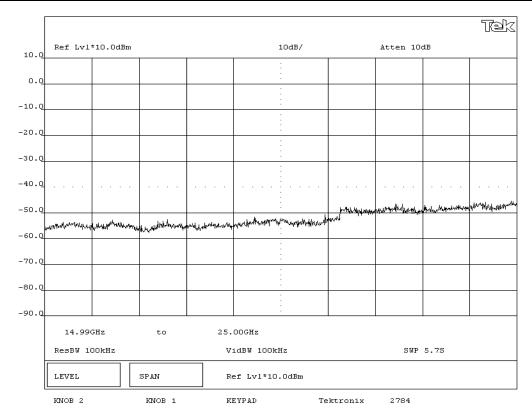
NORTHWEST EMC	EMISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/25/03
Customer: Intermec Corporation				77 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) DEVIATIONS FROM TEST STANDARD	modulation scheme			
DEVIATIONS FROM TEST STANDARD None				
REQUIREMENTS				
Maximum level of any spurious emission outside of	the authorized band is 20 dB down fr	om the fundamental		
RESULTS				
Pass				
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
	ed Spurious Emission	ns - High Channel 15GHz-2	25GHz - 6 Mb	nit


INMC0071 65/139

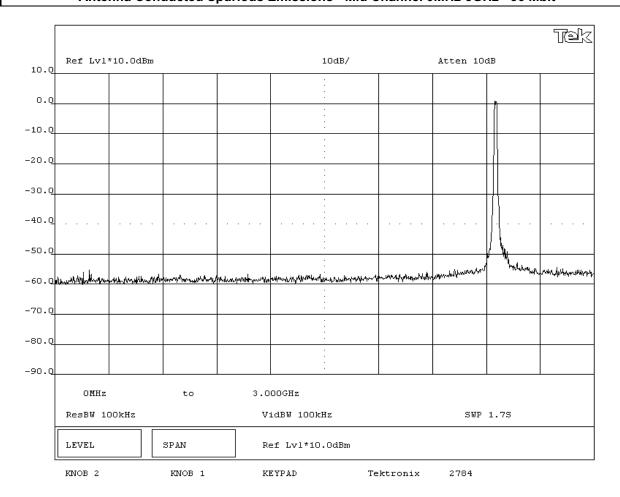
NORTHWEST EMC	EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0081
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation				Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
COMMENTS					
Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
Modulated by PRBS at indicated data rate, 802.11(g) i	modulation scheme				
DEVIATIONS FROM TEST STANDARD					
None					
REQUIREMENTS					
Maximum level of any spurious emission outside of t	he authorized band is 20 dB down fr	om the fundamental			
RESULTS					
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Conduct	ed Spurious Emissio	ns - Low Cha	annel 0MHz-3	GHz - 36 Mbi	it


INMC0071 66/139

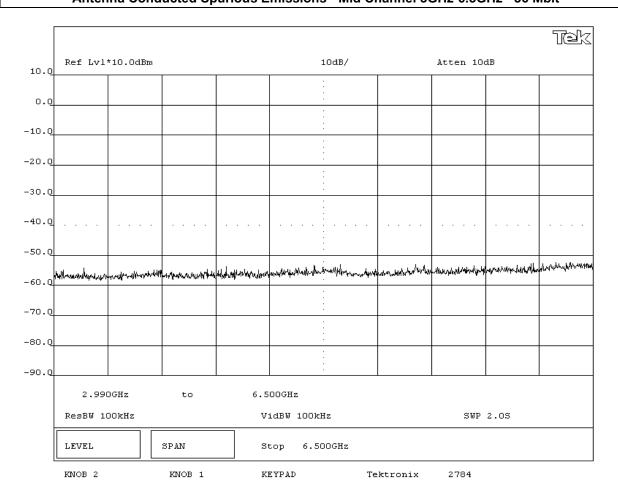
EMC EMISSIONS DATA SHEET							
EUT: 802MIG2	Work Order:	INMC0081					
Serial Number: C1			Date:	06/25/03			
Customer: Intermec Corporation				77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at indicated data rate, 802.11(g) r	nodulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside of t	ne authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
	d Spurious Emission	ns - Low Channel 3GHz-6.	5GHz - 36 Mb	oit			


INMC0071 67/139

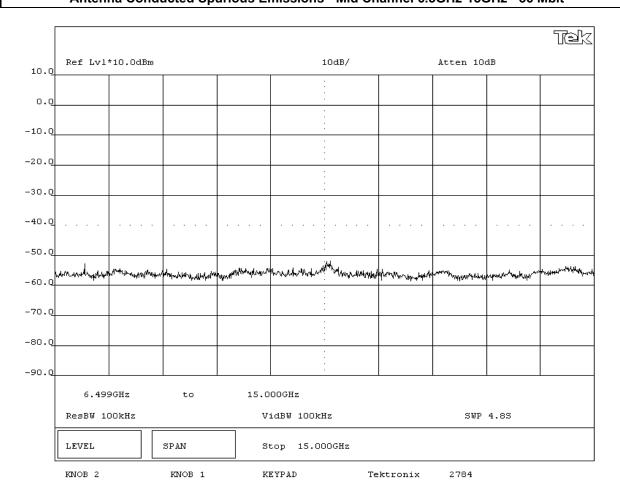
EMISSIONS DATA SHEET						
EUT: 802MIG2			Work Order:	INMC0081		
Serial Number: C1			Date:	06/25/03		
Customer: Intermec Corporation			Temperature:	77 degrees F		
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme					
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS Maximum level of any spurious emission outside o	f the authorized band is 20 dP down fr	om the fundamental				
RESULTS	the admonized band is 20 dB down in	on the fundamental				
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST	nd Spurious Emission	s - Low Channel 6.5GHz-1	5GHz - 36 M	hit		


INMC0071 68/139

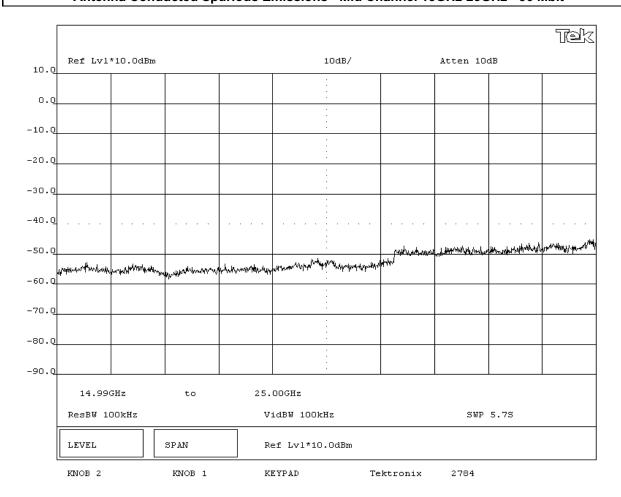
IORTHWEST EMISSIONS DATA SHEET REVENUE (1930)						
EUT:	802MIG2				Work Order:	INMC0081
Serial Number:	C1				Date:	06/25/03
Customer:	Intermec Corporation				Temperature:	77 degrees F
Attendees:	C.D. White Tested by: Greg K			Greg Kiemel	Humidity:	38% RH
Customer Ref. No.:	: N/A Power: D			DC from Host Unit	Job Site:	EV06
TEST SPECIFICATION	S					
Specification:	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	4 Year:	1992
DEVIATIONS FROM TE	DES indicated data rate, 802.11(g) mo	dulation scheme				
None						
REQUIREMENTS		and a single based in 00 dB days for	and the femaless satel			
Maximum level of any i	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental			
Pass SIGNATURE						
Tested By:	ADU.K.P					
DESCRIPTION OF TES	Т					
Antenna Conducted Spurious Emissions - Low Channel 15GHz - 25GHz - 36 Mbit						


INMC0071 69/139

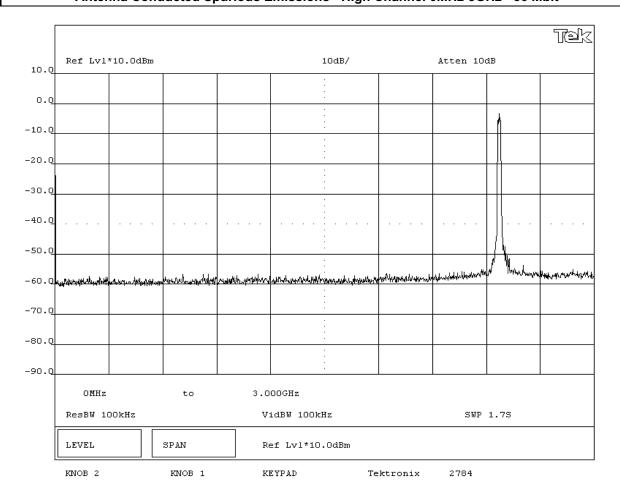
EMISSIONS DATA SHEET						
EUT: 802MIG2				Work Order:	INMC0081	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation				Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH	
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at indicated data rate, 802.11(g)	modulation scheme					
DEVIATIONS FROM TEST STANDARD None						
NONE REQUIREMENTS						
REQUIREMENTS Maximum level of any spurious emission outside of	the authorized band is 20 dB down fr	om the fundamental				
RESULTS	the authorized band is 20 db down in	om the fundamental				
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz - 36 Mbit						


INMC0071 70/139

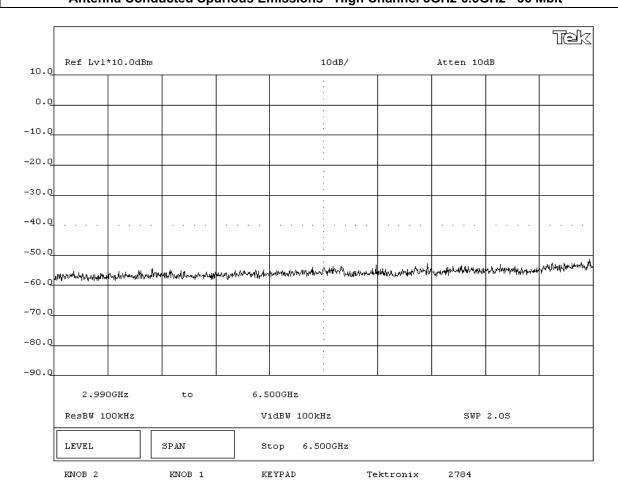
REMISSIONS DATA SHEET REV BE 19/30/1750/1750/1750/1750/1750/1750/1750/175								
EUT: 802MIG2	Work Order:	INMC0081						
Serial Number: C1	Date:	06/25/03						
Customer: Intermec Corporation			Temperature:	77 degrees F				
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:					
Customer Ref. No.: N/A	Customer Ref. No.: N/A Power: DC from Host Unit			EV06				
TEST SPECIFICATIONS								
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992				
COMMENTS								
COMMENTS								
Tested in CK-30 Handheld Scanner								
EUT OPERATING MODES								
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme								
DEVIATIONS FROM TEST STANDARD								
None								
REQUIREMENTS								
Maximum level of any spurious emission outside of t	he authorized band is 20 dB down fr	om the fundamental						
RESULTS								
Pass								
SIGNATURE								
Tested By:								
DESCRIPTION OF TEST								
Antenna Conducted Spurious Emissions - Mid Channel 3GHz-6.5GHz - 36 Mbit								


INMC0071 71/139

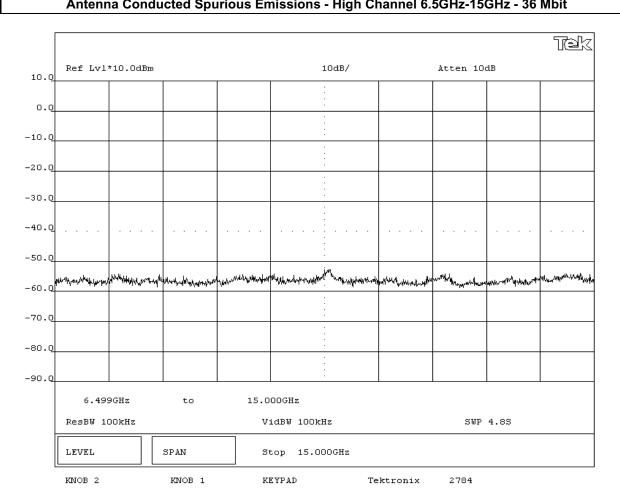
EMC EMISSIONS DATA SHEET Rev BETA 01/20/01							
EUT: 802MIG2				Work Order:	INMC0081		
Serial Number: C1				Date:	06/25/03		
Customer: Intermec Corporation				Temperature:	77 degrees F		
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme							
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside of th	e authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
Antenna Conducted Spurious Emissions - Mid Channel 6.5GHz-15GHz - 36 Mbit							


INMC0071 72/139

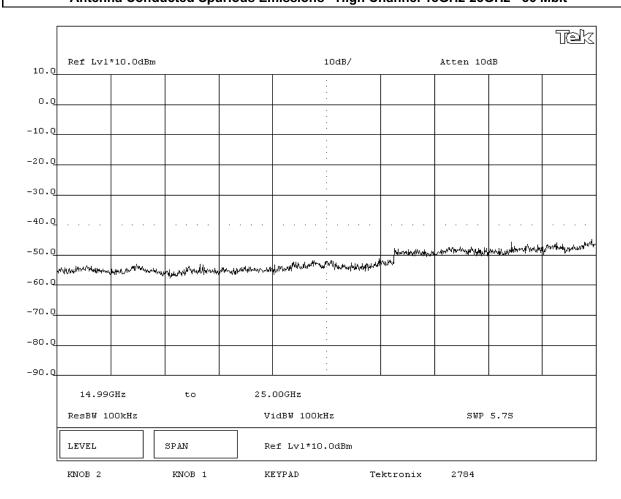
EMC EMISSIONS DATA SHEET								
EUT: 802MIG2				Work Order:	INMC0081			
Serial Number: C1				Date:	06/25/03			
Customer: Intermec Corporation				Temperature:	77 degrees F			
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH			
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS								
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992			
SAMPLE CALCULATIONS								
COMMENTS								
Tested in CK-30 Handheld Scanner								
EUT OPERATING MODES								
Modulated by PRBS at indicated data rate, 802.11(g	j) modulation scheme							
DEVIATIONS FROM TEST STANDARD								
None								
REQUIREMENTS	£45	and the foundamental						
Maximum level of any spurious emission outside o	t the authorized band is 20 dB down fr	om the fundamental						
RESULTS								
Pass								
SIGNATURE								
Tested By:								
DESCRIPTION OF TEST								
Antenna Conduct	ed Spurious Emissio	ns - Mid Chan	nel 15GHz-2	5GHz - 36 Mk	oit			


INMC0071 73/139

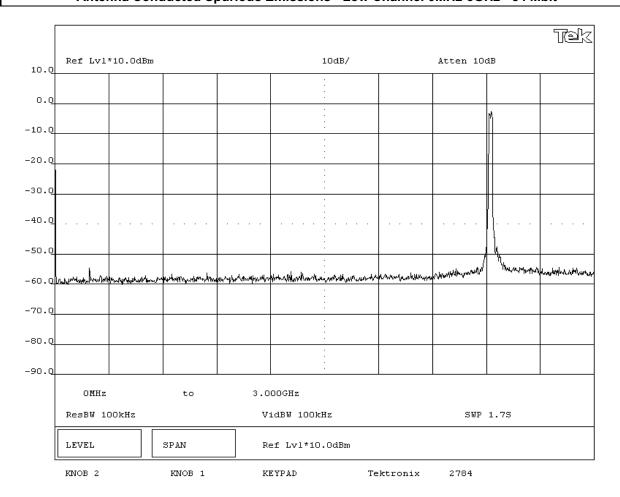
NORTHWEST EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01		
EUT:	802MIG2				Work Order:	INMC0081		
Serial Number:	C1				Date:	06/25/03		
Customer:	Intermec Corporation				Temperature:	77 degrees F		
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATION	S							
Specification:	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992		
SAMPLE CALCULATION	ONS							
COMMENTS								
Tested in CK-30 Hand	held Scanner							
EUT OPERATING MOD								
	t indicated data rate, 802.11(g) mod	dulation scheme						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
Tested By:								
DESCRIPTION OF TES	DESCRIPTION OF TEST							
-	Antenna Conducted Spurious Emissions - High Channel 0MHz-3GHz - 36 Mbit							


INMC0071 74/139

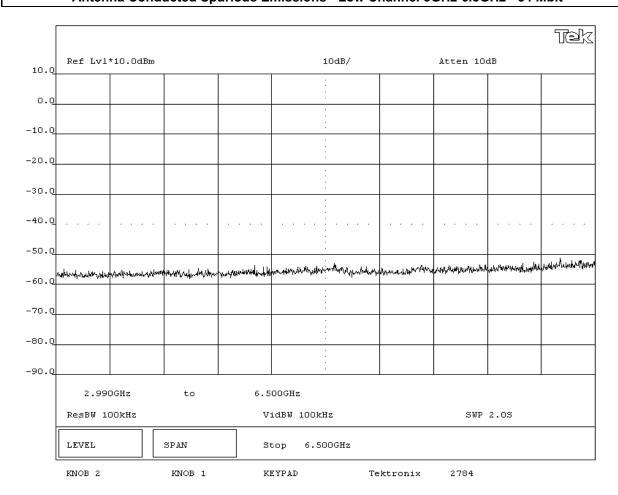
NORTHWEST EMC	EMISSIONS I	DATA SH	EET			Rev BETA 01/30/01	
	802MIG2			Wo	ork Order:	INMC0081	
Serial Number:	C1				Date:	06/25/03	
Customer:	Intermec Corporation			Tem	perature:	77 degrees F	
Attendees:	C.D. White	Tested by:	Greg Kiemel		Humidity:	38% RH	
Customer Ref. No.:	N/A	Power:	DC from Host Unit		Job Site:	EV06	
TEST SPECIFICATION							
	47 CFR 15.247(c) Year: Most Current	Method:	FCC 97-114, ANSI C63	.4	Year:	1992	
SAMPLE CALCULATION	ONS						
COMMENTS Tested in CK-30 Handl EUT OPERATING MOD Modulated by PRBS at DEVIATIONS FROM TO None	DES t indicated data rate, 802.11(g) modulation scheme						
REQUIREMENTS							
	spurious emission outside of the authorized band is 20 dB down from	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TES	ST						
Α	ntenna Conducted Spurious Emission	s - High Cha	nnel 3GHz-6.	5GHz -	36 MI	oit	


INMC0071 75/139

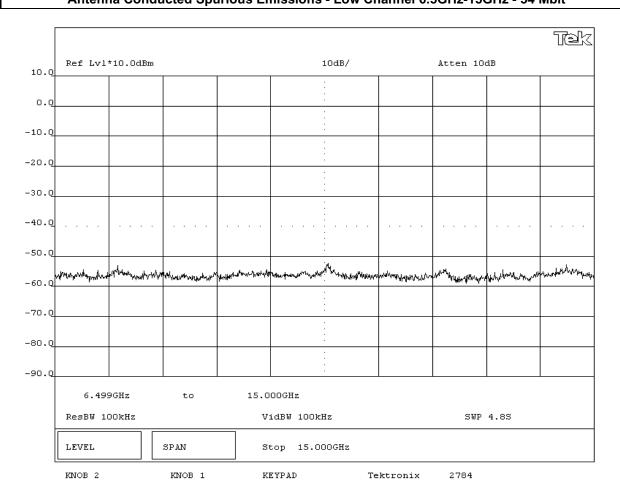
EMC EMISSIONS DATA SHEET									
EUT: 802MIG2 Work Order: INMO									
Serial Number: C1			Date:	06/25/03					
Customer: Intermec Corporation			Temperature:	77 degrees F					
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:						
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06					
TEST SPECIFICATIONS									
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992					
COMMENTS									
Tested in CK-30 Handheld Scanner									
EUT OPERATING MODES									
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme								
DEVIATIONS FROM TEST STANDARD									
None REQUIREMENTS									
REQUIREMENTS Maximum level of any spurious emission outside o	f the authorized hand is 20 dB down fr	om the fundamental							
RESULTS	i tile dationized band is 20 db down ii	on the fundamental							
Pass		_							
SIGNATURE									
Tested By:									
DESCRIPTION OF TEST		s - High Channel 6.5GHz-1	150U- 26 M	1-14					


INMC0071 76/139

EMISSIONS DATA SHEET									
EUT: 802MIG2			Work Order:	INMC0081					
Serial Number: C1			Date:	06/25/03					
Customer: Intermec Corporation			Temperature:	77 degrees F					
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:						
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06					
TEST SPECIFICATIONS									
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63.	.4 Year:	1992					
ested in CK-30 Handheld Scanner :UT OPERATING MODES flodulated by PRBS at indicated data rate, 802.11(g) modulation scheme								
DEVIATIONS FROM TEST STANDARD									
None									
REQUIREMENTS Maximum level of any spurious emission outside o	the authorized hand is 20 dB down fr	om the fundamental							
RESULTS	the authorized band is 20 db down in	on the fundamental							
Pass									
SIGNATURE									
Tested By:									
DESCRIPTION OF TEST									
	d Courieus Emissies	s - High Channel 15GHz-2	ECH 2C M	. 14					


INMC0071 77/139

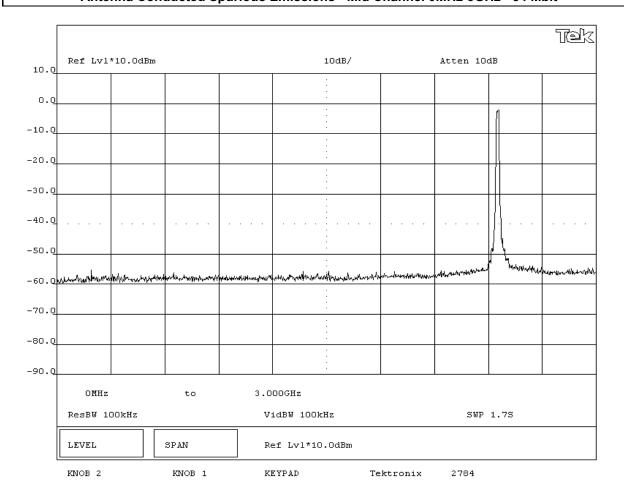
EMISSIONS DATA SHEET								
EUT: 802MIG2				Work Order:	INMC0081			
Serial Number: C1				Date:	06/25/03			
Customer: Intermec Corporation				Temperature:	77 degrees F			
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH			
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS								
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	.4 Year:	1992			
SAMPLE CALCULATIONS								
COMMENTS								
Tested in CK-30 Handheld Scanner								
EUT OPERATING MODES								
Modulated by PRBS at indicated data rate, 802.11(g)	modulation scheme							
DEVIATIONS FROM TEST STANDARD								
None								
REQUIREMENTS								
Maximum level of any spurious emission outside of	the authorized band is 20 dB down fr	om the fundamental						
RESULTS								
Pass								
SIGNATURE								
Tested By:								
DESCRIPTION OF TEST								
Antenna Conduct	ed Spurious Emission	ns - Low Cha	nnel 0MHz-3	GHz - 54 Mbi	it			


INMC0071 78/139

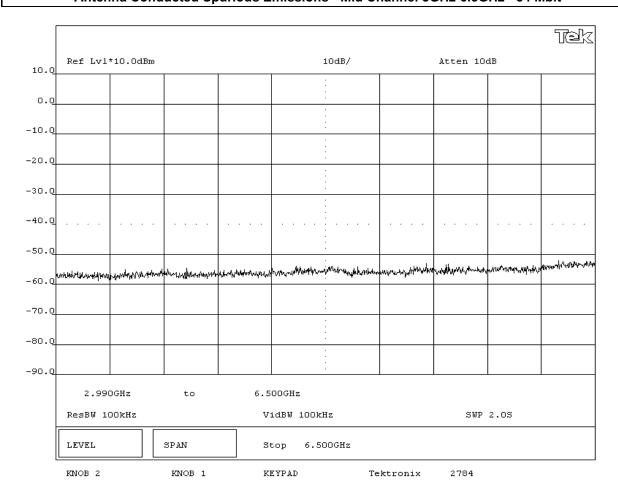
NORTHWEST EMC	EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01		
EUT: 802MIG2				Work Order:	INMC0081		
Serial Number: C1				Date:	06/25/03		
Customer: Intermec Corporation				Temperature:	77 degrees F		
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992		
COMMENTS Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) mod	Julation scheme						
DEVIATIONS FROM TEST STANDARD	idiation scheme						
None							
REQUIREMENTS							
Maximum level of any spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
Antenna Conducted	Spurious Emissior	is - Low Cha	nnel 3GHz-6.	5GHz - 54 Mb	oit		

INMC0071 79/139

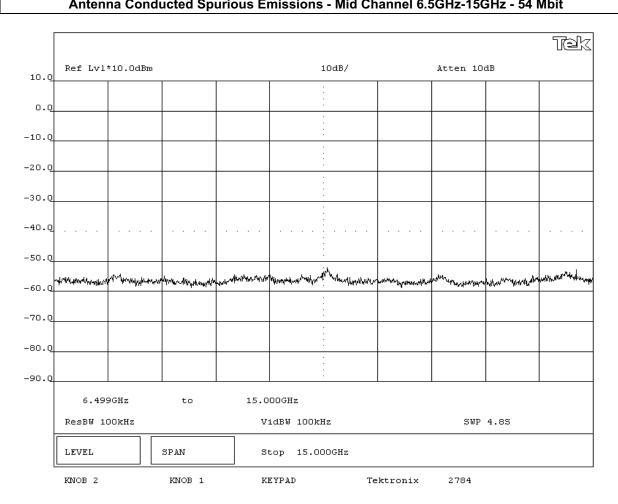
EMISSIONS DATA SHEET									
EUT: 802MIG2 Work Order: INI									
Serial Number: C1			Date:	06/25/03					
Customer: Intermec Corporation			Temperature:	77 degrees F					
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:						
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06					
TEST SPECIFICATIONS									
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992					
COMMENTS Tested in CK-30 Handheld Scanner									
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(c	A dul-ti								
DEVIATIONS FROM TEST STANDARD) modulation scheme								
None									
REQUIREMENTS									
Maximum level of any spurious emission outside o	f the authorized band is 20 dB down fr	om the fundamental							
RESULTS									
Pass									
SIGNATURE									
Tested By:									
DESCRIPTION OF TEST	od Spurious Emissis	s - Low Channel 6.5GHz-1	5CU- 54 M	hit					


INMC0071 80/139

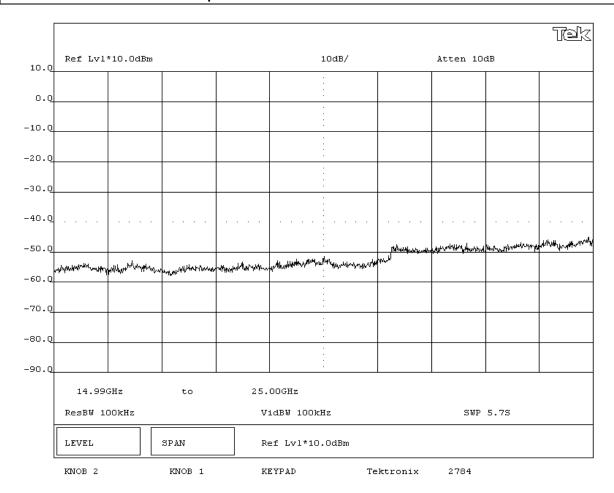
NORTHWEST EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT: 80	D2MIG2				Work Order:	INMC0081
Serial Number: C	1				Date:	06/25/03
Customer: In	termec Corporation				Temperature:	77 degrees F
Attendees: C.	.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N	/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS						
Specification: 47	7 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	4 Year:	1992
DEVIATIONS FROM TES	S ndicated data rate, 802.11(g) mod	dulation scheme				
None REQUIREMENTS						
		thi d h d i 20 dB d f	the femaless and a			
waximum level of any sp RESULTS	ourlous emission outside of the	authorized band is 20 dB down fro	m the fundamental			
Pass						
SIGNATURE Tested By:	ADU.KIP					
DESCRIPTION OF TEST						
An	tenna Conducted	Spurious Emission	s - Low Char	nnel 15GHz - 2	25GHz - 54 N	lbit


INMC0071 81/139

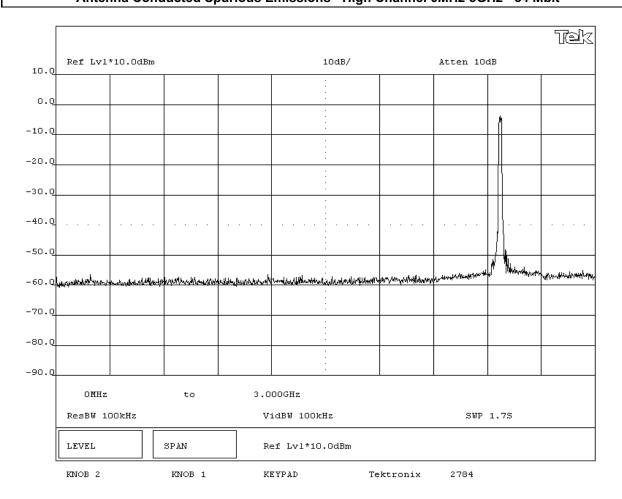
NORTHWEST EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01		
EUT:	802MIG2				Work Order:	INMC0081		
Serial Number:	C1				Date:	06/25/03		
Customer:	Intermec Corporation				Temperature:	77 degrees F		
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH		
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Site:	EV06		
TEST SPECIFICATION	S							
Specification:	47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992		
SAMPLE CALCULATION	ONS							
COMMENTS								
Tested in CK-30 Hand	held Scanner							
EUT OPERATING MOD	DES							
Modulated by PRBS a	t indicated data rate, 802.11(g) mod	Iulation scheme						
DEVIATIONS FROM T	EST STANDARD							
None								
REQUIREMENTS								
Maximum level of any	spurious emission outside of the	authorized band is 20 dB down fro	om the fundamental					
RESULTS								
Pass								
SIGNATURE								
Tested By:								
DESCRIPTION OF TES	DESCRIPTION OF TEST							
	Antenna Conducted Spurious Emissions - Mid Channel 0MHz-3GHz - 54 Mbit							


INMC0071 82/139

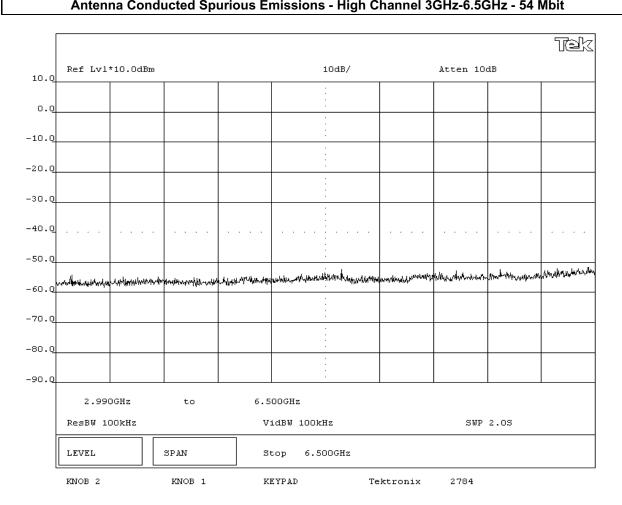
NORTHWEST EMC	EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0081
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation				Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
COMMENTS					
Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
Modulated by PRBS at indicated data rate, 802.11(g) n	lodulation scheme				
DEVIATIONS FROM TEST STANDARD					
None REQUIREMENTS					
REQUIREMENTS Maximum level of any spurious emission outside of th	o authorized hand is 20 dP down fr	om the fundamental			
RESULTS	e authorized band is 20 dB down ii	on the fundamental			
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Conducte	d Spurious Emissio	ns - Mid Char	าnel 3GHz-6.5	5GHz - 54 Mb	it


INMC0071 83/139

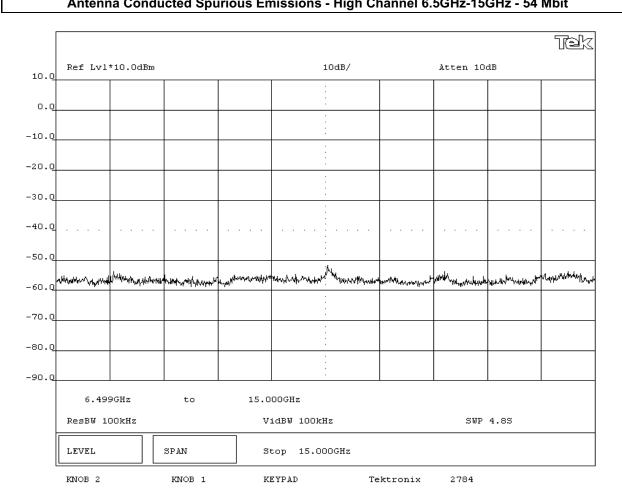
EMISSIONS DATA SHEET									
EUT: 802MIG2 Work Order: IN									
Serial Number: C1			Date:	06/25/03					
Customer: Intermec Corporation			Temperature:	77 degrees F					
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:						
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06					
TEST SPECIFICATIONS									
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992					
COMMENTS									
COMMENTS									
Tested in CK-30 Handheld Scanner									
EUT OPERATING MODES									
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme								
DEVIATIONS FROM TEST STANDARD									
None									
REQUIREMENTS									
Maximum level of any spurious emission outside	of the authorized band is 20 dB down fr	om the fundamental							
RESULTS									
Pass									
SIGNATURE									
Tested By:									
DESCRIPTION OF TEST	ted Countain Emissis	s - Mid Channel 6.5GHz-1	50U- 54 M	-14					


INMC0071 84/139

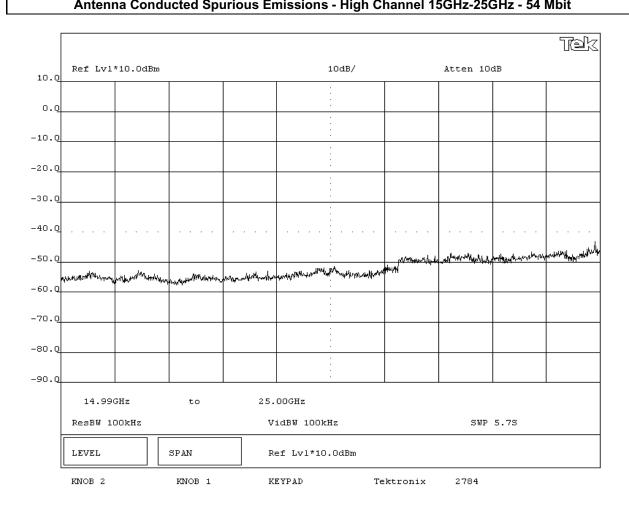
EMC EMISSIONS DATA SHEET						
EUT: 802MIG2				Work Order:	INMC0081	
Serial Number: C1				Date:	06/25/03	
Customer: Intermec Corporation			-	Temperature:	77 degrees F	
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:		
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06	
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992	
COMMENTS						
Tested in CK-30 Handheld Scanner						
EUT OPERATING MODES						
Modulated by PRBS at indicated data rate, 802.11(g) mo	dulation scheme					
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS						
Maximum level of any spurious emission outside of the	authorized band is 20 dB down from	om the fundamental				
RESULTS						
Pass						
SIGNATURE						
Tested By:						
DESCRIPTION OF TEST						
Antenna Conducted	Spurious Emission	ns - Mid Char	nel 15GHz-2	5GHz - 54 Mb	oit	


INMC0071 85/139

NORTHWEST EMC	EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0081
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation	Customer: Intermec Corporation			Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63.	4 Year:	1992
COMMENTS Tested in CK-30 Handheld Scanner					
EUT OPERATING MODES					
EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) m	adulation schame				
DEVIATIONS FROM TEST STANDARD	odulation solicine				
None					
REQUIREMENTS					
Maximum level of any spurious emission outside of th	e authorized band is 20 dB down fr	om the fundamental			
RESULTS					
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST					
Antenna Conducte	d Spurious Emissio	ns - High Ch	annel 0MHz-3	GHz - 54 Mb	it


INMC0071 86/139

EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1	Serial Number: C1			06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c)	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at indicated data rate, 802.11	(g) modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside	of the authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE	<u>'</u>	<u> </u>					
Tested By:) 						
DESCRIPTION OF TEST	And Considera Emiliaria	ns - High Channel 3GHz-6.	50U- 54 MI	-14			


INMC0071 87/139

EMISSIONS DATA SHEET							
EUT: 802MIG2			Work Order:	INMC0081			
Serial Number: C1	Serial Number: C1			06/25/03			
Customer: Intermec Corporation			Temperature:	77 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:				
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(c) SAMPLE CALCULATIONS	Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
COMMENTS Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum level of any spurious emission outside	of the authorized band is 20 dB down fr	om the fundamental					
RESULTS							
Pass							
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
Antenna Conducto	ed Spurious Emission	s - High Channel 6.5GHz-1	15GHz - 54 M	hit			

INMC0071 88/139

NORTHWEST EMC	EMISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0081
Serial Number: C1				Date:	06/25/03
Customer: Intermec Corporation				Temperature:	77 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	38% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(c)	Year: Most Current	Method:	FCC 97-114, ANSI C63	.4 Year:	1992
COMMENTS					
ested in CK-30 Handheld Scanner UT OPERATING MODES					
Modulated by PRBS at indicated data rate, 802.11(g) mo	dulation scheme				
DEVIATIONS FROM TEST STANDARD	dulation scheme				
None					
REQUIREMENTS					
Maximum level of any spurious emission outside of the	authorized band is 20 dB down fr	om the fundamental			
RESULTS					
Pass					
SIGNATURE					
Tested By:					
DESCRIPTION OF TEST Antenna Conducted	Snurious Emission	s - High Cha	nnel 15GHz-2	5GHz - 54 M	hit

INMC0071 89/139

Power Spectral Density

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

3, .,	
Channels in Specified Band Investigated:	
High	
Mid	
Low	
O C Market Land Co. (c.)	
Operating Modes Investigated:	
802.11(b)	
802.11(g)	
Data Rates Investigated:	
6 Mbit	
11 Mbit	
36 Mbit	
54 Mbit	
Output Power Setting(s) Investigated:	
Maximum	
Power Input Settings Investigated	
Power Input Settings Investigated:	
Battery	

Software\Firmware Applied During Test							
Exercise software	FccTest.exe	Version	1/1/1601				
Description							
The system was tested using special software developed to test all functions of the device during the test.							
The software allowed the selection of transmit channel and data rate. These were varied to produce the							
highest level of emissions. The OS of the host device was Ver. 0.00.00.0072							

INMC0071 90/139

Power Spectral Density

Revision 3/12/03

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C1
Hand Held Scanner (Host for Radio)	Intermec	CK30	C1

Cables

None. No cables were attached to EUT

Measurement Equipment

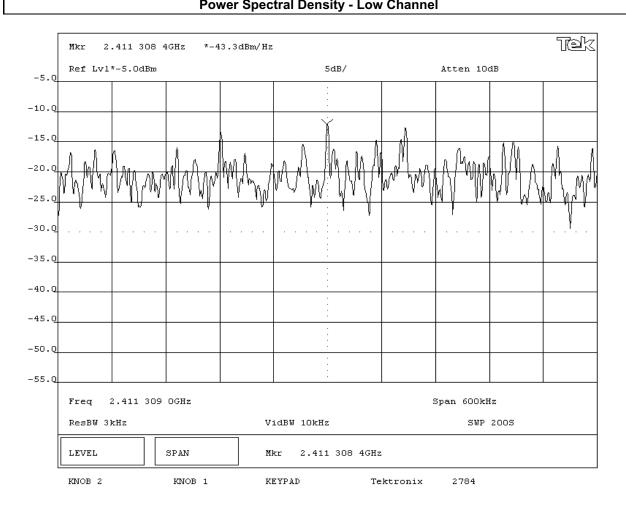
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Tektronix	2784	AAO	02/26/2003	24 mo

Test Description

Requirement: Per 47 CFR 15.247(d), the peak power spectral density conducted from the antenna port of a direct sequence transmitter must not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

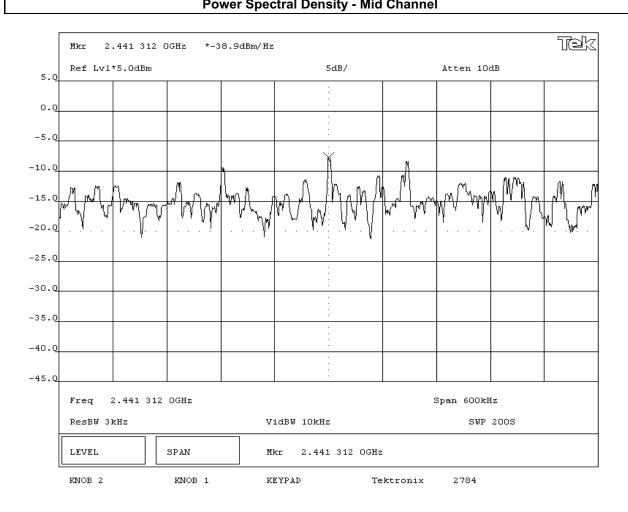
Configuration: The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $106 \div 3 \times 103 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

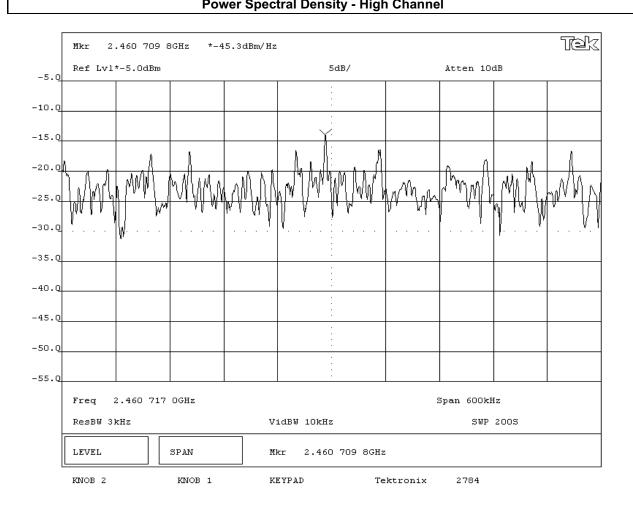

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

Completed by:

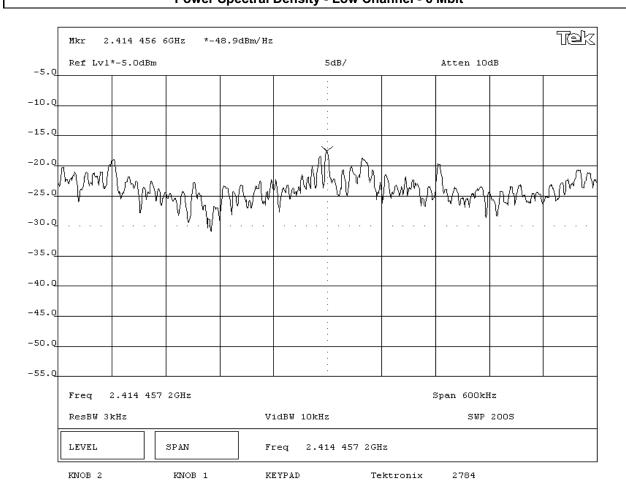
1. K-P


INMC0071 91/139

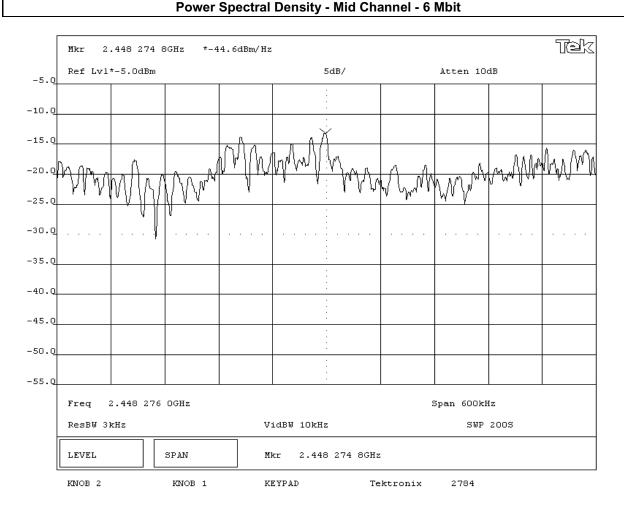
EMC EN	MISSIONS	DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2				Work Order:	INMC0071
Serial Number: C1				Date:	06/26/03
Customer: Intermec Corporation				Temperature:	75 degrees F
Attendees: C.D. White		Tested by:	Greg Kiemel	Humidity:	41% RH
Customer Ref. No.: N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS					
Specification: 47 CFR 15.247(d) Y	ear: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992
SAMPLE CALCULATIONS					
Meter reading on spectrum analyzer is internally compensated Power Spectral Density per 3kHz bandwidth = Power Spectral I Bandwidth Correction Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at maximum data rate, 802.11(b) modulation DEVIATIONS FROM TEST STANDARD	Density per 1 Hz bandwidth		on Factor.		
None					
REQUIREMENTS					
Maximum peak power spectral density conducted from a DSSS	transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS		AMPLITUDE			
Pass Power Spectral Density = -8.5 dBm / 3kHz					
SIGNATURE Tested By:	_				
DESCRIPTION OF TEST					
Pow	er Spectral Dei	nsitv - Low C	hannel		


INMC0071 92/139

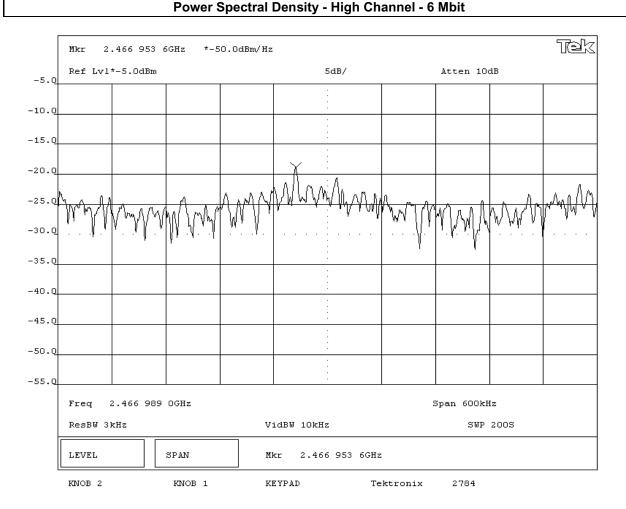
EMC EMISSIONS DATA SHEET Rev BI 01/50/1750/1750/1750/1750/1750/1750/1750							
EUT: 802MIG2			Work Order:	INMC0071			
Serial Number: C1			Date:	06/26/03			
Customer: Intermec Corporation			Temperature:	75 degrees F			
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	41% RH			
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS							
Specification: 47 CFR 15.247(d)	Year: Most Current	Method: FCC 97-114, ANSI C63	3.4 Year:	1992			
SAMPLE CALCULATIONS							
Meter reading on spectrum analyzer is internally cor	npensated for cable loss and externa	attenuation.					
Power Spectral Density per 3kHz bandwidth = Power	r Spectral Density per 1 Hz bandwidth	+ Bandwidth Correction Factor.					
Bandwidth Correction Factor = 10*log(3 kHz / 1 Hz) =	34.8 dB						
COMMENTS							
Tested in CK-30 Handheld Scanner							
EUT OPERATING MODES							
Modulated by PRBS at maximum data rate, 802.11(b)	modulation scheme						
DEVIATIONS FROM TEST STANDARD							
None							
REQUIREMENTS							
Maximum peak power spectral density conducted from	om a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz band					
RESULTS		AMPLITUDE					
Pass		Power Spectral Density = -4.1 dBm / 3kHz					
SIGNATURE							
Tested By:							
DESCRIPTION OF TEST							
	Power Spectral De	nsity - Mid Channel					


INMC0071 93/139

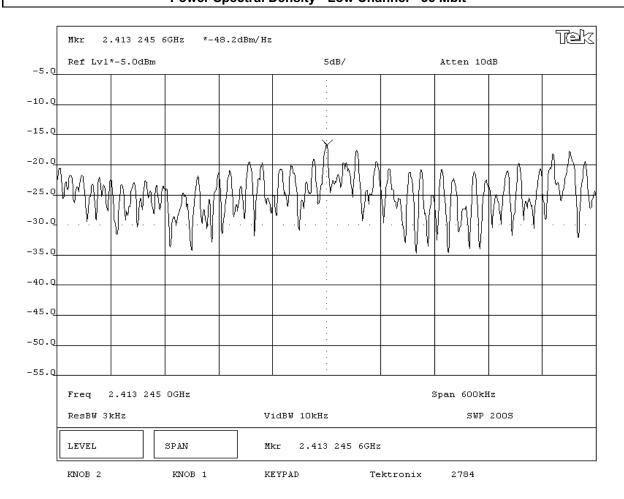
EMISSIONS DATA SHEET REV BETA							
EMC		EMISSIONS I	JATA SIT	331		01/30/01	
EUT:	802MIG2				Work Order:	INMC0071	
Serial Number:	C1	•		·	Date:	06/26/03	
Customer:	Intermec Corporation	•		·	Temperature:	75 degrees F	
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	41% RH	
Customer Ref. No.:	N/A Power: DC from Host Unit			Job Site:	EV06		
TEST SPECIFICATION	IS						
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992	
SAMPLE CALCULATION	ONS						
Meter reading on spec	ctrum analyzer is internally compe	ensated for cable loss and external	attenuation.				
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.			
Bandwidth Correction	Factor = 10*log(3 kHz / 1 Hz) = 34.	.8 dB					
COMMENTS							
Tested in CK-30 Hand	held Scanner						
EUT OPERATING MOD							
Modulated by PRBS a	t maximum data rate, 802.11(b) mo	odulation scheme					
DEVIATIONS FROM T	EST STANDARD						
None							
REQUIREMENTS							
	spectral density conducted from	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band			
RESULTS			AMPLITUDE				
Pass	Pass Power Spectral Density = -10.5 dBm / 3kHz						
SIGNATURE							
Tested By:	ARU.K.P						
DESCRIPTION OF TES							
I		Dowar Spectral Don	scity Liah C	hannal			


INMC0071 94/139

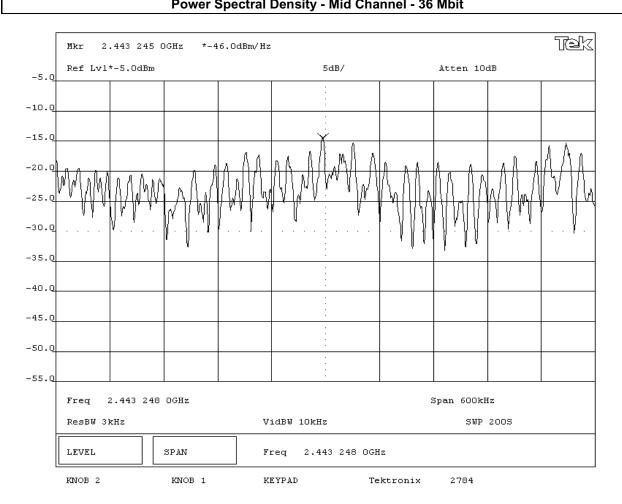
EMC EMISSION	S DATA SH	EET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/26/03
Customer: Intermec Corporation			Temperature:	75 degrees F
Attendees: C.D. White	Tested by:	Greg Kiemel	Humidity:	41% RH
Customer Ref. No.: N/A	Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(d) Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992
SAMPLE CALCULATIONS				
Power Spectral Density per 3kHz bandwidth = Power Spectral Density per 1 Hz band Bandwidth Correction Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme DEVIATIONS FROM TEST STANDARD None REQUIREMENTS				
Maximum peak power spectral density conducted from a DSSS transmitter does no	t exceed 8 dBm in any 3 kHz	band		
RESULTS	AMPLITUDE			
Pass	Power Spectral Densi	ty = -14.1 dBm / 3kHz		
SIGNATURE				
Tested By:				
DESCRIPTION OF TEST				
Power Spectral Den	sity - Low Chan	nel - 6 Mbit	_	_


INMC0071 95/139

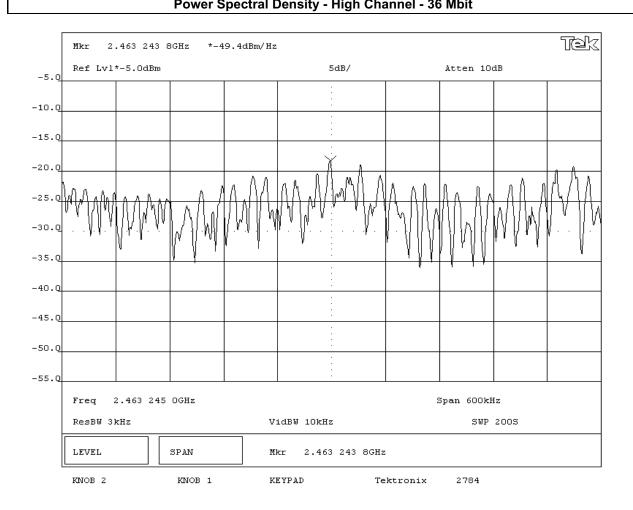
NORTHWEST EMC		EMISSIONS I	DATA SH	EET		Rev BETA 01/30/01		
	802MIG2				Work Order:			
Serial Number:		Date: 06/26/03						
	Intermec Corporation					75 degrees F		
	C.D. White		Tested by:	Greg Kiemel	Humidity:			
Customer Ref. No.:	N/A			DC from Host Unit	Job Site:			
TEST SPECIFICATION	is							
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992		
SAMPLE CALCULATION	ONS							
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation.					
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.				
Bandwidth Correction	Factor = 10*log(3 kHz / 1 Hz) = 34	.8 dB						
COMMENTS								
Tested in CK-30 Hand	held Scanner							
EUT OPERATING MOI	DES							
Modulated by PRBS a	Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme							
DEVIATIONS FROM TEST STANDARD								
None								
REQUIREMENTS	REQUIREMENTS							
Maximum peak power	spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band				
RESULTS			AMPLITUDE					
Pass	Pass Power Spectral Density = -9.8 dBm / 3kHz							
SIGNATURE								
Tested By:	ADU.K.P							
DESCRIPTION OF TES		on Connetted Dameits						


INMC0071 96/139

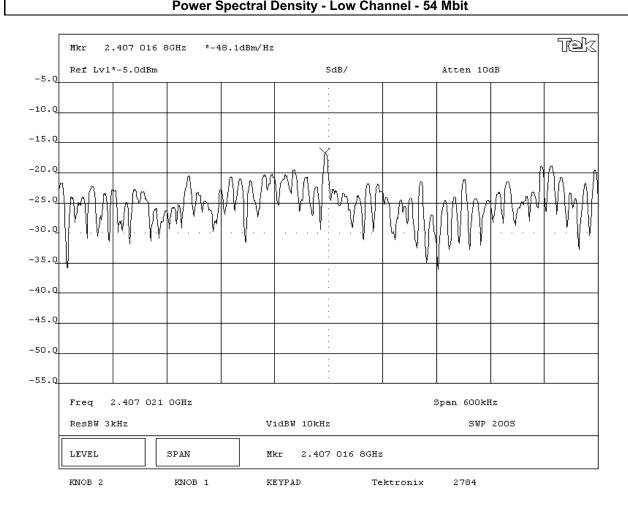
NORTHWEST EMC		EMISSIONS [DATA SH	EET		Rev BETA 01/30/01	
	802MIG2				Work Order:		
Serial Number:						06/26/03	
	Intermec Corporation					75 degrees F	
	C.D. White		Tested by:	Greg Kiemel	Humidity:		
Customer Ref. No.:				DC from Host Unit	Job Site:		
TEST SPECIFICATION							
	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992	
SAMPLE CALCULATION							
Meter reading on sper	ctrum analyzer is internally compe	ensated for cable loss and external	attenuation.				
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	pectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.			
Bandwidth Correction	n Factor = 10*log(3 kHz / 1 Hz) = 34	8 dB					
COMMENTS	<u> </u>						
Tested in CK-30 Hand	Iheld Scanner						
EUT OPERATING MOI	DES						
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme							
DEVIATIONS FROM T	DEVIATIONS FROM TEST STANDARD						
None							
REQUIREMENTS	REQUIREMENTS						
Maximum peak power	r spectral density conducted from	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz	band			
RESULTS			AMPLITUDE				
Pass	Pass Power Spectral Density = -15.2 dBm / 3kHz						
SIGNATURE							
Tested By:							
DESCRIPTION OF TES							
	D	an Chaster Danster	III and Observe	I C N/IL:4			


INMC0071 97/139

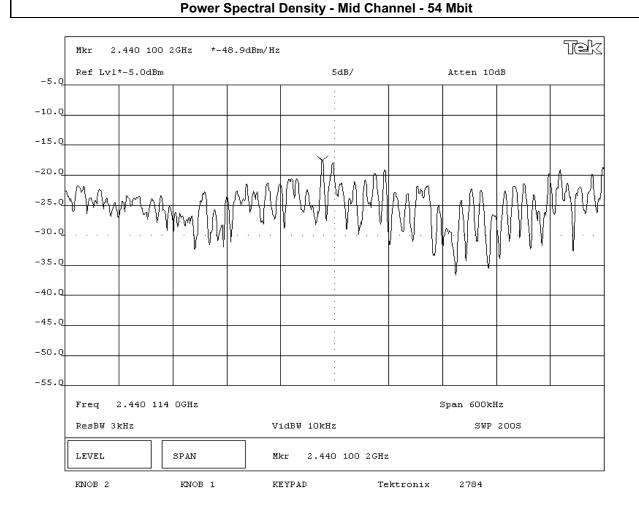
EMC EMISSIONS D	DATA SHEET		Rev BETA 01/30/01			
EUT: 802MIG2		Work Order:	INMC0081			
Serial Number: C1		Date:	06/26/03			
Customer: Intermec Corporation	Customer: Intermec Corporation Temperature: 75 degre					
Attendees: C.D. White	s: C.D. White Tested by: Greg Kiemel					
Customer Ref. No.: N/A	Power: DC from Host Unit	Job Site:	EV06			
TEST SPECIFICATIONS						
Specification: 47 CFR 15.247(d) Year: Most Current	Method: FCC 97-114, ANSI C63	.4 Year:	1992			
SAMPLE CALCULATIONS Meter reading on spectrum analyzer is internally compensated for cable loss and external						
Power Spectral Density per 3kHz bandwidth = Power Spectral Density per 1 Hz bandwidth Bandwidth Correction Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB COMMENTS Tested in CK-30 Handheld Scanner EUT OPERATING MODES Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme DEVIATIONS FROM TEST STANDARD None REQUIREMENTS						
Maximum peak power spectral density conducted from a DSSS transmitter does not excee	<u> </u>					
	AMPLITUDE		·			
Pass I	Power Spectral Density = -13.4 dBm / 3kHz					
Tested By:						
Power Spectral Density	Low Channel - 36 Mhit					


INMC0071 98/139

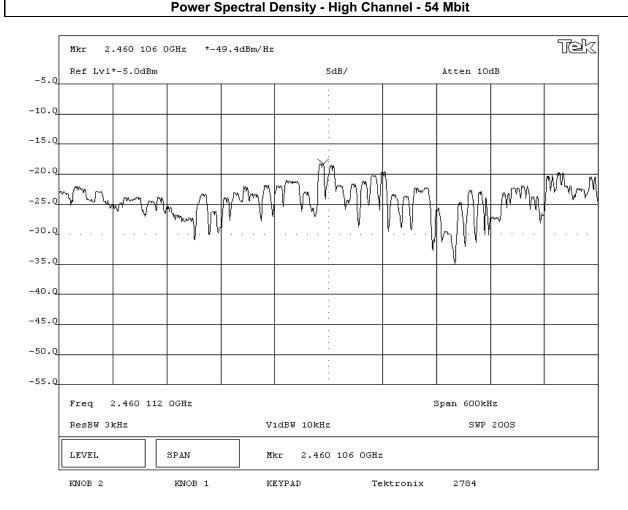
NORTHWEST		EMISSIONS I	DATA CH	EET		Rev BETA
EMC		LIVII 3310143 I	JAIA SII			01/30/01
EUT:	802MIG2				Work Order:	INMC0081
Serial Number:	C1				Date:	06/26/03
Customer:	Intermec Corporation				Temperature:	75 degrees F
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	41% RH
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATION	IS .					
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992
SAMPLE CALCULATION	ONS					
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation.			
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	n Factor = 10*log(3 kHz / 1 Hz) = 34	.8 dB				
COMMENTS						
Tested in CK-30 Hand	held Scanner					
EUT OPERATING MO						
Modulated by PRBS a	t indicated data rate, 802.11(g) mo	dulation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass	Pass Power Spectral Density = -11.2 dBm / 3kHz					
SIGNATURE						
Tested By:	ARU.K.P					
DESCRIPTION OF TES						
I	Dow	or Spectral Deneity	- Mid Chann	al - 36 Mhit		


INMC0071 99/139

NORTHWEST		EMISSIONS I	DATA CH	EET		Rev BETA
EMC		LIVII 3310143 I	JAIA SII			01/30/01
EUT:	802MIG2				Work Order:	INMC0081
Serial Number:	C1				Date:	06/26/03
Customer:	Intermec Corporation				Temperature:	75 degrees F
Attendees:	C.D. White		Tested by:	Greg Kiemel	Humidity:	41% RH
Customer Ref. No.:	N/A		Power:	DC from Host Unit	Job Site:	EV06
TEST SPECIFICATION	IS .					
Specification:	47 CFR 15.247(d)	Year: Most Current	Method:	FCC 97-114, ANSI C63	3.4 Year:	1992
SAMPLE CALCULATE	ONS					
Meter reading on spec	ctrum analyzer is internally compe	nsated for cable loss and external	attenuation.			
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction	on Factor.		
Bandwidth Correction	n Factor = 10*log(3 kHz / 1 Hz) = 34	.8 dB				
COMMENTS						
Tested in CK-30 Hand	held Scanner					
EUT OPERATING MO						
Modulated by PRBS a	t indicated data rate, 802.11(g) mo	dulation scheme				
DEVIATIONS FROM T	EST STANDARD					
None						
REQUIREMENTS						
	spectral density conducted from	a DSSS transmitter does not exce	ed 8 dBm in any 3 kHz	band		
RESULTS			AMPLITUDE			
Pass	Pass Power Spectral Density = -14.6 dBm / 3kHz					
SIGNATURE						
Tested By:	ARU.K.P					
DESCRIPTION OF TES						
I	Dow	or Spectral Deneity	- High Chann	od - 36 Mhit		


INMC0071 100/139

NORTHWEST EMC	ISSIONS	DATA SHEET		Rev BETA 01/30/01
EUT: 802MIG2			Work Order:	INMC0081
Serial Number: C1			Date:	06/26/03
Customer: Intermec Corporation			Temperature:	75 degrees F
Attendees: C.D. White		Tested by: Greg Kiemel	Humidity:	
Customer Ref. No.: N/A		Power: DC from Host Unit	Job Site:	EV06
TEST SPECIFICATIONS				
Specification: 47 CFR 15.247(d) Yes	ar: Most Current	Method: FCC 97-114, ANSI C	33.4 Year:	1992
SAMPLE CALCULATIONS				
Meter reading on spectrum analyzer is internally compensated for	or cable loss and externa	l attenuation.		
Power Spectral Density per 3kHz bandwidth = Power Spectral De	nsity per 1 Hz bandwidth	+ Bandwidth Correction Factor.		
Bandwidth Correction Factor = 10*log(3 kHz / 1 Hz) = 34.8 dB				
COMMENTS				
Tested in CK-30 Handheld Scanner				
EUT OPERATING MODES				
Modulated by PRBS at indicated data rate, 802.11(g) modulation	scheme			
DEVIATIONS FROM TEST STANDARD				
None				
REQUIREMENTS				
Maximum peak power spectral density conducted from a DSSS t	ransmitter does not exce	ed 8 dBm in any 3 kHz band		
RESULTS		AMPLITUDE		
Pass		Power Spectral Density = -13.3 dBm / 3kHz		
SIGNATURE				
Tested By:	_			
DESCRIPTION OF TEST POWER SO	ectral Density	- Low Channel - 54 Mbit		


INMC0071 101/139

NORTHWEST EMC		EMISSIONS I	DATA SHEET		Rev BETA				
					01/30/01				
	802MIG2	Work Order: INMC0081							
Serial Number:	C1			Date	06/26/03				
Customer:	Intermec Corporation			Temperature	75 degrees F				
Attendees:	C.D. White		Tested by: Greg Kiemel	Humidity	: 41% RH				
Customer Ref. No.:	N/A		Power: DC from Host Unit	Job Site	: EV06				
TEST SPECIFICATION	IS .								
Specification:	47 CFR 15.247(d)	Year: Most Current	Method: FCC 97-114, ANSI C	63.4 Year	1992				
SAMPLE CALCULATION	ONS								
Meter reading on spec	ctrum analyzer is internally compe	ensated for cable loss and external	attenuation.						
Power Spectral Densi	ty per 3kHz bandwidth = Power Sp	ectral Density per 1 Hz bandwidth	+ Bandwidth Correction Factor.						
Bandwidth Correction	r Factor = 10*log(3 kHz / 1 Hz) = 34	.8 dB							
COMMENTS									
Tested in CK-30 Hand	held Scanner								
EUT OPERATING MO	DES								
Modulated by PRBS a	t indicated data rate, 802.11(g) mo	dulation scheme							
DEVIATIONS FROM T	EST STANDARD								
None									
REQUIREMENTS									
Maximum peak power	spectral density conducted from	a DSSS transmitter does not excee	ed 8 dBm in any 3 kHz band						
RESULTS			AMPLITUDE						
Pass									
SIGNATURE									
Tested By:	ADU.KIP								
DESCRIPTION OF TES	ST								

INMC0071 102/139

Rev BETA 01/30/01						
Work Order: INMC0081						
Date: 06/26/03						
Temperature: 75 degrees F						
Humidity: 41% RH						
t Unit Job Site: EV06						
ANSI C63.4 Year: 1992						
Modulated by PRBS at indicated data rate, 802.11(g) modulation scheme						
DEVIATIONS FROM TEST STANDARD						
None						
REQUIREMENTS						
n / 3kHz						
VII. 14						
n						

INMC0071 103/139

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated:
802.11(b)
802.11(g)
802.11(b) simultaneously transmitting with co-located Bluetooth radio
802.11(g) simultaneously transmitting with co-located Bluetooth radio

Data Rates Investigated:
6 Mbit
11 Mbit
36 Mbit
54 Mbit

Output Power Setting(s) Investigated:	
Maximum	

Power Input Settings Investigated:
Battery powered in stand-alone configuration
120 V, 60 Hz via the dock station
E

Antennas Investigated:	
Integral	

Frequency Range In	equency Range Investigated							
Start Frequency	30 MHz	Stop Frequency	26 GHz					

INMC0071 104/139

Revision 3/12/03

Software\Firmware Applied During Test

Exercise software Footiest.exe Version 1/1/1601	Exercise software	tware FccTest.exe	Version	1/1/1601
---	-------------------	-------------------	---------	----------

Description

The system was tested using special software developed to test all functions of the device during the test. The software allowed the selection of transmit channel and data rate. These were varied to produce the highest level of emissions. The OS of the host device was Ver. 0.00.00.0072

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C2
Hand Held Scanner (Host for Radio)	Intermec	CK30	C2
Docking Station	Intermec	AD1	SAC0D2
Power Adapter	Elpac Power Systems	FW5012	001831

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8	No	Docking Station	Unterminated
Serial	Yes	1.8	No	Docking Station	Unterminated
LAN	No	6	No	Docking Station	Unterminated
DC Leads	PA	1.6	Yes	Docking Station	Power Adapter
AC Power	No	1.5	No	Power Adapter	AC Mains

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Pre-Amplifier Amplifier Research		LN1000A	APS	01/06/2003	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Pre-Amplifier Miteq		AMF-4D-005180-24-10P	APJ	01/06/2003	12 mo
High Pass Filter RLC Electronics		F-100-4000-5-R (HPF>4GHz up to	HFF	05/01/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	08/12/2002	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	08/09/2002	12 mo
Antenna, Horn	EMCO	3160-08	AHK	06/20/2003	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	2/26/2003	12 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/17/2003	12 mo
Antenna, Horn	EMCO	3160-09	AHG	01/15/2003	12 mo

INMC0071 105/139

Revision 3/12/03

Test Description

Requirement: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Configuration: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Simultaneous Transmission: The EUT will be co-located with a Bluetooth radio: FCC ID: LUBBTM-1. The radios can transmit stand-alone or simultaneously. Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

The worst case simultaneous transmission mode was determined to be with the EUT transmitting at the highest channel (channel 11 - 2462 MHz) with the Bluetooth radio transmitting at its highest channel (2480 MHz). Radiated band-edge compliance in the 2483.5 – 2500 MHz restricted band was measured in this configuration. Then, the entire frequency range was investigated with both radios transmitting at 2462 MHz.

During simultaneous transmission testing the Bluetooth radio was placed into a modulated, no-hop mode transmitting at it maximum data rate and power. The EUT operation was varied by modulation type and data rate to produce the worst-case emissions.

INMC0071 106/139

Revision 3/12/03

Bandwidths Used for Measurements

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were m	ade using the bandwidths	s and detectors specified. No	video filter was used.

Completed by:

Holy Aliny

INMC0071 107/139

NORTHWEST					OA.	TS D	ATA	SHE	FT				REV df3.11	
EMC							AIA						06/23/2003	
		802MIG2								V	Vork Order:			
Serial Nu			Tochnolo	gies Corpo	ration					To	Date:	06/25/03		
		Cheryl Whi		gies corpo	Tation					16	Humidity:			ł
Cust. Ref		,								Barometr	ic Pressure			1
		Holly Ashk	annejhad				Power:	120VAC, 6	0Hz		Job Site:	EV01		
ST SPECIF														
		FCC Part 1 ANSI C63.4									Year: Year:			
MPLE CAL											rear.	1992		
Radiated Emis	ssions: I	Field Strength	= Measured L	.evel + Antenn	a Factor + Cal	ole Factor - Ar	nplifier Gain +	Distance Adju	stment Facto	or + External Att	enuation			1
Conducted Emis	ssions: /	Adjusted Leve	= Measured	Level + Transo	ducer Factor +	Cable Attenua	ation Factor +	External Atter	uator					
OMMENTS dio installed in	CK-30	hand-held sc	anner											
aro motamou m														
T OPERAT				44 44400										
.11(b) modula	ition. Ti	ransmitting C	hannel 1, 7, o	or 11 at 11Mbi	t									
VIATIONS	FROM	TEST STA	NDARD -											1
deviations.	-ROW	TEOT STA	NDAIND"											1
SULTS												Run#		1
ss												- 4	4	
201														l
ner										, Sole	11	7		
									1/2/	Alle	γ / γ'	/		
									400) / °	/			
										Teste	ed By:			<u> </u>
80.0 -														
70.0 -														
60.0 -														
													_	
50.0 -	-													
E													J	
W//Ngp														
40.0						•								
쁑						•								
30.0 -														
		•												
00.0		•												
20.0 -														
10.0 -													_	
0.0 -														
	.000											40	000 000	
100	.000											10	000.000	
							MHz							
		-					External			Distance			Compared to	1
Freq		Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	8.864	(dBuV) 46.3	(dB) -15.6	(degrees) 272.0	(meters) 1.1	(meters)	(dB) 10.0	H-Bilog	QP	(dB)	dBuV/m 40.7	dBuV/m 46.0	(dB)	Comments Transmitting High Cha
	8.864	43.4	-15.6	355.0	1.1	3.0	10.0	V-Bilog	QP QP	0.0	37.8	46.0		Transmitting low chan
	8.864	43.4	-15.6	330.0	2.2	3.0	10.0	V-Bilog V-Bilog	QP	0.0	37.6	46.0		Transmitting High Cha
	8.866	42.4	-15.6	360.0	1.1	3.0	10.0	V-Bilog	QP	0.0	36.8	46.0		Transmitting mid chan
	8.864	41.7	-15.6	246.0	1.8	3.0	10.0	H-Bilog	QP	0.0	36.1	46.0		Transmitting low chan
24	8.865	41.1	-15.6	233.0	1.8	3.0	10.0	H-Bilog	QP	0.0	35.5	46.0		Transmitting mid chan
		35.8	-19.8	305.0	1.0	3.0	10.0	V-Bilog	QP	0.0	26.0	43.0	-17.0	Transmitting low chan
12	7.692 7.662	33.4	-19.8	85.0	3.2	3.0	10.0	H-Bilog	QP	0.0		43.0		Transmitting low chan

INMC0071 108/139

NOR	THWEST											-	<u> </u>	٨	7	C		7	٨	7	Λ	c	NI.	n-	Ţ.											RI
E	MC											-	J	A	Ц	J	L	J)	A		A	3	Ì	16	Ŀ	3										df3.
		EUT:	8021	/IIG2																										١	Nork	Order	: INM	C00		
Ser	ial Nun	nber:	C2																														06/2	25/03	3	
	Custo						nol	ogie	es (Cor	or	atio	on																	Te		rature				
	Attendation		Che	ryl W	/hite	•																							Dava			midity essure				
Cu	Teste		Holl	v Asi	hkar	nnei	had	ı										Ŧ		Pow	er.	120	VAC	C, 60	0Hz	,		-	ваго	metr		b Site				
ST SF	ECIFI			, Au	incu	mej	nuu														CI.	120		J, U	0112	_						D OILC				
Sp	ecifica					247((c)																										: 200			
MOL C			ANS		3.4																											Year	: 199	2		
	ed Emis				nth = 1	Meas	ured	I I eve	el +	Ante	nna	Fac	tor -	- Ca	hle	Fact	or -	Amı	olifie	er Ga	in +	Dista	nce	Adius	stme	ent F	acto	r + F	xtern	al Att	tenuat	ion				
	ed Emis			-																				-			uoto				ioriaai	.011				
MME																																				
io inst	alled in	CK-30	0 hand	-held	scan	ner																														
	ERATI																																			
11(b) i	modulat	ion. T	ransm	ıtting	Chai	nnel	11 at	t 11M	lbit																											
VIAT	ONS F	RO	/ TES	T.S.T	ΓAΝ	DAE	SD_																													
deviati				. 0		7.51																														
SULT	S																																Rur	#		
s																																			6	
er																																				
																									,	/	n		Λ	1		L_	7			
																									4	6	ly)	/sh	N	γ	<u> </u>				
																								<u> </u>			U		7	Teste	ed By	<i>/</i> :			_	
																					-)					
	80.0	\Box				_		_	_		_	_	_	Т		_	_	_			_		_				_									7
		Ш																																		1
	70.0								I		I	T	Ĺ			T							T		П	I		П		П						
	60.0	\vdash			+	+		+			+	+	+			+			Н	H		\Box	+	+	H	+		\forall	+	+			+			
	_	\vdash				\perp			*		1	1	1			1	1		Ц		1		1													+
	50.0	\vdash			\perp	\perp			+		4	+	+	-		+	+	-	Ш		_		+	1	Н								4			
		i																																		
dBuV/m		i							Ī																											
Σ	40.0				\Box	\top			T		T	Ť	T	T	П	\dagger	T		П				\dagger		П			П		\Box						
쁑		i I																																		
:	30.0	\vdash			+	+			+		+	+	+	-	H	+	+	+	Н	\vdash	-	++	+	+	\vdash			\Box		++						-
	20.0 -	i																																		
•	∠U.U →																											П								
	10.0 -	+			+	+	\mathbb{H}		+		+	+	+		H	+	+	+	H	H			+	+	\vdash	+		+		+			++			-
		Ш																															\perp			
	0.0		22	200.0	000	24	' 400	.000)	26	00	00	0	28	300	00	0	30	വറ	').00	0	321	ეე (000		340	0.0	00	30	008	.000	380	00.00	0	400	0.000
	0.0					_	. 50		-	_5			-	_`			-				-	J_,				- 10		23	٥.			551		-	. 50	
	0.0 - 2000																		IVI	Ηz																
																		_	-																	
	2000		Amr	olitude		Fact	tor	T,	Azin	nuth		н	eiah	t	ı)ista	nce			terna		P	olarit	tv	Р)etec	ctor		Distar		Ad	iusted	Spe	c. Lin		ompared Spec.
F	2000 Freq (MHz)).000	(dl	olitude BuV)		Fact			degr	nuth rees)			eigh eters	s)	(ista mete	ers)		Atte	nuat (dB)	ion		olarit		D	etec			Distar djustr (dB	nent)	dB	justed BuV/m	dE	c. Lin	nit 1	Spec. (dB)
F	2000 Freq //Hz) 2483	3.500	(dl	3uV) 29.	0		3) 1.0	(0	degr	rees) 266.	0		eters	s) 2.2	(ers) 3.	.0	Atte	nuat (dB)	ion 6.0	H-	Hor	rn	D	ΑV	/		djustr	nent) 0.0	dB	8uV/m 46.0	dE	suV/m 54	nit n 1.0	Spec. (dB)
F	2000 Freq //Hz) 2483 2483	3.500 3.500	(dl	3uV) 29. 28.	0 2		1.0 1.0)))	degr	rees) 266. 175.	0		eters	s) 2.2 1.9	(3. 3.	.0	Atte	nuat (dB) 10	6.0 6.0	H- V-	Hor Hor	rn rn	D	AV AV	/		djustr	0.0 0.0	dB	46.0 45.2	dE	54 54	hit 1.0 1.0	Spec. (dB) -8
F	2000 Freq MHz) 2483 2483 2483	3.500	(dl	3uV) 29.	0 2 5		3) 1.0)))	degr	rees) 266.	0 0 0		eters	s) 2.2	(ers) 3.	.0	Atte	nuat (dB) 10 10	ion 6.0	H- V-	Hor	rn rn	D	ΑV	/ /		djustr	nent) 0.0	dB	8uV/m 46.0	dE	suV/m 54	hit 1.0 1.0 1.0	Spec. (dB)

INMC0071 109/139

	RTHWEST					OA	TS D	ATA	SHI	EET				R df3
E	MC					UA	IOL	AIA	ЭПІ	351				06/23/2
	EU1	г: 80	2MIG2								V		INMC0071	
Se	rial Numbe	_									_		06/25/03	
					gies Corpo	ration					Te	mperature:		
٠.	Attendees		ieryi wn	ite							Parametr	Humidity: ic Pressure		
CI		_	ılly Ashk	annejhad				Power:	120VAC, 6	50Hz	Daronieu	Job Site:		
ST S	PECIFICA			ainiejnau				rower.	IZUVAC, C	JUI 12		Job Site.	LVUI	
	pecification			5.247(c)								Year:	2001	
			NSI C63.4										1992	
MPL	E CALCUL	ATI	ONS											
											+ External Atte	nuation		
		s: Ad	usted Leve	l = Measured	Level + Transo	lucer Factor +	Cable Attenua	ation Factor + E	xternal Atten	uator				
	NTS talled in CK-	30 ha	nd-held sc	anner										
	ERATING			nid channel a	t 11Mbit									
11(5)	modulation.	IIaii	Simuling in	ila cilalillei a	t i i i i i i i i i i i i i i i i i i i									
VIAT	IONS FRO	МΤ	EST STA	NDARD										
deviat	ions.													
SUL.	TS												Run#	
SS													8	3
ner														
iei											^ /	11	7	
										11. 11.	, Sile	~/\	/	
										4180	<i>)</i> / *	<i>r</i>		
											Teste	ed By:		
	80.0	T												
	- 0.0													_
	70.0													
	60.0													
	55.5													
	+			•				-						+
	50.0													_
Ε														
5														
Ξ	40.0													
dBuV/m				A										
-	30.0													
	55.5													
	20.0													-
	10.0													+
	0.0													
		^		E000 000		2000 000	_	7000 000		000 000		100.000	400	
	4000.00	U		5000.000	(6000.000	1	7000.000	8	8000.000	90	000.000	100	00.000
								MHz						
		1	ı			ı		External			Distance			Compare
1	Freq	Α	mplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec
	MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	7326.75		34.2	11.0	198.0	1.3	3.0		H-Horn	AV	0.0	45.2		
	7326.75		32.3	11.0	226.0	1.2	3.0		V-Horn	AV	0.0	43.3		
	4883.86		29.1	6.2		1.1	3.0		V-Horn	AV	0.0	35.3		-
	4883.86 7326.75		28.5	6.2	147.0	1.4	3.0		H-Horn	AV	0.0	34.7	54.0	-
		1	44.6	11.0	198.0	1.3	3.0		H-Horn	PK	0.0	55.6	74.0	-
		7	40.0	440		4 ^		^ ^	\/ L/ =	DI/	^ ^	E 4 0	710	
	7326.75 7326.75 4883.86		43.6 47.4	11.0 6.2	226.0 147.0	1.2 1.4	3.0 3.0		V-Horn H-Horn	PK PK	0.0 0.0	54.6 53.6		-1 -2

INMC0071 110/139

NC	ORTHWEST						•	7.	TO	F			æ	1111									RE\
	EMC						O	A	TS	D	A	TΑ	\$	HE	:E	Γ_							df3.10
		T: 8	02MIG2															٧	Vork (Order:	INMC	0071	
S	erial Numbe	_		T l 1																	06/25	/03	
			NTERMEC Cheryl Whi		ogies	Corpo	oration											Te	•	ature:			
С	ust. Ref. No).:															Ва	rometr	ic Pre	ssure	30.19	ı	
ст с			Rod Peloq	uin							P	ower:	120	VAC, 60)Hz				Jol	Site:	EV01		
	PECIFICA Specification			5.247(c)																Year:	2001		
			ANSI C63.4																		1992		
	E CALCUI							. 0 1				0	D: 4					1.44					
	ated Emission cted Emission		_											-		actor	+ Exter	nai Atte	nuation	1			
MMC	ENTS		,																				
nı oıt	stalled in CK-	30 1	nand-held sc	anner																			
	PERATING modulation,																						
.11(0	, illouulation,		WIDIT																				
VIA	TIONS FRO	MC	TEST STA	NDARD																			
	tions.																						
SUL ss	.rs																				Run #	#	· · · · · · · · · · · · · · · · · · ·
, 3																							,
her															1	^	,		0				
															Hool	in	le	Re	leng				
																U		-	//				
														-					d By:				
	80.0																						
	-	+						+			++		1										+
	70.0	-			+			++			+				+		+					+	_
	60.0																						
	30.0										T				\top								
	+	+																					+
	50.0	+				1					+	•				*	\dashv						
<u>E</u>																							
dBuV/m	40.0	+			+	1 1		++			+	+				4							_
ğ																							
U	30.0																						
	30.0																						
	20.0	+			+			++			+						+					+	-
	10.0	4									\perp												_
	0.0																						
		20	19100.00	0 10200	000	1020	0.000	104	00.00	0 1	0500	000	106	00 000	107	00.0	20 1	0000	000	1000	0.000	200	
	19000.00	JU	19100.00	0 19200).000	1930	0.000	194	.00.00	U I			190	00.000	1971	00.0	JU 1	9000.	000	1990	0.000	200	00.000
											MH	z											
	Freq	T	Amplitude	Factor	۸.	zimuth	Heigh	nt T	Dista	nce		ernal nuation	D.	olarity	Dete	ctor		tance stment	Λdi	usted	Spec.	Limit	Compared to Spec.
	(MHz)		(dBuV)	(dB)		egrees)	(meter		(mete			dB)	F	Jianty	Dete	Clor		dB)		ıV/m	dBu'		(dB)
	19296.00		33.0	8.:	2	216.0		1.1		3.0		0.0		gh Horr	A۱			0.0		41.2		54.0	-12.8
	19696.00		32.5	8.		288.0		1.2		3.0				gh Horr	A۱			0.0		41.2		54.0	-12.8
	19535.74 19535.74		32.2 31.9	8. 8.		213.0 289.0		1.1 1.2		3.0				gh Horr gh Horr	A\ A\			0.0		40.7 40.4		54.0 54.0	-13.6 -13.6
	19696.00		31.9	8.		219.0		1.1		3.0				gh Horr	A۱			0.0		39.8		54.0	-14.2
	19296.00	00	31.3	8.:	2	214.0		1.0		3.0		0.0	H-Hi	gh Horr	A۱	V		0.0		39.5		54.0	-14.
	19296.00		41.3	8.:		216.0		1.1		3.0				gh Horr	Pł			0.0		49.5		74.0	-24.
	19696.00 19535.74		40.6 40.7	8. 8.		288.0 213.0		1.2		3.0				gh Horr gh Horr	Pł Pł			0.0		49.3 49.2		74.0 74.0	-24. -24.
		ru	40.7																	49.2		74.0	-24.
	19535.74	10	40.6	8	5	289.0		1.2		3.0		().()	H-H	an Horr	P	Λ.		0.0		43.1		74.0	-24
			40.6 40.4	8.: 8.:		289.0 214.0		1.0		3.0				gh Horr gh Horr	Pł Pł			0.0		48.6		74.0	-24. -25. -25.

INMC0071 111/139

NORTHWEST					O A	TO F		CLIE					REV	7
EMC					UA	15 L)ATA	SHE	EI_				df3.1 ² 06/23/2003	1 3
0		802MIG2								٧	Vork Order:		1	
Serial Nu Cust			C Technolo	gies Corpo	ration					Te	mperature:	06/25/03 81		1
	ndees:		o recimient	gico coi po	ration					10	Humidity:			
Cust. Re							_	1001/10 0		Barometr	ic Pressure			
Test SPECIF			kannejhad				Power:	120VAC, 6	0Hz		Job Site:	EV01		
		FCC Part	15.247(c)								Year:	2001		
Me	ethod:	ANSI C63.									Year:	1992		
PLE CAL			- Measured I	evel + Antenn	a Factor + Cal	ole Eactor - A	mplifier Gain + [Dietance Adius	tment Eactor	Evternal Atter	nuation			
		_					ation Factor + E	-		- External / titel	idation			
IMENTS	014 00													
installed if	1 CK-30	hand-held so	canner											
OPERAT			ow Channel at	6 36 or 54M	hit									
r(g) module	111011. 11	ansimung L	ow Chamiler at	0, 30, 01 3411	DIL.									
	FROM	TEST ST	ANDARD											
viations. ULTS												Run#		1
ULIS												Kuir#	4	
														1
r											. , /	7		
									Heles	Sole	$\gamma \sim$	•		
									1100	/	/ 		_	
										Teste	a By:			1
80.0														
70.0														
70.0														
60.0		++++											+	
50.0														
Ε														
40.0 40.0 1														
_ →0.0 `		\Box					*							
_														
30.0														
20.0	+		+++											
10.0														
0.0														
	.000	210.00	0 220.0	00 230	.000 24	40.000	250.000	260.000	270.00	0 280.0	200	0.000	300.000	
200		210.00	. 220.0	230	.000 2	+0.000		200.000	210.00	,0 200.0	250 25	0.000	550.000	
							MHz							
			1 1	1	1		External	1	1	Distance			Compared to	_
Freq		Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit		
(MHz)	0 005	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	LI Dilaa	00	(dB)	dBuV/m	dBuV/m	(dB)	Comments
	8.865 8.863	46.4 45.4		272.0 301.0	1.0 1.0	3.0 3.0		H-Bilog H-Bilog	QP QP	0.0 0.0	40.8 39.8	46.0 46.0		54Mbit data 6Mbit data
24		45.3		279.0	1.0	3.0		H-Bilog	QP	0.0	39.7	46.0		36MBit data
24	8.865				1.0	0.0	10.0			0.0		10.0		
24 24	8.865 8.864 8.864	43.6 42.7	-15.6	27.0 349.0	1.5 1.6	3.0	10.0	V-Bilog V-Bilog	QP QP	0.0 0.0	38.0 37.1	46.0 46.0	-8.0	36MBit data

INMC0071 112/139

	ORTH															C		\	K	S	Γ) [1	Γ.	\	S	1			1	•										RE\ df3.1	1	
Ŀ	=1V	1C	E	T: 8	202	MIC	22									•	4			9		4	١,	- 1			4							101	orl	0:::	0 81 11	VIVAC	2000		06/23/200	3	
S	eria	l Nur				IVIIC	32																											VV	ork		er: II te: 0					1	
		Custo		_	NT	ERI	ME	C Te	ech	nol	ogi	ies	Со	rpc	orat	ior	1																		•		re: 8]	
		Atten		_																											_	p.	rom				ty: 3		1			4	
		. Ker Teste			Hol	ly A	\sh	kan	nej	had	i												Po	ower	: 1	20\	VAC	, 60)Hz			Dä	, OIA	euic			te: E					1	
	SPE	CIFI	CA	TIC	ONS	5																																					
	Spe	cifica Me					art :		47((C)																											ar: 2 ar: 1					-	
MPL		CAL	CU	LA ¹	ΓΙΟ	NS																																				1	
		d Emis					-																					-		t Fac	ctor +	Exte	rnal A	Atteni	uatio	n		_	_				
MM			SIOI	1S. F	Auju	stea	Leve	ei – i	vieas	surec	u Le	ever	+ 113	anso	Juce	I Fa	ICIOI	+ (abli	e All	enu	allon	rac	3101 +	EXI	terna	aı All	enua	ilor														
dio in	stall	led in	СК	-30 l	nan	d-he	ld s	cann	er																																		
		RATI																																									
.11(g) mo	dulat	ion	, tra	nsm	ittin	g hi	gh c	han	nel a	at 6,	36,	or 5	54M	bit.																												
VIA:	TIΩ	NS F	Đ/)M	TE	ST.	SI	A NIE	ΔE	חי																																1	
devia			- 111	-AVI		ÐΤ	91/	WI.	(a1)	.0																																	
SUL	LTS	i e																																			R	lun	#	Ĺ			
SS																																								6		ł	
her																									T																	1	
																									1				//	/	0	/	١,	li	~ /	1_	9						
																												;	4	0	y	/,	מת		V		_						
																									L			-					Те	stec	і Ву	r:]	
	80	0.0		Т	Т						T	П		T				Τ						П	Т				T												1		
		4	+	+	+						\dashv	+	+	+			+	+	+				+	+	+	+			+	+		+						+			+		
	70	0.0	+	+	+		H			H	+	+	+	-	\vdash	-	+	+	+	+		-	+	+	+	+		H	+	+	H	+	\vdash		H		+	+	+				
																						•																					
	60	0.0	4	1	1		Ш			Ш	4							1	1	-				Ш	1			Ш	_	-					Ш		11						
	50	, ,]																																									
_	50	,.v]										T					T					A			T	T					П												
dBuV/m	,,	ζ																				Ī																					
30,	40	יט.ע	1	\top	T		П			П	\exists	1		T			1							Ħ		T		П			П				П								
귱																																											
	30	0.0	+	+	+		H	+	+	H	+	+	+	+	+		+	+	+	+	Н	+	+	+	+	+		H	+	+	H			+	Н			+	+				
	20	0.0	4	+	+	-	Н	+	+	Н	+	+	\perp	+	-		+	+	+	-		+	+	\vdash	+	+		Н	+	+	H	-		+	Н	-		+	\perp				
	10	0.0			\perp		Ш			Ш														Ш				Ш							Ш								
	^	,																																									
).0 + 2000	O.)O	2	100	0.00	nO	2	200	On)O	2	300	0.0) ∩	,	240) 	000		250)U ()በበ	,	260	0.0	OU.	2	700	0.00	10	280)() ()	Oυ	2	900.	በበበ)	300	- 0.000		
	2	_000		, 0	_	, 00	,.UC		~	_00	.00	,0	2	JU(٠.٠	,,,	2	- TU	٠.٠.	,00					4	_00	.0.0	50		., 00	J.UU		۷.	.0.0	50	2	550.	500	,	5500			
																						IV	1H	Z																			
																									_						-	5.	4							1,-		4	
	Fre	eq			Am	plitu	ide		Fact	tor		Azi	imut	h		Hei	ght		Di	stan	се			uation		Po	olarity	.	De	etect	or		tance stme			juste		Spec		it	ompared to Spec.	`	
	(MH	· Iz)				lBu∖	/)		(dB	•	_	(de	gree		(met	ers)	┙	(n	neter	_		(di	В)									dB)			uV/m	1		ıV/m		(dB)	Comment	
		2483 2483					80.8 29.4			1.0 1.0				3.0 1.0			2. 1.				3.0			16.0 16.0			Hori Hori			AV AV				0.0 0.0			7.8 6.4		54 54			6MBit da 36Mbit d	
		2483					9.4			1.0				0.0			1.				3.0			16.0			Hori			ΑV				1.0			6.4		54			54MBit d	
		2483	3.50	00			8.7			1.0	0		23	6.0			1.	2			3.0)		16.0			Hori			AV				0.0		45	5.7		54			36Mbit d	
		2483 2483					28.6 28.4			1.0 1.0				3.0 5.0			1. 1.				3.0			16.0 16.0			Hori Hori			AV AV				0.0 0.0			5.6 5.4		54 54			54MBit da 6MBit da	
		2483					5.5			1.0				1.0			1.				3.0			16.0			Hori			PK				0.0			2.5		74			36Mbit da	
		2483					5.5			1.0				0.0			1.				3.0			16.0			Hori			PK				0.0			2.5		74			54MBit d	
		2483 2483					4.5 3.3			1.0 1.0				3.0 4.0			1. 2.				3.0			16.0 16.0			Hori Hori			PK PK				0.0 0.0			1.5).3		74 74			54MBit d 6MBit da	
		2483					is.s i2.8			1.0				4.0 6.0			1.				3.0			16.0			Hori			PK				1.0).S).8		74			36Mbit d	
				00			9.9			1.0				5.0			1.				3.0			16.0			Hori			PK			-	0.0			3.9			.0		6MBit da	

INMC0071 113/139

	MC						OA	TS I)/	ATA	S	Н	EE:	Γ							es (22)
\		802MIG2															Wor	k Order:	INMO	0081	06/23/2
Seria	al Number:																		06/25		
	Customer:	INTERME	EC Te	echnolo	gies Cor	orati	ion									1		erature:			
	Attendees:																	umidity:			
	t. Ref. No.:										400	V40 /	2011-		Ba	rome		ressure			
	Tested by: ECIFICATI		nkan	nejhad						Power:	120	VAC,	OHZ					Job Site:	EV01		
	ecification:		15.2	247(c)														Year	2001		
Ор		ANSI C6		.+1 (0)															1992		
/IPLE	CALCULA																				
Radiate	ed Emissions:	Field Streng	gth = M	leasured l	_evel + Ante	nna Fa	ctor + C	able Factor - A	mplif	ier Gain +	Distar	nce Adju	stment F	actor +	+ Exte	rnal At	tenuat	tion			
		Adjusted Le	vel = N	Vleasured	Level + Tra	nsduce	r Factor	+ Cable Atten	uatior	Factor +	Extern	al Atten	uator								
MMEN		hand hald																			
o insta	lled in CK-30	hand-held	scann	er																	
OPE	RATING N	ODES																			
l1(g) m	odulation. T	ransmitting	Mid C	Channel a	t 6Mbit.																
	ONS FROM	TEST ST	TAND	DARD																	
eviatio																					
SULTS	S																		Run		
s																				2	!
er											ı										
er																. ,	, 5	1 /	7		
													1/	21	/,	M	Ly	1.	/		
													110	ny	/\	, -	P				
																Tes	ted E	Ву:			
8	0.0								1												_
	+																				+
7	0.0														-						-
_																					
ь	0.0																				
																					+
5	0.0																				
5																					
孨 ₄	0.0																				_
dBuV/m ⁴																					
_	_									1											
3	0.0																				
2	0.0																				
_	0.0																				
1	0.0														-						_
	0.0			+			+			+			-				_				-
	4000.000		500	00.000		600	0.000		700	0.000		8	0.000	00		ç	9000	.000		100	00.000
									IV	lHz											
										External						tance					Compar
Fr	req	Amplitude		Factor	Azimuth		Height	Distance		ttenuation	Po	olarity	Dete	ctor	Adju	stmen		Adjusted		. Limit	Spec
	Hz)	(dBuV)		(dB)	(degrees		neters)	(meters)		(dB)					(dB)		dBuV/m		IV/m	(dB)
	7000 000	23.	6	11.0	211	.0	1.			0.0	H-	-Horn	Α	V		0.0	0	34.6		54.0	-1
	7326.200																				
	7326.200 7326.200 7326.200	22. 37.	9	11.0 11.0	226 211		1. 1.			0.0		Horn Horn	A P			0.0	0	33.9 48.2		54.0 74.0	-2

INMC0071 114/139

	THWEST MC												C	A	Ţ	S		D	A	T	A	S	H	ΙĒ	Ε	T											RE df3.1 03/10/200
		EUT:		MIG	2																									W	ork		er: I				
Ser	ial Num Custo			ERN	IEC	Tec	hnc	olog	jies	Co	orpo	orat	ion	ı																Ten	npe		te: 0		:5/U	ა	
	Attend	dees:																													Hur	nidi	ty: 3	88%			
Cu	st. Ref. Teste		Rod	Pe	oau	in														Powe	er:	120	/AC	2. 60)Hz			Ва	rome	etric			re 3 te: E				
	PECIFIC	CATI	ONS	;																				,													
Sį	ecifica Met	tion: thod:				.24	7(c))																									ar: 2 ar: 1				
	CALC	CULA	TIO	NS																																	
	ed Emis:																									Fact	or + E	Exter	nal A	ttenu	uatio	n					
MME lio inst	NTS alled in	CK-30	hand	i-hele	d sca	nner																															
	ERATII nodulati				rate																																
/IATI	ONS F	ROM	TE	ST S	TAT	IDA	RD																														
eviati SULT	ons.																																l i	Run	#		
SUL	<u> </u>																																	Kun	#	8	3
ner																					T				0	_				,	0						
																									Poc	ly	26	L	X	el	eng	>					
																				_				_		V				_	l By						-
	80.0 _T																				_													_			
																																					4
	70.0																																	+			
(60.0																																				
																																					_
	50.0													•																				+			
dBuV/m	40.0													_																							
dΒι																																					
;	30.0					H							+																					+			
	,,																																				
	20.0																																				
	10.0																																	+			
	0.0 +	000	10	510	000	1	QE?)))	100	11	052	10.0	00	10	541	200	00	10	SE!	0.000	<u> </u>	105	30.0	200	10	570	000	1	050	0.0	00	10	500	00	Λ .	100	 800.000
	19000	.000	19	510	.000	, 1	3 32	٠٠.٠	UUU	13	9 03	0.0	UU	19	J4(J.U(JU		oot MH		,	190).∪.(JUU	193	υίU	.000	, 1	<i>3</i> 00	u.U	UU	19	วยบ	.00	U	190	000.000
																		•	IVI F	12																	
	req			plitud			ctor			zimu			Hei			Dista			Atte	ternal		Po	larity	<i>y</i>	Det	ecto	r i	Adjus	ance			usted			c. Lir		Compared Spec.
(N	/Hz) 19535	5.740	(d	BuV)	2.2	((dB) 8	3.5	(de	egree 29	es) 94.0		met	ers) 1.2		(me	ters) 3.	0	((dB) 0	.0-	Н-Ніс	gh F	lorr	P	١V		(0	dB) 0	.0	đВ	uV/m	_	αB	SuV/n 54	n 4.0	(dB) -13.
	19535 19535				2.1			3.5			3.0			1.2			3.					/-Hiç				۱۷				.0		40				4.0	-13.
		(40)		4(0.6		8	3.5		29	4.0	1		1.2	2		3.	U		U	υ.	H-Hiç	ın ⊢	10rr	H	PK			U.	.0		49	7. 1		14	4.0	-24.

INMC0071 115/139

	RTHWEST				OA'	TSI	ATA	SHE	FT				F df3
E	MC	000M100				TOL	AIA	OHL			tools C	INMOSS 2	06/23/2
Se	EUT: rial Number:	802MIG2 C2								W		INMC0071 07/15/03	
		INTERMEC	Technolog	gies Corpo	ration					Te	mperature:		
	Attendees:										Humidity:		
Cı	ust. Ref. No.:	Holly Ashk	anneihad				Power:	120VAC, 6	0Hz	Barometri	c Pressure Job Site:		
ST SI	PECIFICATI		aojaa				1 0 11 0 11	1201710, 0	<u>.</u>		COD Cito		
S	pecification:											2001	
MPL	Method: E CALCULA	ANSI C63.4									Year:	1992	
	ited Emissions:		= Measured L	evel + Antenna	Factor + Cab	le Factor - Ar	nplifier Gain + D	Distance Adjus	stment Factor	+ External Atter	nuation		
	ted Emissions:	Adjusted Level	= Measured l	Level + Transd	ucer Factor +	Cable Attenua	ation Factor + E	xternal Attenu	uator				
	talled in CK-30	hand-held sca	nner										
T OP	ERATING N	IODES											
	(b) 11Mbit High		2MHz) and B	luetooth Char	nel 2462MHz								
VIAT leviati	IONS FROM ions.	TEST STA	NDARD										
SULT												Run#	
s												3′	1
er													
CI									. / .	۸ /.	11	7	
									Holy	Ale	$\gamma \sim$		
									1100	Teste			
										10310	1.		
	80.0												
	70.0												4
	60.0												
	00.0												
													rt .
	50.0												Ħ
Ē													-
dBuV/m	40.0												-
9									•				
-	30.0								•				•
	3.0												
	20.0								•				
	20.0								•	•			
	10.0												+
	0.0												\dashv
	10.000						100.000					10	00.000
							MHz						
	Eroa	Amplitude	Footer	A zine: 4h	Hoicht	Diotanas	External	Dolo-it:	Detroto	Distance	Adiustad	Spec. Limit	Compare
	Freq MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	dBuV/m	Spec (dB)
,,	248.867	42.0	-15.6	318.0	2.3	3.0	10.0	V-Bilog	QP	0.0	36.4	46.0	
	248.867	37.7	-15.6	257.0	1.1	3.0		H-Bilog	QP	0.0	32.1	46.0	-1
	959.946 959.968	23.4 23.4	-3.2 -3.2	33.0 117.0	1.2 1.0	3.0 3.0		V-Bilog H-Bilog	QP QP	0.0 0.0	30.2 30.2		-1 -1
	270.506	29.8	-3.2 -15.1	218.0	1.6	3.0		V-Bilog	QP QP	0.0	24.7	46.0	-2
	270.501	23.5	-15.1	75.0	3.0	3.0		H-Bilog	QP	0.0	18.4	46.0	-2

INMC0071 116/139

NORTHWES					OA	TS C	ATA	SHE	EET				F df: 06/23/2
		802MIG2									Work Order:	INMC0071	
Serial N	umber:	C2										07/14/03	
		INTERME	C Technolo	gies Corpo	ration					T	emperature:		
	ndees:									_	Humidity		
Cust. R								1001/10	2011	Baromet	ric Pressure		
			kannejhad				Power:	120VAC, 6	60Hz		Job Site:	EV01	
T SPECI			15 247(a)								Vaam	2001	
		ANSI C63	15.247(c)									1992	
MPLE CA			.4								rear.	1992	
			h = Measured	Level + Antenn	a Factor + Cah	le Factor - Ar	nplifier Gain + [Nistance Adiu	stment Factor	+ Evternal Δtte	nuation		
							ation Factor + E						
MMENTS		,											
Γ OPERA	TING M			Bluetooth High	n Channel (24	30MHz)							
leviations.	FROM	TEST ST	ANDARD										
SULTS s												Run #	4
er													
									Holy	Al	ingli	7	
									7100	Test	ed By:		-
80.0													_
30.0													
70.0	\blacksquare												
60.0													
	\sqcup	•											
50.0													
W//m 40.0		A											
-													
30.0													
20.0	+												
10.0													
0.0 100	00.000		1500.000	:	2000.000		2500.000	3	3000.000	3	500.000	40	— 000.000
							MHz						
	Т		T	1			External		1	Distance		1	Compare
Freq (MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec (dB)
	40.000	31.1	1	1	1.4	3.0		V-Horn	AV	0.0			(ub)
	40.000	27.7			1.0	3.0		H-Horn	AV	0.0			
12	40.000	41.6			1.0	3.0		H-Horn	PK	0.0			
12.	4()()		0.0	0.0	1.0	0.0	20.0	1110111		0.0			

INMC0071 117/139

	RTHWEST				OA	TS D	ATA	SHE	EŢ				RI df3.
		802MIG2								v	Vork Order:	INMC0095	06/23/20
Se	rial Number:											07/15/03	
		INTERMEC Cheryl Whi		gies Corpo	ration					Те	mperature: Humidity:		
Cı	ust. Ref. No.:	_								Barometr	ic Pressure		
		Greg Kiem	el				Power:	120 V			Job Site:	TE01	
	PECIFICATI pecification:		5.247(c)								Year:	2001	
	Method:	ANSI C63.4										1992	
	E CALCULA ated Emissions:		= Measured I	evel + Antenna	a Factor + Cah	le Factor - An	nnlifier Gain + F	Distance Adius	stment Factor	+ External Atter	nuation		
Conduc	ted Emissions:	_					-	-		- External / titol	idation		
OMME dio ins	ENTS talled in CK-30	hand-held sc	anner										
JT OP	PERATING IV	ODES											
802.11	(b) 11 Mbit Hig	h Channel (24	62 MHz) & Bli	uetooth High (Channel (248)	0 MHz)							
	IONS FROM	TEST STA	NDARD										
deviat												Run#	
iss												Kuii #	
her													
ner									4 - 1	J. Kif	2		
									A DO				
										Teste	d By:		
	80.0												_
	00.0												
	70.0												
	70.0												
						•							
	60.0												
	-												+
	50.0					<u> </u>							
Ä													
dBuV/m	40.0												
쁑													
	30.0												
	20.0												
	10.0												
	0.0												
	1000.000											100	00.000
							MHz						
							1911 12						
	_						External			Distance			Compared
	Freq MHz)	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
- (2483.500	28.1	0.5	93.0	1.3	3.0	20.0	H-Horn	AV	0.0	48.6	54.0	-:
	2483.500	28.0	0.5	154.0	1.2	3.0		V-Horn	AV	0.0	48.5	54.0	
	2483.500	41.0	0.5	154.0	1.2	3.0	20.0	V-Horn	PK	0.0	61.5	74.0	-12

INMC0071 118/139

	RTHWEST								O	A	TS	3 [)/	\T	Α	S	HE	E	T							
	MC	0008	1100							<i>,</i> ,				7.	<i>,</i> ,				_			101		LINIMA	0074	06/23
Se	erial Number:	802N C2	IIGZ																			WO		r: INMC e: 07/14		
	Customer:		RMEC	Tec	hnok	ogies	Corp	ora	tion													Tem	peratur		,,,,,	
	Attendees:																					H	lumidity	/: 41 %		
С	ust. Ref. No.:																			В	arome			e 30.04		
те	Tested by: PECIFICATI		Ashk	anne	ijhad									Pov	ver:	120V	AC, 6	OHZ					Job Site	e: EV01		
	pecification:		Part 1	5.247	7(c)																		Yea	r: 2001		
	Method:				(0)																			r: 1992		
	E CALCULA																									
	ated Emissions:																		actor +	Exte	nal Att	enuat	ion			
	cted Emissions:	Adjust	ea Level	= Mea	asured	Level	+ Iran	sauc	er Fac	tor +	Cable	Attenu	lation	Facto	r + Ex	ternai.	Attenua	itor								
02.11	PERATING N (b) 11Mbit High	n Chan	nel (246			Blueto	oth Ch	anne	el 2462	2MHz																
	IONS FROM	ITES	T STA	NDA	RD																			Run	#	
s	10																							IXUII		9
er																							. `)	
																		H	61	y	A	S	my		/	
																	•				Tes	ted I	Зу:			•
	80.0				$\overline{}$																					
	70.0																									
	70.0																									
	60.0			-																						
				$\perp \perp$																						
	50.0						:																			
_																										
5																										
dBuV/m	40.0			++	+								\Box													
뜅																										
	30.0		_	++										\perp	\perp							+				
	20.0																									
	20.0																									
	10.0		_	++	+									+	+							+				\blacksquare
	00																									
	0.0 4900.000	40	10.000	n ,	1920.	000	401	30.0	100	40	40.0	00	405	50.00	· · ·	4060	0.000	40	70.0	00	400	7 00	0 40	00.000	<i>E1</i>	— 00.00
	4900.000	49	10.000	4 ر	₽ 9 ∠U.	UUU	493	30.0	JUU	49	40.0	UU		50.00 1Hz		496(.000	45	70.0	UU	498	J.UU	U 49	90.000) 5(JUU.UU
													IV	11 12												
			\Box											Extern							stance					Compa
	Freq MHz)		litude BuV)		ictor		zimuth egrees)		Heigl			tance		Extern ttenua (dB)	tion	Pola	ırity	Dete	ector	Adj	stance ustmen (dB)	t /	Adjusted dBuV/m	Spec.	. Limit	Compa Spe (df

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
4923.938	33.0	6.2	136.0	1.2	3.0	0.0	H-Horn	AV	0.0	39.2	54.0	-14.8
4923.938	31.9	6.2	180.0	1.2	3.0	0.0	V-Horn	AV	0.0	38.1	54.0	-15.9
4923.938	45.2	6.2	137.0	1.2	3.0	0.0	H-Horn	PK	0.0	51.4	74.0	-22.6
4923.938	44.4	6.2	180.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.6	74.0	-23.4
•		•			•	•	•				•	

INMC0071 119/139

NORTH												()	A	T	S	L)/	4	Γ	1	S	H	E	Ε	T											F df: 06/23/2
	EUT:		MIC	3 2																										Wo					007		
	l Number:				_																											Date			/03		
	Customer: Attendees:	INI	EK	WEC	; I €	ech	nol	ogı	es	Cor	por	atio	on																			idity					
	. Ref. No.:																											Baro	ome			_	_		_		
	Tested by:	Hol	lv A	Shk	can	neil	had	_											P	owe	r:	120\	/AC	. 60)Hz			Dark	Jille			Site					
	CIFICATION																							,													
Spe	cification:					47(c)																									Yeaı	r: 20	001			
	Method:			63.	4																											Yea	r: 19	992			
	CALCULA																																				
	d Emissions:			-														-								-acto	r + E)	xtern	al Att	tenua	ation						
MMEN		Aujus	steu	Leve	1 – 1	vieas	surec	u Le	ver	IIIa	iisuu	cei	raci	UI T	Cab	ie A	llerit	ialio	пга	ClOI	E.	KLEITIG	ai Au	enue	itoi												
io instal	led in CK-30	hand	d-he	ld sc	ann	er																															
	RATING M			1 (24	62M	Hz):	and	Blue	etoo	oth C	hanı	nel :	2462	мн	,																						
	NS FROM					•		ыш	eloc	our C	пап	iei i	2402	IVIII	4																						
leviatior	ıs.																																				
SULTS																																	R	un i			
s																																				35	
																					_																
er																									4	0,		A	l	in	1		9				
																								2	1/2	, u) /	/ 4	Tes	ted	By:					_	
80	0.0		1		_																																ı
					\perp							+			1				_					1											\perp		
70	0.0				+																																
60	0.0				+							+																									
50	0.0				+							+																									
																										*											
m/∕udb	0.0				T																					^											
30	0.0				+																																
20	0.0				+							+																							+		
10	0.0				+							+																							_		
ſ	0.0																																				
	9000.000	19	10	0.00)0	19	200	0.00	00	193	300	.00	0	194	00	.00	0 ′		00. ЛН		1	1960	0.0	00	197	00.0	000	19	800	0.00	0	199	00.0	000	20	0000	0.000
Fr (MI			ıplitu IBu\		'	Fact (dB				muth			eigh eter			istar mete				ernal uatioi B)	n	Pol	larity		Dete	ector		Dista djust (dE	ment		Adju:			Spec. dBu	. Limit V/m		ompar Spec (dB)
	9695.760	,-		1.5			8.7	_		200		•		1.0			3.0)	, -		0 v	/-Hig	h H	orr	Α	V	1	,	0.0			40.			54.0)	
	9695.760			8.6			8.7			270				1.0			3.0					l-Hig			Α	V			0.0			37.			54.0		-1
	9695.760			9.7			8.7			200				1.0			3.0					-Hig			P				0.0			48.			74.0		-2
				8.0			8.7			270				1.0			3.0					l-Hig				K			0.0			46.			74.0		-2

INMC0071 120/139

NC	RTHWEST												RE'
	MC				OA	TS [ATA	SHE	EET				df3.1
		: 802MIG2								V	Vork Order:	INMC0071	
Se	erial Number											07/14/03	
		INTERMEC	Technolo	gies Corpo	ration					Te	mperature:		
	Attendees									D	Humidity:		
C	ust. Ref. No.	: Holly Ashk	anneihad				Power	120VAC, 6	10Hz	Barometr	ic Pressure Job Site:		
TEST S	PECIFICAT		amejnaa				i ower.	120170,	701 IZ		oob oite.	L V 0 1	
	Specification	FCC Part 1										2001	
CAMPI		ANSI C63.4	,								Year:	1992	
	E CALCUL	: Field Strength	= Measured I	evel + Antenna	a Factor + Cah	le Factor - A	mnlifier Gain + I	Distance Adius	stment Factor	+ External Atte	nuation		
		: Adjusted Level						-					
COMMI													
Radio ins	stalled in CK-3	0 hand-held sca	anner										
	PERATING												
Tx 802.11	1(g) 6Mbit High	n Channel (2462	MHz) and BI	uetooth Chanı	nel 2462MHz								
DEVIA	TIONS ERO	M TEST STA	NDARD -										
No devia		IE0101A											
RESUL	TS											Run#	
Pass												2	9
Other								l					
Other									1/	ly An	Lin 1	~ <i>()</i>	
									401	4 /m	July C		
										Teste	a By:		
	80.0												
	00.0												
													r
	70.0												_
	60.0												_
	50.0												ſ
_	50.0												
m/													
≥	40.0												
dBuV/m									•				
٥	30.0								•				
	30.0												
	20.0							•					-
								•					
	10.0												
	0.0		-	-			100.555		1				→
	10.000						100.000					10	000.000
							MHz						
							External		1	Distance			Compared t
	Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
((MHz) 248.867	(dBuV) 7 41.3	(dB) -15.6	(degrees) 284.0	(meters)	(meters)	(dB) 10.0	V-Bilog	QP	(dB)	dBuV/m 35.7	dBuV/m 46.0	(dB) -10.3
	248.867 248.867		-15.6 -15.6	284.0 252.0	1.0	3.0		v-віюд H-Bilog	QP QP	0.0	35.7 32.1	46.0 46.0	-10. -13.
	170.969		-18.1	50.0	1.0	3.0		V-Bilog	QP	0.0	21.3		-21.
	960.013	3 23.6	-3.2	73.0	1.0	3.0		H-Bilog	QP	0.0	30.4		-23.
	960.721	23.4	-3.2	309.0	1.2	3.0	10.0	V-Bilog	QP	0.0	30.2	54.0	-23.
	170.961	24.5	-18.1	100.0	2.2	3.0	10.0	H-Bilog	QP	0.0	16.4	43.0	-26.

INMC0071 121/139

NORTHWEST							(AC	T	S	D	A	TΑ	S	Н	E	Ī										f df
	EUT:	802MIG2																			Wor	k Or	der:	INM	C0071		06/23/2
Serial Nun	nber:	C2																						07/1			
Custo	mer:	INTERME	C Tech	nolo	gies C	orpo	ratio	n												1	Temp	erati	ure:	75			
Atten	dees:																				Н	umid	lity:	41%			
Cust. Ref.																			Bar	ome				30.0			
		Holly Asl	nkanne	jhad								F	ower:	120V	AC,	60Hz	:					Job S	ite:	EV0	1		
T SPECIFI																											
		FCC Part		(c)																				2001			
		ANSI C63	3.4																			Y	ear:	1992	<u>:</u>		
MPLE CAL							_				_	116	0	D: 4													
Radiated Emis		_													-		it Fac	tor + i	Exterr	ıaı Att	enua	tion					
MMENTS	510115. /	Hujusteu Le	vei – iviea	Sureu	Lever+	Halisu	lucei	acioi	Cal	ne All	enual	uonra	acioi + i	Externa	Allen	uatoi											
o installed in	CK-30	hand-held	scanner																								
ootaou	0.1.00																										
OPERATI	NG M	ODES																									
02.11(g) 6Mbit			62MHz) a	and Blu	uetooth	High (Chan	nel (248	вомн	lz)																	
/IATIONS F	ROM	TEST ST	ANDA	RD																							
eviations.																											
SULTS																								Run	#		
s																										15	
er																								_			
																	/		Λ	1		1	1	/			
																4	H	4	19	N	m	1					
																71	U	0	_							_	
																				Test	ted E	Зу:					
80.0 _T																											
				$\overline{}$							$\overline{}$																-
70.0 -				-					+		+	-		-												\dashv	
60.0 -				-					-		+	-													+	\dashv	
		•																									
†		7																									
50.0				-							\rightarrow														1	-	
E																											
≶ Ì																											
3 40.0 +				-					_		\dashv														_	\dashv	
W//Ng 40.0 -																											
_																											
30.0				+							\neg															-	
20.0																										_	
20.0																											
10.0																											
10.0									T																		
0.0																											
	000		4500	000			2022						000								752		· _		-	~~	
1000	.000		1500.	.000		2	2000	0.000			2	2500.	.000		;	3000	.000	J		3	3500	0.000	J		4	UUU	.000
												MH	17														
												IAIL	14														
											$\overline{}$	Ext	ternal						Dist	ance						Co	mpar
Freq		Amplitude	Fac		Azim			eight		Distan			nuation	Pol	arity	D	etecto	or	Adjus	tment		Adjuste			c. Limit		Spe
(MHz)		(dBuV)	(dl	3)	(degre	ees)	(m	eters)	(meter	s)	(0	dB)			<u>L</u>			(d	B)	⊥'	dBuV/	m	dB	uV/m	L	(dB
	0.000	30.	5	-6.5	3	60.0		1.4			3.0		20.0	V-F	Horn		ΑV			0.0)	4	4.0		54.0)	-
12-70		27.	3	-6.5		0.0		1.0			3.0		20.0	H-H	Horn		ΑV			0.0)	4	1.1		54.0)	-
1240	0.000	21.						1.4			3.0		20.0		lorn		PK					_					
		42.	3	-6.5	3	60.0		1.7			5.0		20.0	V -I			1 11			0.0	J	5	5.8		74.0)	-

INMC0071 122/139

	THWEST MC				OA	TS D	ATA	SHE	ET				F df
드		000MICO			07.	. • -	77 (17 (<u> </u>			Varia Ordan	LINIMODOGE	06/23/2
Sori	ial Number:	802MIG2								V		INMC0095 07/15/03	
0611			Technolo	gies Corpo	ration					Te	mperature:		
	Attendees:			g.00 00.po							Humidity:		
Cus	st. Ref. No.:									Barometr	ic Pressure		
		Greg Kiem	el				Power:	120 V			Job Site:	TE01	
	PECIFICATI												
Sp	ecification:											2001	
IDI E	Method:	ANSI C63.4	•								Year:	1992	
			= Measured L	evel + Antenna	a Factor + Cab	le Factor - An	nplifier Gain + D	Distance Adius	stment Factor	+ External Atte	nuation		
							ation Factor + E						
име													
insta	alled in CK-30	hand-held sc	anner										
OPE	ERATING M	ODES											
	g) 6 Mbit High		2 MHz) and B	luetooth High	Channel (24	30 MHz							
-	-	•	•	_	•								
IATI	ONS FROM	TEST STA	NDARD										
eviatio													
ULT	S											Run #	
3													2
er													
31										11/5/	2		
									An	U. Kit			
									NA	-			
										Teste	ed By:		,
							_						
8	30.0												\neg
_													
/	70.0												
6	60.0					\$							
	_												+
5	50.0					<u> </u>							
Ε						*							
س/۸ngp	100												
ੜੂ⁴	40.0												
븅													
3	30.0												
2	20.0												-
4	10.0												
,	10.0												
	0.0												_
	1000.000											100	00.00
	.000.000												
							MHz						
		1					External			Distance			Compar
	req	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spe
	-	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB
	ИНz)												
	/IHz) 2483.500	28.2	0.5	96.0	1.3	3.0	20.0	H-Horn	AV	0.0	48.7	54.0	
	ИНz)		0.5 0.5 0.5	96.0 156.0 96.0	1.3 1.2 1.3	3.0 3.0 3.0	20.0 20.0 20.0	H-Horn V-Horn H-Horn	AV AV PK	0.0 0.0 0.0	48.7 46.9 61.6	54.0	

INMC0071 123/139

NORTHWEST											O	A	T:	S	D	A	7	Δ	S	HE	E										d
EMC	IT. 6	0001	uea.								_	′ `	Ш	_		′`	"	_							14.		O	HITST	VIC.	074	06/23/
Serial Numb	_	302N	IGZ		—																				w	ork (Order Date	_			
Custom	_		RME	EC T	ech	nole	ogie	s C	orpo	orat	ion														Ter	nper	ature	_		-	
Attende							- 3																				nidity				
Cust. Ref. N	o.:																						В	arom	etri	c Pre	ssure	30.	.04		
Tested I			Asl	hkar	ınejl	had											Powe	r: 1	120V	AC, 6	0Hz					Jol	b Site	: EV	01		
T SPECIFICA				4.5	24-4																								• 4		
Specification Method					247((c)																					Year Year				
IPLE CALCU				3.4																							rear	. 19	92		
Radiated Emissio				gth = I	Meas	ured	Leve	l + A	ntenr	na Fa	ctor	+ Ca	ble Fa	actor	- Am	plifie	r Gain	+ Di	istance	e Adjus	stment Fa	actor +	Exte	ernal A	Atten	uatior	n				
nducted Emissio	ns: A	Adjust	ed Le	evel =	Meas	sured	Leve	el + 1	Frans	duce	r Fac	tor +	Cabl	e Att	enuat	tion F	actor	+ E>	kternal	Attenu	uator										
MMENTS																															
o installed in CK	(-30	nand-	held	scan	ner																										
OPERATING	3 M	ODE	S																												
02.11(g) 6Mbit H	igh C	hann	el (24	462M	Hz) a	nd B	lueto	oth	Char	nel	2462	MHz																			
/IATIONS FR eviations.	OM	TES	rs	AN	DAR	(D																									
SULTS																												Ru	n#		
s																														2:	3
er																					H	, .		۸		1.	1	. ,	7		
																						l	6	19	رم	u	γ/L	~	/		
																					97	ָ ס	0	/			,				
																								Te	stec	d By:					
																		-													
80.0			_	\top	\neg				_			_				_									_			_			
70.0			Т																												
70.0				\prod		П																							П		
60.0			\perp	1	\perp	\sqcup		Ш		\perp	_	-	_	Ш	_	-	\vdash					44				\Box	\perp			\perp	
🛨			+	+	+	\forall		\Box						2			+													+	
50.0			+	++	+	+		\vdash		+		+		_		+	\dashv	Н			+++					+	+		\forall	+	-
E																															
40.0 40.0					\perp	Ш																									
~ ~~ \											Τ			*												П			П		
ਰ																															
30.0		+	+	++	+	+	-	H		\vdash	-	-	-	+	-	-	\vdash	Н			+++	+			+	++	++	-	H	+	
20.0																															
20.0				\Box	\top	\Box		П		П												T		П		П			П	\top	
10.0			+	++	+	\vdash			-	-	_	-	-	\perp	-	-	\vdash				\Box	++	-		-	\Box	+			\perp	\square
0.0			_							+			-							-		+ +	_	_	+			_	_		-
4500.00	00	46	00.0)00	47	700.	.000		480	0.0	00	49	00.0	000	5	000	0.000		5100	0.000	520	00.00	00	530	0.0	000	540	0.00	00	55	00.000
																MI	Hz														
				_											-							-									_
Freq		Amn	litude	,	Facto	tor	,	Azimı	uth		Heigl	ht	L!	stano	. e		ternal nuatio		Pola	rity	Dete	etor		stance ustmei		Δdi	usted	Sr	nec I	Limit	Compar
(MHz)			iituue SuV)		(dB			degre			mete			neter			(dB)	"	1 010		Detec	JiOi		dB)			uV/m		iBu∨		(dB)
	38		33.	.5	<u> </u>	6.2			26.0	<u> </u>		1.3	<u> </u>		3.0		0.	.0	H-H	orn	A۱	/			.0		39.7			54.0	
4923.9																														-	
4923.9 4923.9		_	32.	2	_	6.2	2_	_ 1	88.0	_	_	1.2	_		3.0	_	0.	.0	V-H		A۱		_	_ 0	0.0		38.4			54.0	
	38					6.2			88.0 28.0			1.2			3.0		0. 0. 0.	.0	V-H H-H		A\ Pł				0.0		38.4 53.2			54.0 74.0	<u></u>

INMC0071 124/139

NORTH											()	۷.	TS	5	D,	A'	T/		S	HE	ĒΕ	T									(F df: 06/23/2
	EUT:		MIC	32																						٧	Vork				C007	1	
	Number:			450	T	-1:		! -	_		-4'															_				07/1	5/03		
	Customer: Attendees:	INI	EKI	MEC	I e	chn	1010	gies	Co	rpor	atic	n														Те		eratu ımidi					
	. Ref. No.:																							В	aron	netri		ressi			4		
	Tested by:	Hol	ly A	shk	ann	nejh	ad										Р	owe	: 12	20V	AC, 6	0Hz			u. O			ob Si					
	CIFICATI																																
Spe	cification:					47(c	:)																						_	2001			
ADLE /	Method:			63.4	<u> </u>																							Ye	ar: ˈ	1992	_		
	Emissions:		_	nath	= Me	22611	red I	evel	+ Δnt	tenna	Fac	or +	Cah	le Fa	ctor -	Δmn	lifier	Gain -	- Die	tanc	e Δdius	tment I	Factor	+ Evte	ernal .	Δtter	nuati	on					
	d Emissions:			_																	-												
MMEN																																	
o instal	led in CK-30	han	d-he	ld sc	anne	er																											
OPE	RATING N	OD	ES																														
02.11(g)	6Mbit High	Char	nel	(2462	MHz	z) an	d Bl	uetoc	oth C	hann	el 24	62M	Hz																				
/IATIO eviation	NS FROM	TE	ST	STA	ND	ARI	D																										
SULTS																														Run	#		
s																													-	\u_ii		33	
er																											,)			
																						H	0.	/	۸.	L	~/	1_	9	'			
																						H	M	7 /	4		V						
																									Te	este	d B	y:				_	
80	0.0												_													_							
						Ш								\perp																			
70	0																																-
70	0.0					П		П			T		T										Т									\Box	
60	0.0	+		\vdash	-	Н	+	+	+	++	+	+	+	-		+	\vdash		+	+			_	-	H	+	+	-	\vdash	_	++	+	
	٠ <u>،</u> ا																																•
	0.0					П		\Box			\dagger	\Box	\dagger						\top				•			\dagger	П		\Box			\Box	
W//NB p																							•										
₹ 40	0.0				1	Н	_		_		+	\perp	+	-		1			_							\perp					1	Ш	
<u>ത</u> ``																							A										
•																																	
30	0.0	-			+	\forall	+	+	+	+	+	++	+	+			+		+						\vdash	+	\Box	+	+		-	+	
20	0.0					Ц					1															1			Ш			Ш	
20																																	
10	0.0	+		+	+	\forall	+	+	+	+	+	+	+	+	+	+	+		+	+				+	+	+	+		+		++	+	
(0.0																																
	9000.000	10	110	n nn	ο.	102	- n	በበበ	10	ነვበቦ	٥٥	n 1	9/1	በቦ		10	500	በበበ	10	าลก	n nnn	107	, - י חחי)))	102	nn 4	ባበባ	10	ดกก) UU) J	ነበበባ 1) NN(
'	9000.000	18	, 10	0.00	U	192	.00.	000	18	300	.00	U I	941	00.0	100				18	900	0.000	191	00.0	000	190	00.0	UUU	19	900	.000) 20	iooc).000
																ı	ΜН	z															
				ı						T			1			Т	Ext	ernal	T					Di	stanc	e			1			Co	mpar
Fre	eq		plitu			acto			zimut			eight			tance		Atten	uatior	-	Pola	arity	Dete	ector	Adj	ustme			djuste			. Limit		Spe
(MI		(0	lBu∖		-	(dB)		(de	egree		(m	eters		(m	eters)		(0	iB)	Ļ						(dB)		dl	BuV/m		dΒι	uV/m	_L_	(dB
	9695.760			9.2			8.7			0.0			.1			.0					1 Hori		V			0.0			7.9		54.0		-
- 1	9695.760			8.4			8.7			0.0			.0			0.0					Horr		ν K			0.0			7.1		54.0 74.0		<u>-</u>
	9695.760			an			8.7		18	0.0		1	.0 .1		3	.0			J V−I	rııgt	n Horr n Horr	Р	r\		(0.0		41	7.3		74	1	-

INMC0071 125/139

AC Powerline Conducted Emissions

Revision 3/12/03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated	:
802.11(b)	
802.11(g)	

Data Rat	tes Investigated:
6 Mbits	
11 Mbits	

Output Power Setting(s) Investigated:	
Maximum	

Power Input Settings Investigated:
120 VAC, 60 Hz.

Software\Firmware A	Applied During Test		
Exercise software	FccTest.exe	Version	1/1/1601
Description			

The system was tested using special software developed to test all functions of the device during the test. The software allowed the selection of transmit channel and data rate. These were varied to produce the highest level of emissions. The OS of the host device was Ver. 0.00.00.0072

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
Radio (EUT)	Intermec	802MIG2	C2
Hand Held Scanner (Host for Radio)	Intermec	CK30	C2
Docking Station	Intermec	AD1	SAC0D2
Power Adapter	Elpac Power Systems	FW5012	001831

INMC0071 126/139

AC Powerline Conducted Emissions

Revision 3/12/03

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.8	No	Docking Station	Unterminated
Serial	Yes	1.8	No	Docking Station	Unterminated
LAN	No	6	No	Docking Station	Unterminated
DC Leads	PA	1.6	Yes	Docking Station	Power Adapter
AC Power	No	1.5	No	Power Adapter	AC Mains

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8591A	AAG	01/02/2003	12 mo
LISN	Solar	9252-50-R-24-BNC	LIN	12/12/2002	12 mo
High Pass Filter	TTE	H97-100k-50-720B	HFC	01/02/2003	12 mo

Test Description

Requirement: Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.

<u>Configuration</u>: The EUT will be powered from a host hand-held scanner (Intermec Model CK30) that could be connected to the AC power line through a docking station. Therefore, the measurements were made on the hand-held scanner used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-1992.

Completed by:

INMC0071 127/139

EMC			1DC				ISSIC									df3 06/23/2
	IT: 802MIG2													INMC0		-00/20/2
Serial Number												****		06/26/0		
	er: INTERMEC	Technol	ogies Co	orpora	tion							Tempe	erature:		-	
	s: Cheryl Whi								_				ımidity:			
Cust. Ref. No	o.:										Baro	metric Pı	ressure	30.04		
	y: Dan Haas						Power:	120VAC	, 60Hz			Jo	ob Site:	EV04		
ST SPECIFICA		7											V	2002		
	on: FCC 15.207 od: ANSI C63.4												Year:	1992		
MPLE CALCU													rear.	1992		
Radiated Emission	ns: Field Strength									nt Factor	+ External	l Attenuation	on			
onducted Emission MMENTS io installed in Ck						Cable Attenua	ation Factor + I	External Atte	enuator							
T OPERATING		ocking stati	1011. 602.1	I(b) IIIoc	ie											
nsmitting 11MB L	ow Channel															
VIATIONS FRO	OM TEST STA	NDARD														
SULTS ss											Line	L1		Run #	1	
ner								Π			0	0				
									(Davit	Maria	Š				
											Т	ested B	y:			
80																
70																
60					+											+
			\rightarrow	++++	+				1 1 1	1				1 1		
50		_														
1																
≥ 40																
Ang p 40		N n									A					
30 A0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M . M.	Augustus d	N.,A.,A		\ _{\\\} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩. ₩₩. ₩₩.	.								
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W Confidence of the confidence	Marya	1444	U w^^^\	L.,,///w _y ////	w/m///////////////////////////////////	han te me	- dada			And Internal				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M.A.	Airend	14/4/4	√√ √ √ √ √ √ √ √ √ 	Lullundly	w/l/-//////////////////////////////////	Markuk	- dade			Taxin only				
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	Mary	/ _{**} / _{*/} / _{*/} /	U w^^√\	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	w/////////////////////////////////////	Mareur	er de la de			The second				
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W d.a / pl	Ayrand	N ₄ , V ₄ ,	√ ••••••••••••••••••••••••••••••••••••	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	w/////////////////////////////////////	Markus	- dada			The state of the s				
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W ()	Amme	\\\\\\\	√ ,~^\	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	w/////////////////////////////////////	Mague	nd bele			Tailer to the				
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W Cod Va	Ammy		u _w .~√\	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	w/////////////////////////////////////	Marque	er de la de			Table begins				
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	Ammed		√√ √ √ √ √ √ √ √ √ 	Lulland	w/////////////////////////////////////	Maritud		10	w A	And J. Spain				100
30 20 10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	w \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ammy			L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MHz	Margue				Date to the same				
30 20 10	Amplitude (dBuV)	W	Ammy			Cable (dB)		Margue	D				djusted dBuV	Spec. Li dBuV	imit	100
30	(dBuV) 01 17.8	W	1 Innered		1 aransducer	Cable	MHz External Attenuation (dB)		D	10				dBuV	imit	compare Spec. (dB)
30 20 10 0.1 Freq (MHz)	(dBuV) 01 17.8 20 17.3	W	/hy-m-d		1 1 ransducer (dB) 0.0	Cable (dB)	MHz External Attenuation (dB) 20.0 20.0		D	10			37.7	dBuV 5	imit '	Spec. (dB)
30 20 10 0.1 Freq (MHz) 0.30 17.83 17.63 17.73	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2	W	Among		1 ransducer (dB) 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.7 -0.7 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0		D	10			37.7 36.6 36.5 36.5	5 5 5 5	imit / i0.2 i0.0 i0.0 i0.0	Sompare Spec. (dB) -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.33 17.85 17.75 17.88	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 17.2		Amond		1 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0		D	10			37.7 36.6 36.5 36.5 36.5	5 5 5 5 5	60.2 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.30 17.83 17.65 17.73 17.58	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 17.2		Among		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0		D	10			37.7 36.6 36.5 36.5 36.5 36.5	55 55 55 55	60.2 60.0 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.31 17.82 17.65 17.75 18.03	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9		1 to the second		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2	55 55 55 55 55	60.2 60.0 60.0 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.30 17.83 17.66 17.75 18.00 1.31 1.31	(dBuV) 01 17.8 20 17.3 70 17.2 80 17.2 80 16.9 30 16.9 70 12.3	W	1 to the second		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2	55 55 55 55 54	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-1. -1. -1. -1. -1. -1. -1.
30 20 10 0.1 Freq (MHz) 0.30 17.82 17.63 17.85 18.03 0.38 0.38	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 17.2 80 16.9 70 12.3 82 14.5		1 Innered		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2 34.4	55 55 55 55 54 44	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-1. -1. -1. -1. -1. -1. -1. -1.
30 20 10 0.1 Freq (MHz) 0.30 17.83 17.66 17.73 18.03 18.03 1.33	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8		Ammed		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2	55 55 55 55 54 44	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 17.82 17.61 17.75 18.03 1.33 0.33 17.22	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8		Amme		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.1	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		D	10			37.7 36.6 36.5 36.5 36.5 36.5 36.2 36.2 32.2 34.4 36.2	55 55 55 55 54 44 55	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
30 20 10 0.1 Freq (MHz) 0.3(17.8: 17.55 18.0) 3.3(17.2: 17.55 17.5) 18.12 17.55 17.9: 18.12	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 17.2 80 16.9 70 12.3 82 14.5 20 16.8 70 16.8 20 16.8		Aurand		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.6 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2 34.4 36.2 36.1 35.6	55 55 55 55 55 54 45 55	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
30 20 10 0.1 Freq (MHz) 0.30 17.83 17.63 18.03 17.22 17.55 17.91 18.11 18.18	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8 20 16.8 20 16.8 20 16.8 20 16.8		1 to the second		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.1 -0.6 -0.7 -0.7 -0.7 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2 34.4 36.2 36.1 35.6 35.6	55 55 55 55 54 44 55 55	60.2 60.0 60.0 60.0 60.0 60.0 60.0 60.0	Spec. (dB) -1111111111.
30 20 10 0.1 Freq (MHz) 0.30 17.82 17.66 18.03 1.33 0.38 17.22 17.55 17.97 18.11 18.11 17.37	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8 20 16.8 70 16.8 70 16.3 80 16.3		Amount		1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		D	10			37.7 36.6 36.5 36.5 36.5 36.2 36.2 32.2 34.4 36.2 36.1 35.6 35.6	55 55 55 55 54 44 55 55 55	imit / 200.2 200.0 200.0 0.0 0.0 0.0 0.0 0.0 0	-11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10 0.1 Freq (MHz) 0.30 17.82 17.66 17.73 17.88 17.55 18.03 1.33 0.38 17.22 17.52 17.97 18.11 18.11 18.11 18.12	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 30 16.9 30 16.8 20 16.8 20 16.8 20 16.8 30 16.9 16.3 70 16.3		Amont		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		D	10			37.7 36.6 36.5 36.5 36.2 36.2 36.2 32.2 34.4 36.2 36.1 35.6 35.6 35.5 35.3	55 55 55 55 55 54 44 55 55 55	imit / 10.2 10.0 2 10.0 10.0 10.0 10.0 10.0 10	-1: -1: -1: -1: -1: -1: -1: -1: -1: -1:
30 20 10 0.1 Freq (MHz) 0.31 17.82 17.55 18.12 18.14 17.33 18.22 2.22	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8 20 16.8 20 16.3 80 16.3 80 16.3 70 16.1 70 16.0 71 11.5		A browned		1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.6 -0.7 -0.6 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		D	10			37.7 36.6 36.5 36.5 36.2 36.2 32.2 34.4 36.2 36.1 35.6 35.6 35.5 35.3	55 55 55 55 55 55 55 55 55 55 55	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Spec. (dB) -1:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
30 20 10 0.1 Freq (MHz) 0.3 17.82 17.66 17.75 18.03 17.22 17.55 17.91 18.11 18.12 17.33 18.21 17.33 18.21	(dBuV) 01 17.8 20 17.3 70 17.2 30 17.2 80 16.9 30 16.9 70 12.3 82 14.5 20 16.8 20 16.8 20 16.8 20 16.3 70 16.1 70 16.0 71 11.5		A transport		1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1 -0.1 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		D	10			37.7 36.6 36.5 36.5 36.2 36.2 36.2 32.2 34.4 36.2 36.1 35.6 35.6 35.5 35.3	55 55 55 55 55 55 55 55 55 55 55 55 55	imit / 10.2 10.0 2 10.0 10.0 10.0 10.0 10.0 10	ompare Spec.

INMC0071 128/139

NORTHWE			C	0:	NI	וכ	JC	T:	ΈD	EM	SS	IO	NS	S D	ΑΤ	Ά.	SHI	=ET				RI df3
EM		802MIG2													<i>.</i>	4		ork Order:		074	06/2	3/20
Sprial N	Number:																VVC		06/26/			
		INTERM	FC Te	echnc	ologic	es C	orno	ratio	on								Tem	perature:		-		
		Cheryl W			git		J. p0											Humidity:				
	Ref. No.:															Bar		Pressure				
		Dan Haa	s								Po	wer: 1	20VA	C, 60H	z			Job Site:				
ST SPEC																						
		FCC 15.2																	2002			
		ANSI C6	3.4															Year:	1992			
MPLE CA																						
	missions:	Adjusted Le	evel = M	Measure	red Lev	/el + 1	Transo	ducer	Factor +	ole Factor - Ar Cable Attenu						I + Exteri	iai Atterio	auon				
T OPERA																						
deviations.		I TEST S	ΓAND	ARD																		
SULTS													-		-	Line	N		Run #	2		
her												T			Dem	. Jour						
																	Tested	Ву:				
80																						1
70																						
70																						
60				\																		
50																						
≥													_									
Ang p		\ \		l .																		
30		My	~ W	$\backslash \Lambda$	الم الأمام	1.1./	ЛЛ.	11.	M	\sqrt{W}	السنالاسا	والمرابي	مار المالكة		aprinal te	Aut	.					
20				W I	- 14	med in the	ry War W	I W W	M. 1.1.	o de an landalin	in di alimani	Main Millian	والمدااة	U TP (gray)	Կարել, հա ր	A Brandley		i i i i i i i i i i i i i i i i i i i				
10					-																	
-																						
0															-							ļ
0.	.1							1	1		MHz	<u>.</u>			10						10	00
					\neg						Exteri	nal									Compa	
Freq (MHz)	Amplitude (dBuV)	1						nsducer (dB)	Cable (dB)	Attenua (dB)		(bla	Detector nk equal peak 'K] from scan)			Adjusted dBuV	Spec. I dBu	V	Sp (d	ec. IB)
	0.303	18.							0.0	-0.1		20.0						38.0		50.2		-1.
	17.820	17.							0.0	-0.7		20.0						36.8		50.0		-1
	17.520	17.							0.0	-0.7		20.0						36.7		50.0		-1 1
	17.220	17. 17							0.0	-0.6 -0.7		20.0						36.7 36.5		50.0		-1 -1
	17.580 17.880	17. 17.							0.0	-0.7 -0.7		20.0 20.0						36.5 36.5		50.0 50.0		-1 -1
	17.880	17. 17.							0.0	-0.7 -0.6		20.0						36.5		50.0		-1 -1
	17.730	17.							0.0	-0.6		20.0						36.4		50.0		-1 -1
	17.730	17.							0.0	-0.7		20.0						36.4		50.0		-1 -1
	17.280	17.							0.0	-0.6		20.0						36.4		50.0		-1 -1
	0.836	12.							0.0	-0.2		20.0						32.3		46.0		-1
		16.							0.0	-0.6		20.0						36.2		50.0		-1
	17.430	14.							0.0	-0.1		20.0						34.2		48.2		-1
	17.430 0.382								0.0	-0.1		20.0						32.4		46.8		-1
		12.	.5															35.6		50.0		-1
	0.382								0.0	-0.6	- 2	20.0						33.0	;	30.0		- 1
	0.382 0.456	12.	.2						0.0	-0.6 -0.6		20.0 20.0						35.4		50.0		- i -1
	0.382 0.456 17.040	12. 16.	.2 .0								:											-1
	0.382 0.456 17.040 17.130 18.030 18.180	12. 16. 16. 16. 16.	.2 .0 .0						0.0 0.0 0.0	-0.6 -0.7 -0.7	: :	20.0 20.0 20.0						35.4 35.3 35.3	:	50.0 50.0 50.0		-1 -1 -1
	0.382 0.456 17.040 17.130 18.030	12. 16. 16. 16.	.2 .0 .0 .0						0.0 0.0	-0.6 -0.7	:	20.0 20.0						35.4 35.3	:	50.0 50.0		-1 -1

INMC0071 129/139

ΕN	MC		C	O	N	DI	U	C	ΤΕΙ) EM	ISSI	O	NS	D	AT	^A S	SHE	ΕT				RI df3
		802MIG																Order:	INMC	0071	06/2	5/2(
Seria	al Number:		12														WOII		06/26			_
	Customer:		/IEC To	echno	oloai	ies (Corr	ora	tion								Temp	erature:				
	Attendees:				- 5													ımidity:				_
Cus	t. Ref. No.:															Baro	metric P	ressure	30.04			_
	Tested by:		as								Powe	r: 12	0VAC	C, 60H	z		J	ob Site:	EV04			
	ECIFICATI		207																2000			
Spe	ecification: Method:																	Year:	2002 1992			
MPLE	CALCULA		JJ.4															rear:	1332			
Radiate	d Emissions: d Emissions:	Field Strer								able Factor - Ar + Cable Attenu						or + Externa	al Attenuati	on				_
	Illed in CK-3	0, running	in docl	king st	ation	. 802.	.11(b)	mo	de													
	RATING N g 11MB Mid																					
VIATIO deviatio	ONS FROM	I TEST S	STANE	DARD																		
SULTS ss	3															Line	L1		Run #	‡ 3		
ner												T			\sim	L) osla						
															- Jan		Tested B	v.				
80	0																	,				_
70	0								-													
60	0						-	+	+												\mathbb{H}	
							_		+													
50	0							+	+												+	
_																						
<u>⋛</u>	n 📙																					
ABu√	<u> </u>	L	/	١																		
-		1.	, /	1																		
30	0	w~rw/	1 AND	\	A				1. nM	MMMM	a Ma 1111 .ls.	la i				July 1	<u> </u>				\mathbb{H}	
		1	$^{T}\!$	NW/	WW	الملعبا	WL			∤ ₩₩₩₩		沝	in heart li	النابيا			Marie Land					
					ויין	" !T	T 7	7.	line.			, 1111	o literative.	र महास्राह्म	Parking the	ռաստել	Piterine.					
20	0								+												-	
10	_																					
10	U																					
(o																				Щ	
	0.1								1						10						10)0
											MHz											
	req Hz)	Amplitud (dBuV)						Т	ransducer (dB)	Cable (dB)	External Attenuatio (dB)	n		(bla	Detector nk equal pea 'K] from scan	ks		djusted dBuV	Spec. dBi	Limit	Compa Spe (dl	
	0.303		8.1						0.0					•				38.0		50.2		-1:
	17.820 17.970		7.8 7.5						0.0									37.1 36.8		50.0 50.0		-1 -1
	17.880		7.5 7.4						0.0									36.7		50.0		- 1 -1
	0.379		7. 4 5.1						0.0									35.0		48.3		- i -1
	17.670		7.3						0.0									36.6		50.0		-1
	17.730		7.3						0.0									36.6		50.0		-1
	18.030		7.2						0.0									36.5		50.0		-1
	17.370		7.1						0.0									36.5		50.0		-1
	18.120		7.0						0.0									36.3		50.0		-1
	17.520		6.9						0.0									36.2		50.0		-1
			6.7						0.0									36.1		50.0		-1
	17.280	16	6.6						0.0									36.0		50.0		-1
	17.460								0.0									35.9 31.9		50.0		-1- -1-
	17.460 18.360	16	6.6						^ ^) ^^	- 00											- 1
	17.460 18.360 1.820	16 12	2.1						0.0											46.0 50.0		
	17.460 18.360 1.820 17.130	16 12 16	2.1 6.5						0.0	-0.6	20	.0						35.9		50.0		-1
	17.460 18.360 1.820 17.130 18.210	16 12 16 16	2.1 6.5 6.5						0.0	-0.6 -0.7	20 20	.0						35.9 35.8		50.0 50.0		-1 -1
	17.460 18.360 1.820 17.130	16 12 16 16	2.1 6.5						0.0) -0.6) -0.7) -0.1	20 20 20	.0 .0 .0						35.9		50.0		-1- -1- -1-

INMC0071 130/139

NORTHW			CC	N	וח		T:	ΈD	EMI	ISS	O	NS	; n	ΔΤ	Δ 5	SHI	351				RI df3.
EM				4N					4-11/1					<i>,</i> , , ,	<i>/</i>				074	06/2	3/20
Sprial	Number:	802MIG2														VVC	ork Order:	06/26/			
		INTERME	Techi	noloa	ies C	Corne	oratio	on								Tem	perature:		-		
		Cheryl Wh				<u>F`</u>											Humidity:				
Cust. I	Ref. No.:														Bar		Pressure	30.04			
		Dan Haas								Pow	er: 1	20VAC	, 60H	z			Job Site:	EV04			
ST SPEC			-															0000			
		FCC 15.20 ANSI C63.																2002 1992			
MPLE C			+														rear:	1992			
Radiated E Conducted E	Emissions: Emissions:	Field Strength Adjusted Leve													r + Extern	al Attenu	ation				
OMMENT dio installle), running in o	locking	station	. 802.	11(b) ı	mode	!													
JT OPERA																					
VIATION deviations.		I TEST STA	NDAR	D																	
SULTS															Line	N		Run #	4		
her											Т				Noue						
													_) dann	[] gyla						
80																Tested	Ву:				
60																					
70																					
60			\																		
50	'																				
Ang p) ,	Λ												4						
30		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V	$\Lambda_{\mathbf{L}}\Lambda_{\mathbf{L}}$	rway		Mi	Mw	\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MMW.White			Interter	, izbilk							
20					17.00	א אוי אין	1 17		1112	. Litteralli		TI THE THE	a adarda.		lan hat a str		!				
40																					
10																					
0).1							1						10						10	00
										MHz											
Fred (MHz	-	Amplitude (dBuV)						nsducer (dB)	Cable (dB)	Externa Attenuation (dB)			(bla	Detector nk equal peak K] from scan)	s		Adjusted dBuV	Spec. L	imit	Compa Sp (d	
	0.303	18.3 18.2		1				0.0	-0.1 -0.7		0.0				•		38.2 37.5		50.2 50.0		-1: -1:
	17.970	477						0.0	-0.7		0.0						37.0		50.0		-1
	17.730	17.7						0.0	-0.7		0.0						36.9		50.0		-1
	17.730 17.670	17.6						0.0	-0.6		0.0						36.7		50.0		-1:
	17.730 17.670 17.220	17.6 17.3															20.0				-1
	17.730 17.670 17.220 0.839	17.6 17.3 12.8						0.0	-0.2 -0.6		0.0						32.6 36.6		16.0 50.0		_1
	17.730 17.670 17.220 0.839 17.370	17.6 17.3 12.8 17.2						0.0 0.0	-0.6	20	0.0						36.6	ţ	50.0		-1: -1:
	17.730 17.670 17.220 0.839 17.370 17.430	17.6 17.3 12.8 17.2 17.2						0.0 0.0 0.0	-0.6 -0.6	20 20	0.0 0.0						36.6 36.6	į	50.0 50.0		-1
	17.730 17.670 17.220 0.839 17.370	17.6 17.3 12.8 17.2						0.0 0.0	-0.6	20 20 20	0.0						36.6	ţ	50.0		-1: -1:
	17.730 17.670 17.220 0.839 17.370 17.430 17.580	17.6 17.3 12.8 17.2 17.2						0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7	20 20 20 20	0.0 0.0 0.0						36.6 36.6 36.4	!	50.0 50.0 50.0		-1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820	17.6 17.3 12.8 17.2 17.2 17.1						0.0 0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7 -0.7	20 20 20 20 20).0).0).0).0						36.6 36.6 36.4 36.4		50.0 50.0 50.0 50.0		-1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 17.280 18.060	17.6 17.3 12.8 17.2 17.2 17.1 17.1 17.0 16.9						0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.7 -0.7 -0.7 -0.6 -0.7	20 20 20 20 20 20 20).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.3		50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 17.280 18.060 17.520	17.6 17.3 12.8 17.2 17.2 17.1 17.1 17.0 16.9 16.9						0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.7 -0.7 -0.7 -0.7 -0.6 -0.7	20 20 20 20 20 20 20 20).0).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.2 36.1		50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1 -1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 17.280 18.060 17.520 18.120	17.6 17.3 12.8 17.2 17.2 17.1 17.1 17.0 16.9 16.8 16.6						0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7	20 20 20 20 20 20 20 20 20).0).0).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.2 36.1 35.9		50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1 -1 -1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 18.060 17.520 18.120 17.130	17.6 17.3 12.8 17.2 17.1 17.1 17.0 16.9 16.8 16.6						0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7 -0.7	20 20 20 20 20 20 20 20 20 20 20).0).0).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.2 36.1 35.9 35.9		50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1 -1 -1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 17.280 18.060 17.520 18.120 17.130 18.330	17.6 17.3 12.8 17.2 17.1 17.1 17.0 16.9 16.8 16.6 16.5						0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7 -0.6 -0.7	20 20 20 20 20 20 20 20 20 20 20 20).0).0).0).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.2 36.1 35.9 35.9		50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1 -1 -1 -1 -1 -1 -1
	17.730 17.670 17.220 0.839 17.370 17.430 17.580 17.820 17.910 18.060 17.520 18.120 17.130	17.6 17.3 12.8 17.2 17.1 17.1 17.0 16.9 16.8 16.6						0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.6 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7 -0.7	20 20 20 20 20 20 20 20 20 20 20 20 20 2).0).0).0).0).0).0).0).0).0						36.6 36.4 36.4 36.3 36.3 36.2 36.1 35.9 35.9		50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		-1: -1: -1: -1: -1: -1: -1: -1:

INMC0071 131/139

	EST			171	DU	IC	TEI) EM	ISSIC)NS	DAT	'A SI	4EE	_	R df3
EM												7.0.			06/23/2
Sorial N	Number:	802MIG2												r: INMC0071 e: 06/26/03	
		INTERMEC	Techn	ologi	es Co	orno	ration						Temperatur		
		Cheryl Wh		J 91	,,, ,,,	pu							Humidit		
	Ref. No.:											Barome	etric Pressu		
Te	sted by:	Dan Haas							Power:	120VAC, 6	0Hz			e: EV04	
ST SPEC															
		FCC 15.20												r: 2002	
		ANSI C63.4	1										Yea	r: 1992	
	missions:	Field Strength							nplifier Gain + [ation Factor + E			+ External A	ttenuation		
DMMENTS	6	, running in d						Cable Attenda	adon i actor i c	Atemai Attent	Jacon				
T OPERA															
deviations.		TEST STA	NDARD)								le c		. "	
SULTS ss												Line	L1	Run #	5
ner											Danie	Joseph	?		
											<u>C</u>		sted By:		-
80							1								
70															
70															
60							1								
50															
										4					
Ang p			Λ									_			
30		MAN.				h h	۸۸. ا	hallam	/m		k				
20			n Jiha	John Joh	444	14/4		* ~~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Wanishin.			arana a			
20															
10															
10															
							1				10				100
0	1						'		MHz		10				100
0	.1														
0. Freq		Amplitude					Transducer		External Attenuation		Detector		Adjusted		Compare Spec.
0.)	(dBuV)					(dB)	(dB)	External Attenuation (dB)		Detector (blank equal peaks [PK] from scan)	ŝ	dBuV	dBuV	Spec (dB)
0. Freq	4.872	(dBuV)					(dB)	(dB)) -0.4	External Attenuation (dB)		(blank equal peaks	3	dBuV	9 46.0	Spec. (dB)
0. Freq	4.872 4.947	(dBuV) 16.3 16.1					(dB) 0.0	(dB) 0 -0.4 0 -0.4	External Attenuation (dB) 20.0 20.0		(blank equal peaks	ŝ	35. 35.	9 46.0 7 46.0	Spec. (dB)
0. Freq	4.872	(dBuV)					(dB)	(dB) 0 -0.4 0 -0.4 0 -0.4	External Attenuation (dB) 20.0 20.0 20.0		(blank equal peaks	5	dBuV	9 46.0 7 46.0 3 46.0	Spec. (dB) -1 -1
0. Freq	4.872 4.947 4.797	(dBuV) 16.3 16.1 15.7					(dB) 0.0 0.0	(dB) -0.4 -0.4 -0.4 -0.3	External Attenuation (dB) 20.0 20.0 20.0 20.0		(blank equal peaks	3	35. 35. 35.	9 46.0 7 46.0 3 46.0 1 46.0	-1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397	(dBuV) 16.3 16.1 15.7 15.4					(dB) 0.0 0.0 0.0	(dB) -0.4 -0.4 -0.4 -0.3 -0.3	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0		(blank equal peaks	3	35. 35. 35. 35.	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0	-1 -1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0		(blank equal peaks		35. 35. 35. 35. 34. 34.	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0 9 46.0 7 46.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1
Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301	16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(dB) -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.4	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		35. 35. 35. 35. 34. 34. 33.	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0 9 46.0 7 46.0 5 50.2	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1
Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730	16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8					0.0 0.0 0.0 0.0 0.0 0.0 0.0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.3	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks	5	35. 35. 35. 35. 35. 34. 34. 33. 37.	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0 7 46.0 5 50.2 1 50.0	-1 -1 -1 -1 -1 -1 -1 -1
Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7					0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.1 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks	,	35. 35. 35. 35. 34. 34. 33. 37.	9 46.0 7 46.0 3 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Freq	4.872 4.947 4.797 4.397 4.322 4.472 0.301 17.730 17.820 3.946	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks	,	35. 35. 35. 35. 34. 34. 33. 37. 37. 37.	9 46.0 7 46.0 3 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820 3.946 17.580	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.1 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		35. 35. 35. 35. 34. 34. 33. 37. 37. 37. 36.	9 46.0 7 46.0 3 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820 3.946 17.580 18.120	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3					0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks	,	355 355 35, 35, 34, 34, 33, 37, 37, 32, 36, 36,	9 46.0 9 46.0 3 46.0 1 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0	-1 (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820 3.946 17.580 18.120 17.970	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3 17.2					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.4 -0.5 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		355 355 353 344 344 337 37 37 36 36	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0 9 46.0 7 46.0 0 50.0 8 46.0 7 50.0 6 50.0 5 50.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820 3.946 17.580 18.120 17.970 4.622	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3 17.2 12.9					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		355 355 353 344 344 337 37 37 36 36 36	9 46.0 7 46.0 3 46.0 1 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0 6 50.0 5 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 0.301 17.730 17.820 3.946 17.580 18.120 17.970 4.622 4.722	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3 17.2 12.9					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.4 -0.3 -0.3 -0.4 -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		355 355 353 344 344 337 37 37 32 36 36 36 32	9 46.0 7 46.0 3 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0 6 50.0 5 50.0 5 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 4.572 0.301 17.730 17.820 3.946 17.580 18.120 17.970 4.622 4.722 0.377	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3 17.2 12.9 14.9					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.4 -0.1 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		355 355 353 344 344 337 37 37 36 36 36	9 46.0 7 46.0 3 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0 6 50.0 5 46.0 5 46.0 8 48.3	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0. Freq	4.872 4.947 4.797 4.397 4.322 4.472 0.301 17.730 17.820 3.946 17.580 18.120 17.970 4.622 4.722	(dBuV) 16.3 16.1 15.7 15.4 15.2 15.2 14.1 17.6 17.8 17.7 13.1 17.4 17.3 17.2 12.9					(dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(dB) -0.4 -0.3 -0.3 -0.3 -0.3 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		35. 35. 35. 35. 34. 34. 33. 37. 37. 37. 32. 36. 36. 36. 32.	9 46.0 9 46.0 3 46.0 1 46.0 9 46.0 9 46.0 7 46.0 5 50.2 1 50.0 0 50.0 8 46.0 7 50.0 6 50.0 5 50.0 5 50.0 6 50.0 8 46.0 9 46.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

INMC0071 132/139

EMC					D EM	ISSIC)NS	ΠΔΤ	A SH	FFT		RE df3.
EIII	100011100			-							1111100071	06/23/20
Serial Number	T: 802MIG2								W		INMC0071 06/26/03	
	r: INTERMEC	Technolor	nies Corn	oration					Te	mperature:		
	s: Cheryl Whit		gica corp	oration					10	Humidity:		
Cust. Ref. No									Barometri	c Pressure		
	y: Dan Haas					Power:	120VAC, 6	0Hz		Job Site:		
ST SPECIFICA												
	n: FCC 15.207									Year:		
	d: ANSI C63.4									Year:	1992	
MPLE CALCUL			1		01154	15 0 : . 5			. =			
Radiated Emissions Conducted Emissions DMMENTS dio installled in CK-	s: Adjusted Level =	= Measured L	.evel + Tran	sducer Facto					· External Atter	idation		
T OPERATING esmitting 11MB High												
VIATIONS FRO deviations.	M TEST STAN	IDARD										
SULTS ss							_	_	Line N		Run #	5
ner								\bigcirc	I glaz			
								C Daniel	Teste	d Bv:		
80									70010	u by.		
70												
60												
50							-					
50												
Angp 40		_										
30	\mu_\mu_\.	$\Lambda_{\Lambda_{\Lambda}}$.1		A STATE OF		alli			
	AN JUN	. M. M.	**/**/**/		Muymym			ogither of the second		du)		
20												
40												
10												
.0												
				1				10				100
0.1												
0						MHz						
0 0.1 Freq (MHz)	Amplitude (dBuV)			Transduc (dB)	(dB)	External Attenuation (dB)		Detector (blank equal peaks [PK] from scan)		Adjusted dBuV	Spec. Limit dBuV	Compare Spec. (dB)
0 0.1 Freq (MHz)	(dBuV)			(dB)	(dB)	External Attenuation (dB)		(blank equal peaks		dBuV 34.1	dBuV 46.0	Spec. (dB)
0 0.1 Freq (MHz) 4.92 4.79	(dBuV) 22 14.5 97 13.9			(dB)	(dB) 0.0 -0.4 0.0 -0.4	External Attenuation (dB)		(blank equal peaks		34.1 33.5	dBuV 46.0 46.0	Spec. (dB)
0 0.1 Freq (MHz) 4.92 4.79 4.87	(dBuV) 22 14.5 97 13.9 72 13.7			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.4	External Attenuation (dB) 20.0 20.0 20.0		(blank equal peaks		34.1 33.5 33.3	46.0 46.0 46.0	Spec. (dB) -1 -1,
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82	(dBuV) 22 14.5 37 13.9 72 13.7 20 17.8			(dB)	0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0		(blank equal peaks		34.1 33.5 33.3 37.1	46.0 46.0 46.0 50.0	-1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30	(dBuV) 22 14.5 37 13.9 72 13.7 20 17.8 33 17.4			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0		(blank equal peaks		34.1 33.5 33.3 37.1 37.3	46.0 46.0 46.0 50.0 50.2	-1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43	(dBuV) 12 14.5 17 13.9 12 13.7 10 17.8 13 17.4 10 17.5			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.1 0.0 -0.6	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9	46.0 46.0 46.0 50.0 50.2 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97	(dBuV) 22 14.5 77 13.9 72 13.7 70 17.8 13 17.4 10 17.5 17.5			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3	46.0 46.0 46.0 50.0 50.2	Spec. (dB) -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43	(dBuV) 122 14.5 177 13.9 172 13.7 170 17.8 17.4 17.5 17.5 17.5 17.5			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.1 0.0 -0.6 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.8	46.0 46.0 46.0 50.0 50.2 50.0 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61	(dBuV) 22 14.5 77 13.9 72 13.7 73 17.8 74 17.5 75 17.5 76 17.5 76 17.3			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.1 0.0 -0.6 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.8 36.6	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91	(dBuV) 22 14.5 77 13.9 72 13.7 73 17.8 74 17.5 75 17.5 76 17.3 77 12.7			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.6 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.8 36.6 36.6	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0	-1 (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67	(dBuV) 22 14.5 77 13.9 72 13.7 70 17.8 17.4 17.5 17.5 17.5 17.3 17.3 17.3 17.3 17.3 17.3			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.8 36.6 32.6	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 46.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67 17.67 17.73 18.03	(dBuV) 22 14.5 77 13.9 72 13.7 720 17.8 83 17.4 80 17.5 70 17.5 10 17.3 10 17.3 17.9 12.7 17.0 17.2 18.0 17.2			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.6 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.6 36.6 32.6 36.5 36.5 36.5	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 46.0 50.0 50.0	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
7 0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67 17.73 18.03 17.13	(dBuV) 22 14.5 77 13.9 72 13.7 73 17.8 74 17.5 75 17.5 76 17.5 77 17.3 79 12.7 70 17.2 70 17.2 70 17.2 71 17.2 72 17.2 73 17.2			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.6 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.6 36.6 32.6 36.5 36.5 36.5	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 50.0 50.0 50	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.67 17.67 17.73 18.03 17.13 17.22	(dBuV) 22 14.5 77 13.9 72 13.7 73 17.8 74 17.5 75 17.5 76 17.3 77 17.3 79 12.7 70 17.2 70 17.2 70 17.2 70 17.2 70 17.2 70 17.2 70 17.2 70 17.2 70 17.2			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.3 33.3 37.1 37.3 36.9 36.6 36.6 32.6 36.5 36.5 36.5	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 50.0 50.0 50	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67 17.73 18.03 17.13 17.22 17.28	(dBuV) 22 14.5 77 13.9 72 13.7 720 17.8 73 17.4 740 17.5 75 17.5 75 17.3 76 17.3 77 17.2 76 17.2 77 17.2 78 17.2 79 17.2 79 17.2 70 17.2			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.6 36.6 32.6 36.5 36.5 36.5 36.5 36.3	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 50.0 50.0 50	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67 17.73 18.03 17.13 17.22 17.22 17.28 18.18	(dBuV) 12.2 14.5 17.7 13.9 17.8 13.3 17.4 18.0 17.5 19.0 17.5 10.1 17.3 19.1 17.3 19.1 17.2 19.0 17.2 19.0 17.2 19.0 17.2 19.0 17.2 19.0 17.2 19.0 17.2 19.0 17.2 19.0 16.9 19.0 16.8 19.0 16.8			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.6 36.6 36.5 36.5 36.5 36.5 36.5	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 50.0 50.0 50	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0.1 Freq (MHz) 4.92 4.79 4.87 17.82 0.30 17.43 17.97 17.61 17.91 0.67 17.73 18.03 17.13 17.22 17.28	(dBuV) 22 14.5 77 13.9 72 13.7 73.0 17.8 73.0 17.5 70 17.5 70 17.5 70 17.3 70 17.3 70 17.3 70 17.2			(dB)	(dB) 0.0 -0.4 0.0 -0.4 0.0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(blank equal peaks		34.1 33.5 33.3 37.1 37.3 36.9 36.6 36.6 32.6 36.5 36.5 36.5 36.5 36.3	46.0 46.0 46.0 50.0 50.2 50.0 50.0 50.0 50.0 50.0 50	Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

INMC0071 133/139

	THWEST		CO	M	ומ		41) FI	VI I	SS	110	IN:	5 I.) <u>/</u>	1 I				_				df
	MC	00011100											Щ		<u> </u>	<u> </u>						2000		06/23/2
Sori	ial Number:	802MIG2 C2																W			1NM(1	
	Customer:	INTERME	Techn	ologi	es C	orpo	ratio	n										Ter		ature:		J, JJ		
	Attendees:	_																			36%			
Cus	st. Ref. No.:																Baı	rometri	Pres	ssure	30.2	1		
		Dan Haas									Po	wer:	120VA	C, 601	Ηz				Job	Site:	EV0	4		
	PECIFICATI																				000			
Spe		FCC 15.20 ANSI C63.																			2002			
MPLE	Method:		•																	rear:	1992			
Radiate	ed Emissions:	Field Strength														actor	+ Exteri	nal Atten	uation					
MMEN dio insta	NTS allled in CK-3	0, running in o																						
	ERATING Nondulation, tr	MODES ansmitting Lo	w Chann	el at 61	ΜВ																			
deviatio	ons.	I TEST STA	NDARI	D																				
SULTS ss	S																Line	L1			Run	#	1	
ner												Т					Λ	0						
														(_	Danie	[] gue	is s						
														_				Tested	Ву:					
80	30																							
7	70																							
_																								
60	00			\			1																	
50	50												-											
													_											
≥ 4	10			\																				
ABuV	10	1	1									11.4						1						
	30	John W.		MAN.	ML.A.	.	1	w\\\	~~M\m	.l.M.	.Mr///					الله إل								
30				Wh/Na	MayAu	W	LAM	γ / }/\	~\MM	/IMI _{1/2}	,/Mr. _{//} ///k			Maga	N			المالي						
30	30	- Mary	, n/ \ , n/	WMa	May/\u	M	LAM	γ⁄\ \\\	~~\\\\\	,/M\ _\ ,	,\M\r _{.\q} \\\\q			Maga	l fui			The same	legy .					
3(2(30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,/,/	MMM	infa _{ri} r\ _a	\ \	LAM	₁ /////	~√\/\\\\	/M\ _\ /	,Mr. ₁₉ #4	***		Maga	N/A	d a d d d primitivo		- Hand						
30 20 10	20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,,,	White	May/h	1.10	L/14/1	/ / / //\	~~\\\\	,////,	,Mr.,p#4			Mad	April	d d d d d d d d d d d d d d d d d d d		The state of the s						
30 20 10	20	Jana Marie M		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Maylu	1	1	√ \\\\	~~ / \\\\	,/M\ _{\\}				MANA	10			The authority of the second						100
30 20 10	20			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May b	M		√ \\\\	~~ / \\\\	,/M	MH	z			10	pontro		P					Coo	
30 20 10	0.1 (req	Amplitude (dBuV)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MayAu	/ //	1	sducer dB)	Cabl (dB,	le le	MH:	z mal ation		(c	Dete	ector usi peaks m scan)		1 Louis	Adju dB	uV	dl	. Limit	t	mpare Spec. (dB)
30 20 10	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MayAu	1 1 1 1 1 1 1 1 1 1	1	sducer	Cabl (dB,	le	MH:	Z mal ation		(c	Dete	ector		H _{pul}			dE		0	mpare Spec (dB)
30 20 10	0.1 (req MHz) 4.647 4.247 4.722	(dBuV) 16.3 15.6 15.6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MayAu	1.1.1.	1	sducer dB) 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4	MH: Exter Attenu (dE	mal ation (1) 20.0 20.0 20.0 20.0		(b)	Dete	ector		and a		35.9 35.3 35.2	d	46.0 46.0 46.0	0 0 0	mpare Spec. (dB) -1 -1
30 20 10	0.1 (req MHz) 4.647 4.247 4.722 4.797	(dBuV) 16.3 15.6 15.6 15.5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Maylu	1.1 ()	1	0.0 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4 -0.4	MH: Exter Attenu (dE	Z nal attion (1) 220.0 220.0 220.0 220.0		(5)	Dete	ector		l and		35.9 35.3 35.2 35.1	d	46.0 46.0 46.0 46.0	0 0 0 0	mpare Spec. (dB) -1 -1 -1
30 20 10	0.1 (req MHz) 4.647 4.247 4.722 4.797 4.172	(dBuV) 16.3 15.6 15.6 15.5 15.1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mayle	1.1.1	1	0.0 0.0 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4 -0.4 -0.3	MH: Extern (dE	Z2 mal attion (1) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(c	Dete	ector		l land		35.9 35.3 35.2 35.1 34.8	d	46.0 46.0 46.0 46.0 46.0	0 0 0 0 0	mpare Spec. (dB) -1 -1 -1 -1
30 20 10	0.1 (req MHz) 4.647 4.247 4.722 4.797 4.172 4.547	(dBuV) 16.3 15.6 15.6 15.5 15.1 14.7		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	M	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3	MH: Exter Attenu (dE	zz z z z z z z z z z z z z z z z z z z		(c	Dete	ector		Thousand the second		35.9 35.3 35.2 35.1 34.8 34.3	di	46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0	mpare Spec. (dB) -1 -1 -1 -1 -1
30 20 10	0.1 (req //Hz) 4.647 4.247 4.722 4.797 4.172 4.547 4.872	(dBuV) 16.3 15.6 15.5 15.1 14.7 14.6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MayAu	1	1	sducer (JB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB)	-0.4 -0.3 -0.4 -0.3 -0.4 -0.4	MH: Exter Attenu (dE	mal (mattion (mattion))) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		(c)	Dete	ector		1 Louis		35.9 35.3 35.2 35.1 34.8 34.3 34.2	d	46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0	mpare Spec. (dB) -1 -1 -1 -1 -1 -1
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497	16.3 15.6 15.6 15.5 15.1 14.7 14.6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	\ .\.\.	1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Cabl (dB	-0.4 -0.3 -0.4 -0.4 -0.3 -0.4 -0.4	MH: Exter Attenu (dE	zenal (malation		(c)	Dete	ector		The state of the s		35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7	di	46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0	mpare Spec. (dB) -1 -1 -1 -1 -1 -1
30 20 10	0.1 (req //Hz) 4.647 4.247 4.722 4.797 4.172 4.547 4.872	16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	M	1	sducer (JB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB	-0.4 -0.3 -0.4 -0.3 -0.4 -0.4	MH: External (dE	mal (mattion (mattion))) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		(t)	Dete	ector		l land		35.9 35.3 35.2 35.1 34.8 34.3 34.2	d	46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0	mparer Spec. (dB) -11-11-11-11-11-11-11-11-11-11-11-11-11
30 20 10	60 0 0 0.1 (req MHz) 4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322	(dBuV) 16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May/h	M	1	sducer dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB)	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.4	MH: External (dE	zenal (malation (h))) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		(5)	Dete	ector		- I - I - I - I - I - I - I - I - I - I		35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6	d	46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0	mpare Spec. (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -1
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322 0.303	16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3		Who La	MayAu	1	1	sducer dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB)	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.4	MH: Extern Attenu (dE	nal nation (1) 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0		(6	Dete	ector		l l puil		35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6 37.2	di	46.0 46.0 46.0 46.0 46.0 46.0 46.0 50.2	0 0 0 0 0 0 0 0 0 0	mpare Spec (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -1
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322 0.303 4.947 4.097 0.382	(dBuV) 16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3 13.3 13.2 15.2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MayAu	1	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cabl (dB,	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.3 -0.1 -0.4 -0.3 -0.1	MH: Extern (dE	z z mal attion () 20.0 ((6)	Dete	ector				35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6 37.2 32.9 32.9 35.1	di	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mparer Spec. (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10	0.1 (req MHz) 0.1 4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322 0.303 4.947 4.097 0.382 17.910	16.3 15.6 15.5 15.1 14.7 14.6 13.9 17.3 13.3 13.2 15.2 17.5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May V	1	1	sducer JB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.3 -0.1 -0.4 -0.3 -0.3	MH: External (dE	Z2 (20.0 (20		(0	Dete	ector		l and		35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6 37.2 32.9 32.9 35.1 36.8	di	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mpare Spec (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 0.303 4.947 4.097 0.382 17.910 17.820	(dBuV) 16.3 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3 13.3 13.2 15.2 17.5 17.4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	1	1	sducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cabl (dB)	-0.4 -0.3 -0.4 -0.4 -0.3 -0.3 -0.1 -0.4 -0.3 -0.3 -0.7 -0.7	MH: Externu (dE	zenal (mation		(c	Dete	ector				35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6 37.2 32.9 35.1 36.8 36.7	dt	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mpare Spec (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322 0.303 4.947 4.097 0.382 17.910 17.820 18.120	(dBuV) 16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3 13.3 13.2 15.2 17.5 17.4 17.3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	1	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.1 -0.3 -0.1 -0.7 -0.7	MH: Extern (dE	zenal (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		(c	Dete	ector				35.9 35.3 35.2 35.1 34.8 34.2 33.7 33.6 37.2 32.9 35.1 36.8 36.7 36.6	dt	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	00 00 00 00 00 00 00 00 00 00 00 00 00	mparez Spec (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.322 0.303 4.947 4.097 0.382 17.910 17.820 18.120 17.970	(dBuV) 16.3 15.6 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3 13.3 13.2 15.2 17.5 17.4 17.3 17.2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	1	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cabl (dB)	-0.4 -0.3 -0.4 -0.4 -0.3 -0.4 -0.3 -0.1 -0.4 -0.3 -0.7 -0.7	MH: Exter Attenu (dE	zenal (mail attion mail attion		(c	Dete	ector		1 Louis		35.9 35.3 35.2 35.1 34.8 34.3 34.2 33.7 33.6 37.2 32.9 35.1 36.8 36.7 36.6 36.6 36.5	dt	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-11 -11 -11 -11 -11 -11 -11 -11 -11 -11
30 20 10	4.647 4.247 4.722 4.797 4.172 4.547 4.872 4.497 4.322 0.303 4.947 4.097 0.382 17.910 17.820 18.120	16.3 15.6 15.5 15.1 14.7 14.6 14.0 13.9 17.3 13.3 13.2 15.2 17.5 17.4 17.3 17.2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May	1	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cabl (dB,	-0.4 -0.3 -0.4 -0.3 -0.4 -0.3 -0.1 -0.3 -0.1 -0.7 -0.7	MH: Exter Attenu (dE	zenal (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		(0)	Dete	ector		Thomas and the second s		35.9 35.3 35.2 35.1 34.8 34.2 33.7 33.6 37.2 32.9 35.1 36.8 36.7 36.6	di	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mparez Spec (dB) -11 -11 -11 -11 -11 -11 -11 -11 -11 -11

INMC0071 134/139

EMC EI Serial Numb		DNDUCT										df3
					00.0							06/23/2
Seriai Numb	UT: 802MIG2								V		INMC0081	
0											06/26/03	
Custom Attende		nnologies Corporati	IUII						l'e	mperature: Humidity:		
Cust. Ref. N									Baromote	ic Pressure		
	by: Dan Haas			1	Power	120VAC,	60Hz		Daroinetr	Job Site:		
T SPECIFIC					rower:	IZUVAC,	JUITZ			JOD SILE:	_ 704	
	ion: FCC 15.207									Year	2002	
	od: ANSI C63.4										1992	
MPLE CALCI										· oul ·		
onducted Emission	ons: Field Strength = Meas ons: Adjusted Level = Mea	sured Level + Transducer	r Factor + Ca			-		Factor + E	xternal Atter	nuation		
T OPERATIN			e									
VIATIONS FR	on, transmitting Low Char											
leviations.											I	
SULTS								L	ine		Run #	
ss										١	2	2
er								Davil	Mar			
									Teste	ed By:		
80												
70												
60												
50												
_												
a 40												
	λ. Λ. Λ	A						أأنأن النبيعاني				
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M. M		Mmy	MM2+Nexthbolds		Maria	grafically state		ıdlıt		
	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	10/44/4/4/4/4	, WWw	Mmy	Mph.Mallaple				Appl			
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	₩ww.	~\\\ _{\\}	M _M LALAMA <mark>M</mark>			ggalgariffedh	M.	J. I. I.		
30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	101000 A 1010 A	₩ww.	MMM	Mple-Mallip			geteelfede	A			
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩	~\\. _{\\\}	Malika Majala			getraffedh				
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10/m/n/h/l/h/m	₩ ₩	Mulh	n/mlp.n.h.h			and a silvenia		L. I. L. L.		
30 20 10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Mhalla	n/miller with the			and the first factor of th	i A			
30 ————————————————————————————————————	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		₩ ₩₩.	Mmy	ոլումային MHz		10					100
30 20 10	Amplitude (dBuV)	Tra		Cable (dB)			Det (blank ei	O ector qual peaks on scan)		Adjusted dBuV	Spec. Limit	Compare Spec.
30 20 10 0.1 Freq (MHz)	Amplitude	Tra	1	Cable	MHz External Attenuation		Det (blank ei	ector qual peaks			Spec. Limit dBuV	Compare Spec. (dB)
30 20 10 0.1 Freq (MHz)	Amplitude (dBuV)	Tra	1 1 ansducer (dB)	Cable (dB)	MHz External Attenuation (dB)		Det (blank ei	ector qual peaks		dBuV 37.6	Spec. Limit dBuV 50.1 46.0	Compare Spec. (dB)
30 20 10 0.1 Freq (MHz)	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6	Tra	1 ansducer (dB) 0.0 0.0 0.0	Cable (dB) -0.1 -0.4 -0.4	External Attenuation (dB) 20.0 20.0 20.0		Det (blank ei	ector qual peaks		37.6 33.2 33.2	Spec. Limit dBuV 50.1 46.0 46.0	Compare Spec (dB) -1 -1
30 20 10 0.1 Freq (MHz)	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4	Tra	1 ansducer (dB) 0.0 0.0	Cable (dB) -0.1 -0.4 -0.4 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7	50.1 46.0 46.0 50.0	Compare Spec (dB) -1 -1 -1
30 20 10 0.1 Freq (MHz)	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2	Tra	1 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.4 -0.4	External Attenuation (dB) 20.0 20.0 20.0		Det (blank ei	ector qual peaks		37.6 33.2 33.2	50.1 46.0 46.0 50.0 50.0	Compare Spec (dB) -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.9	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0	Tra	1 ansducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5	50.1 46.0 46.0 50.0 50.0 50.0	Compare Spec (dB) -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.9 17.6 17.8	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0	Tra	11 ansducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3	50.1 46.0 46.0 50.0 50.0 50.0 50.0	1000 Compare Spec. (dB) -11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.9 17.6 17.8	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7	Tra	1 ansducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3	50.1 46.0 50.0 50.0 50.0 50.0 50.0 46.0	Compare Spec (dB) -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.9 17.8 4.6	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 32.3	Spec. Limit dBuV 50.1 46.0 46.0 50.0 50.0 50.0 50.0 46.0 50.0 50.0	Compare Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.8 17.6 17.8 17.7 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.7 17.8 17.8	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 647 12.7 520 16.9 730 16.9	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.4 -0.4 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 32.3 36.2	Spec. Limit dBuV 50.1 46.0 46.0 50.0 50.0 50.0 46.0 50.0 46.0 50.0 50.0	Compare Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.8 4.6 17.5 17.7 4.8	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9 872 12.6	Tra	11 ansducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.7 -0.7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.3 36.3 36.3 36.2 36.2 36.2	Spec. Limit dBuV 50.1 46.0 46.0 50.0 50.0 50.0 46.0 50.0 46.0 50.0 46.0	Compare Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.6 17.8 4.6 17.5 17.7 4.8 0.3	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9 730 16.9 872 12.6 379 14.5	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.7 -0.4 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 32.3 36.2 36.2 32.2	50.1 46.0 46.0 50.0 50.0 50.0 50.0 50.0 46.0 50.0 46.0	Comparer Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.6 17.5 17.7 4.8 0.3 17.5	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9 872 12.6 379 14.5 580 16.7	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.4 -0.1 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.3 36.3 36.3 36.2 36.2 36.2 36.2 36.2	50.1 46.0 46.0 50.0 50.0 50.0 50.0 50.0 46.0 50.0 46.0 48.3 50.0	Comparer Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.6 17.5 17.7 4.8 0.3 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9 730 16.9 872 12.6 879 14.5 880 16.7 870 16.4	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.4 -0.1 -0.7 -0.6	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 36.2 36.2 32.2 34.4 36.0 35.8	Spec. Limit dBuV 50.1 46.0 46.0 50.0 50.0 50.0 46.0 50.0 46.0 50.0 46.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	Comparer Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.8 17.6 17.8 0.3 17.5 17.7 4.8 0.3 17.5 17.3 18.0	Amplitude (dBuV) 305 17.7 722 13.6 970 17.4 910 17.2 670 17.0 647 12.7 520 16.9 730 16.9 872 12.6 379 14.5 580 16.7 370 16.4 060 16.4	Tra	1 ansducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.4 -0.1 -0.6 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 36.2 36.2 32.2 34.4 36.0 35.8 35.7	Spec. Limit dBuV 50.1 46.0 46.0 50.0 50.0 50.0 50.0 46.0 50.0 46.0 50.0 50.0 46.0 50.0 50.0 50.0 50.0 50.0 50.0	Comparer Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.8 4.6 17.5 17.7 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.6 17.8 17.7 17.7 17.8 18.0 17.5 17.3 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 770 17.0 820 17.0 820 17.0 820 17.0 820 16.9 872 12.6 879 14.5 880 16.7 370 16.4 960 16.4 985 11.8	Tra	11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.1 -0.7 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.8	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 36.2 36.2 34.4 36.0 35.8 35.7 31.7	\$50.1 46.0 50.0 50.0 50.0 46.0 48.3 50.0 50.0 50.0 50.0 46.0 48.3 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	Comparer Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.6 17.8 4.6 17.5 17.7 18.0 0.6 17.4	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 620 16.9 730 16.9 872 12.6 379 14.5 580 16.7 370 16.4 685 11.8 430 16.1	Tra	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.1 -0.7 -0.6 -0.7 -0.1 -0.6	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 36.2 32.2 34.4 36.0 35.8 35.7 31.7	\$50.1 46.0 50.0 50.0 50.0 46.0 50.0 50.0 46.0 50.0 46.0 50.0 46.0 50.0 50.0 46.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	Comparer Spec. (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 0.3 4.7 4.7 17.9 17.6 17.8 4.6 17.5 17.7 18.0 0.6 17.4	Amplitude (dBuV) 305 17.7 722 13.6 772 13.6 970 17.4 910 17.2 670 17.0 820 17.0 647 12.7 520 16.9 872 12.6 379 14.5 580 16.7 370 16.4 660 16.4 685 11.8 430 16.1 836 11.6	Tra	11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Cable (dB) -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.4 -0.7 -0.1 -0.7 -0.6 -0.7 -0.7 -0.7 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.8	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		Det (blank ei	ector qual peaks		37.6 33.2 33.2 36.7 36.5 36.3 36.3 36.2 36.2 34.4 36.0 35.8 35.7 31.7	\$50.1 46.0 46.0 50.0 50.0 46.0 50.0 50.0 46.0 50.0 46.0 50.0 46.0 50.0 46.0 50.0 46.0 50.0 46.0 46.0 50.0 46.0 46.0 50.0 46.0	Comparer Spec (dB) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

INMC0071 135/139

Serial Number Q Date:	NORTHWEST			C	0:	N	D	U	CT	ΕD	EM	SSI	0	NS	B D	AT	Α:	SHE	ΕT				RE df3.
Section MTERMEC Technologies Corporation Temperature			802MIC																	INMO	024	06/2	3/20
Court. Ref. No.:																		VVO					
Court. Ref. No. Darn Hanas Power 120VAC, 60Hz Job Sine FV04				EC Te	echno	ologi	es (Corp	orati	ion								Tem					
Tested by Dan Hanas			_,			- 5'																	
Tested Floring Forest Fo	Cust. Ref.	f. No.:															Bar	ometric	Pressure	30.21			
Specification FCC 15.207 Year 2002 Well 2002				ıs								Powe	r: 12	20VAC	, 60H	z			Job Site:	EV04			
Method: AMSI CG3.4 Year: 1992				207															V	2000			
### Adjusted Empired Financial Production Facility Casher Facility Casher External Alternation Facility Faci							—																
Note				J.4															rear:	1332			
Tested By: Tes	adiated Emis nducted Emis	issions: I	Field Stren Adjusted L	evel = N	Measur	red Le	vel +	Trans	ducer	r Factor +							r + Exterr	nal Attenua	ition				
Note				Mid CI	hannel	at 6M	IB																
Freq (MHz)	viations.	FROM	TEST S	TAND	DARD																		
Tested By: Tes																	Line	L1		Run #	3		
Tested By: Tested By: Tested By: Tested By: Transducer (MHz) NHz Transducer (GBV) Amplitude (GBV) Transducer (GBV) Transducer (GB) American (GBV) American (GBV) Transducer (GBV) American (GBV) Transducer (GBV) Transducer (GBV) American (GBV) Transducer (GBV) American (GBV) American (GBV) Transducer (GBV) Transducer (GBV) American (GBV) American (GBV) Detector (GBV) Detec	r												Ī			Dem	:[] out						
Transducer Cable Metallon Cable C																_			Ву:				
Freq (MHz)	80							_															1
Freq (MHz)	70																						
Transducer Cable Attenuation Cable Adjusted Spec. Limit Cable Attenuation Cable Attenuation Cable Attenuation Cable Attenuation Cable Attenuation Cable Adjusted Spec. Limit Cable Attenuation Cable Cable Attenuation Cable Cable Attenuation Cable C	, 0																						
Transducer Cable Alternation Cable Cable Alternation Cable Cable Cable Alternation Cable Cab	60																						
Transducer (dB)	50						_	_															
Transducer (dB)	3 40																						
Transducer Cable Attenuation (dB) Attenuation (dB) Detector (dBuv)	3 40	١	4		\								<u>, ii.</u>	de i			_						
Transducer Cable Attenuation (dB) Attenuation (dB) Detector (dBuv)	30		1~~~V	\ <i>\</i>	$\left\{\right\}$	11.		. 1.1	1	M^	. 1881 1881			Maria Maria	44	k.illu	real real	<u> </u>					
Transducer Cable External Detector (dB) MHz Metal Multiple Metal M	20 —			Μ ΥΥ	LWW Y	~V M	(14)	W W	M NAM	11.7° Y Y Y V	VY ON ANCHAN AN	-Airi-Mili-Mili-Mili-	PP 11 11 11 12 13 13 13 13	HI YIL	711-910 (nalivati d		M				
NHz	20																						
NHz	10																						
NHz	10																						
NHz																							
Transducer (dB)																							-
Freq (MHz) Amplitude (dBuV) Transducer (dB) Cable (dB) Attenuation (dB) Detector (chark sequal pends (price of chark sequel pends (price of	0.1									1		MHz				10						10	00
A.622 16.1												Attenuatio	n				(8				imit	Compa Sp	ec.
4.722 15.8 0.0 -0.4 20.0 35.4 46.0 4.797 15.3 0.0 -0.4 20.0 34.9 46.0 4.247 15.2 0.0 -0.3 20.0 34.9 46.0 4.547 15.1 0.0 -0.4 20.0 34.7 46.0 4.172 14.9 0.0 -0.3 20.0 34.3 46.0 4.322 14.6 0.0 -0.3 20.0 33.8 46.0 4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7<	` ′	4.622				\perp							0										IB) -1(
4.797 15.3 0.0 -0.4 20.0 34.9 46.0 4.247 15.2 0.0 -0.3 20.0 34.9 46.0 4.547 15.1 0.0 -0.4 20.0 34.7 46.0 4.172 14.9 0.0 -0.3 20.0 34.3 46.0 4.322 14.6 0.0 -0.3 20.0 34.3 46.0 4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7																							-1
4.547 15.1 0.0 -0.4 20.0 34.7 46.0 4.172 14.9 0.0 -0.3 20.0 34.6 46.0 4.322 14.6 0.0 -0.3 20.0 34.3 46.0 4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1
4.172 14.9 0.0 -0.3 20.0 34.6 46.0 4.322 14.6 0.0 -0.3 20.0 34.3 46.0 4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0	4	4.247	15	5.2								20.	0						34.9	4			-1
4.322 14.6 0.0 -0.3 20.0 34.3 46.0 4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.2 46.0 3.796 13.5 0.0 -0.3 20.0 35.1 48.2 18.060 17.5 0.0 -0.1 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1
4.947 14.2 0.0 -0.4 20.0 33.8 46.0 4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 35.1 48.2 18.060 17.5 0.0 -0.1 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1
4.872 13.7 0.0 -0.4 20.0 33.3 46.0 4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1 -1
4.097 13.6 0.0 -0.3 20.0 33.3 46.0 3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1: -1:
3.796 13.5 0.0 -0.3 20.0 33.2 46.0 0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1. -1:
0.382 15.2 0.0 -0.1 20.0 35.1 48.2 18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1
18.060 17.5 0.0 -0.7 20.0 36.8 50.0 17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0																							-1
17.730 17.4 0.0 -0.7 20.0 36.7 50.0 17.970 17.4 0.0 -0.7 20.0 36.7 50.0 3.721 13.0 0.0 -0.3 20.0 32.7 46.0	C																						-1
3.721 13.0 0.0 -0.3 20.0 32.7 46.0		0.000	17																				-1
	18 17	7.730		.4																			-13
17.820 17.2 0.0 -0.7 20.0 36.5 50.0	18 17 17	7.730 7.970								0.0	-0.3	20.	0										-13
	18 17 17 3	7.730 7.970 3.721	13	3.0							_												
	18 17 17 3 17	7.730 7.970 3.721 7.820	13 17	3.0 7.2						0.0		20.	0										-13
17.880 17.1 0.0 -0.7 20.0 36.4 50.0 18.270 17.1 0.0 -0.7 20.0 36.4 50.0	18 17 17 3 17 0	7.730 7.970 3.721 7.820 0.303	13 17 16	3.0 7.2 5.8							-0.1	20. 20.	0 0						36.7	ţ	50.2		

INMC0071 136/139

<u> </u>				IVII	IU	C	TEI) EMI	ISSIC	SNC	S D	ΑТ	A S	SHE	ΕT			F df3
	MC	802MIG2										<i>.</i>					204	06/23/2
Sori		C2												Work		INMC00 06/26/0		
Jen	Customer:	INTERME	Techn	ologie	es Coi	rnor	ation							Tempe	erature:			
	Attendees:			- 9.		1									midity:			
Cus	st. Ref. No.:												Baro	metric P	ressure	30.21		
		Dan Haas							Power:	120VAC	C, 60H	z		J	ob Site:	EV04		
	PECIFICATI		7													2022		
Sp	ecification:	FCC 15.20 ANSI C63.														2002 1992		
MPLE	CALCULA		•												rear:	1992		
Radiate	ted Emissions: ted Emissions:	Field Strength						able Factor - An + Cable Attenua					+ Externa	I Attenuati	on			
	allled in CK-3	O, running in o	locking s	tation.	802.11((g) mo	ode											
	ERATING N modulation, tr		d Channe	el at 6M	В													
deviatio		I TEST STA	NDAR)														
SULT ss	'S												Line	N		Run#	4	
ner													0	0				
											(Paris	[] offer	S				
													7	Tested B	y:			
8	30																	
7	70																	
6	60																	
Ü				\														
5	50																	
dBuV ⁴	10																	
	1				1	1 I						1						
3	30	W . V	1		A						الساوات	الأنظام _{ال}	August A					
3	30	MMM		\ _₩ ,\ _₩	Mun	W	M	~~~~~				_{ji} ndhafii		ilalan da				
	20	W A		\. .\\.	nul _{le} l	W.A	M	~~\\\ _{\\\\\}	~M~~~416~JM6/I			ydd Abadol Gwyni (Sulli		Habiph Pro-				
2		WW profit		\ _{\\} \\ _{\\}	MANA MANA	_	M	~~\\\ _{\\\\\\}	,v/ _{*v/*} 46.J/ ₄ //		111144 1144			Helen Liene				
2	20	Wyrty		\.\.\\.\.		_	M	···Wyy	,vv _{r-ve} -ipa.Jh _a jil			A hand on	A CALLED TO SERVICE OF THE SERVICE O	Makapikatara				
2	10	W. A. A.		\	wh./	\	1	~~WWWW//~	MHz			10	A CONTRACTOR OF THE CONTRACTOR	Maker der				100
2	0	Amplitude		\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	111/4 /1							Detector		Ac	tjusted	Spec. Lit		100
2 1	0 0.1	(dBuV)		\			1 Transducer (dB)	Cable (dB)	MHz External Attenuation (dB)		(bla				dBuV	dBuV	mit	Compare Spec. (dB)
2 1	0.1		\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\			1 Transducer	Cable (dB)	MHz External Attenuation (dB)		(bla	Detector				dBuV	mit	Compare Spec (dB)
2 1	0 0.1 Freq MHz)	(dBuV)		\			Transducer (dB)	Cable (dB) 1 -0.4 2 -0.1	MHz External Attenuation (dB) 20.0 20.0		(bla	Detector			33.7	dBuV 44 5	mit 6.0	Compare Spec. (dB)
2 1	0.1 0.1 Freq MHz) 4.797 0.301	(dBuV) 14.1 18.0		\			Transducer (dB)	Cable (dB)) -0.4) -0.1) -0.4	MHz External Attenuation (dB) 20.0 20.0 20.0		(bla	Detector			33.7 37.9	dBuV 44 54	6.0 0.2	Compare Spec. (dB) -1 -1 -1
2 1	0 0.1 6 req MHz) 4.797 0.301 4.722 4.622 0.379	(dBuV) 14.1 18.0 14.0 13.6 15.1	√\\	\			1 Transducer (dB) 0.0 0.0 0.0 0.0	Cable (dB) 1 -0.4 2 -0.1 3 -0.4 4 -0.4 6 -0.4 7 -0.4	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0		(bla	Detector			33.7 37.9 33.6 33.2 35.0	dBuV 44 50 44 44	6.0 0.2 6.0 6.0 8.3	-1 -1 -1 -1 -1 -1
2 1	4.797 0.301 4.722 4.622 0.379 4.247	(dBuV) 14.1 18.0 14.0 13.6 15.1 13.0		\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) 10 -0.4 11 -0.1 12 -0.4 13 -0.4 14 -0.1 16 -0.3	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7	44 59 44 44 44 44	6.0 0.2 6.0 6.0 8.3 6.0	-1 -1 -1 -1 -1 -1 -1
2 1	0.1 0.1 6.1 4.797 0.301 4.722 4.622 0.379 4.247 17.820	14.1 18.0 14.0 13.6 15.1 13.0 17.2		\	m/m/		1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Cable (dB) 0 -0.4 0 -0.4 0 -0.1 0 -0.1 0 -0.3 0 -0.3	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5	44 55 44 44 44 55	6.0 0.2 6.0 6.0 8.3 6.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1
2 1	0.1 3.1 3.1 3.1 4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2	√ √ √ √ √ √ √ √ √ √	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.			1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cable (dB) 1 -0.4 2 -0.1 3 -0.4 4 -0.3 6 -0.7 7 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5	44 56 44 44 44 56 56	6.0 0.2 6.0 6.0 8.3 6.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1
2 1	0.1 6req MHz) 4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2	√ √ √ √ √ √ √ √ √ √	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.			1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB)) -0.4) -0.1) -0.4) -0.3) -0.7) -0.7) -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3	44 50 44 44 44 50 50	6.0 0.2 6.0 6.0 8.3 6.0 0.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) 1 -0.4 2 -0.1 3 -0.4 4 -0.1 6 -0.3 7 -0.7 8 -0.7 9 -0.7 1 -0.7 1 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3	44 55 44 44 44 55 55	6.0 0.2 6.0 6.0 8.3 6.0 0.0 0.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060 17.580	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1 Transducer (dB) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Cable (dB) 0 -0.4 0 -0.1 0 -0.4 0 -0.1 0 -0.3 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1	48uV 44 56 44 44 45 56 56 56 56	6.0 0.2 6.0 6.0 8.3 6.0 0.0 0.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9		\	nd _k d		1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) 10 -0.4 11 -0.4 12 -0.3 13 -0.7 14 -0.7 16 -0.7 17 -0.7 18 -0.7 19 -0.7 10 -0.7 11 -0.7 12 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3	48uV 44 44 44 45 50 50 50 50 50	6.0 0.2 6.0 6.0 8.3 6.0 0.0 0.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060 17.580 17.730	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9 16.8		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nd _k d		1 Transducer (dB) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Cable (dB) 1 -0.4 2 -0.4 3 -0.7 6 -0.7 7 -0.7 9 -0.7 1 -0.7 1 -0.7 2 -0.7 2 -0.7 3 -0.7 4 -0.7 5 -0.7 6 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1 36.1	49 44 44 44 55 55 55 55 55 55	6.0 0.2 6.0 6.0 8.3 6.0 0.0 0.0 0.0 0.0	Spec (dB) -11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060 17.580 17.730 18.210	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9 16.8 16.8			nd _k d		1 Transducer (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Cable (dB) 1	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1 36.1	48uVV 44 56 44 44 56 56 56 56 56 40 41 41 41 41 41 41 41 41 41 41 41 41 41	6.0 6.0 6.0 6.0 6.0 6.0 0.0 0.0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060 17.580 17.730 18.210 0.681 17.670 17.370	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9 16.8 16.8 16.7 12.0 16.5		\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	nd _k /l		1 Transducer (dB) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Cable (dB) 0 -0.4 0 -0.1 0 -0.4 0 -0.1 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7 0 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1 36.1 36.0 31.9 35.8	48uV 444 445 55 55 55 55 55 55 55 55 55 55 5	mit 66.0 0.2 66.0 66.0 68.3 66.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-11 -11 -11 -11 -11 -11 -11 -11 -11 -11
2 1	4.797 0.301 4.722 4.622 17.970 17.880 18.060 17.580 17.730 18.210 0.681 17.670 17.370 17.430	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9 16.8 16.8 16.7 12.0 16.5 16.4					1 Transducer (dB) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Cable (dB) 0 -0.4 0 -0.1 0 -0.3 0 -0.7	External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1 36.1 36.0 31.9 35.8 35.8	48uVV 444 444 55 56 56 56 56 56 56 56 56 56 56 56 56	mit 66.0 0.2 66.0 66.0 68.3 66.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Spec. (dB) -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
2 1	4.797 0.301 4.722 4.622 0.379 4.247 17.820 17.970 17.880 18.060 17.580 17.730 18.210 0.681 17.670 17.370	14.1 18.0 14.0 13.6 15.1 13.0 17.2 17.2 17.0 16.9 16.8 16.8 16.7 12.0 16.5					1 Transducer (dB) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.	Cable (dB) -0.4 0 -0.1 0 -0.4 0 -0.7	MHz External Attenuation (dB) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		(bla	Detector			33.7 37.9 33.6 33.2 35.0 32.7 36.5 36.5 36.3 36.2 36.1 36.1 36.0 31.9 35.8	444 44 44 55 56 56 56 56 56 56 56 56 56 56 56 56	mit 66.0 0.2 66.0 66.0 68.3 66.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Compare Spec.

INMC0071 137/139

EMC	-		UD (ISS											06/2	3/2
	: 802MIG2														Wor	k Order:	INMC	0081		
Serial Number:																	06/26			
	: INTERMEC T	Technolo	gies C	orpo	ration											erature:	_			
Attendees								·					_]			umidity:				
Cust. Ref. No.:									مارر	201/4	2 667		_	Baro	metric F					
Tested by: ST SPECIFICAT	Dan Haas							Pow	er: 1	20VA0	ر, 60F	1Z				Job Site:	ı⊏V04			
	FCC 15.207															Year	2002			
	: ANSI C63.4																1992			
MPLE CALCULA																				
Radiated Emissions: Conducted Emissions: DMMENTS dio installled in CK-3	: Adjusted Level =	Measured	Level +	Transd	ucer Fac								ictor +	Externa	al Attenuat	tion				
T OPERATING I		Channel at	t 6MB																	
VIATIONS FROM deviations.	M TEST STAN	DARD																		
SULTS ss														Line	L1		Run #	#	5	
her									Т)·l) oxlar	2					
												_	and 2		Tested E	Bv:				
80 —																-y.				1
70																				
60					+															
50										•										
_			+							_										
40 —														_						
30 ag	Varded.	1		1		1 / /\a	Am .m.						and t							
30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, r [*] ***********************************	,/\ ₄	\	γν.	~\\\\ <u>\</u> \\\\	.m/\//\\/	W				44) ([44 		March 1	<u></u>				
뜅	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,/\/ ₄ ,		γν.	~\\\\ <u>\\\\\</u>						-14].[^{4]} 14.44							
20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\	,/\/ ₄		γν.,.	~h/_}_								11. 4.19 4.					
30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\w ₁ \ ₁	,/\ ₄ \ ₄		γν.	~\\\ <u>\</u> \\\\								4, , , , , , , , ,					
20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	\	,/\/ ₄	harted 1	γν.,.	~\\\ <u>\</u> ,\\\\				i i i i i i i i i i i i i i i i i i i				4.4114					-
30 20 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,1,0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,/\/ ₄	11111	γνν	~_ ,\ \\\								U 11 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				111	
30 20 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,1,0	\	W	1	γνν	~\ <u>\\\</u> ,,,\\\\	.∕¶.∕∏.́III				10	od Jak		M ₁₁ 11 14	4			10	000
30 20 10 0 0.1	Amplitude		\h-\h\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	**	1	lucer	Cable	MHz Externa Attenuati			(6)	10 Detection to the coupling t	tor peaks	Cp. A	4	Adjusted	Spec.		Comp Sp	are
30 20 10 0.1	(dBuV)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩	1	lucer	Cable (dB)	MHz Externa Attenuati (dB)	on		(6)	10	tor peaks		A	dBuV	dBı	uV	Comp Sp (d	are ec.
30 20 10 0 0.1	(dBuV)		14. A.		1	lucer	Cable	MHz Externa Attenuati (dB)			(6)	10 Detection to the coupling t	tor peaks		A		dBi		Comp Sp (d	are
30 20 10 0.1 Freq (MHz)	(dBuV) 7 16.4 2 16.3		1		1	ducer	Cable (dB)	MHz Externa Attenuat (dB)	on 0.0		(6)	10 Detection to the coupling t	tor peaks		A	dBuV 36.0	dBi	uV 46.0	Comp Sp (d	are ec. iB)
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩	1	0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.4 -0.4	MHz Externa Attenuati (dB) 20 20 20 20	0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2	dBi	46.0 46.0 46.0 46.0	Comp Sp (d	are ec. HB) -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5 7 15.1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩	1	0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4	Externa Attenuati (dB)	0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7	dBi	46.0 46.0 46.0 46.0 46.0	Comp Sp (d	are ec. IB) -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.872	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩	1	0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3	Externa Attenuati (dB)	0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1	dBi	46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1
30 20 10 0 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.872 4.172	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3		**********	4	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.4 -0.3	MHz Externa Attenuati (dB) 20 20 21 21 21 21 21 21 21	0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1
30 20 10 0 0.1 Freq (MHz) 4.797 4.722 4.647 4.547 4.547 4.547 4.547 4.547 4.347	(dBuV) 7 16.4 2 16.3 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2		1	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.4	MHz Externa Attenuati (dB) 22 22 21 21 22 22 22 22 22 22 22 22 22	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.847 4.872 4.172 4.347 4.347 4.397	(dBuV) 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8		\\ \tag{\dagger}	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.3	MHz Externative (dB) 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		Α	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1
30 20 10 0 0.1 Freq (MHz) 4.797 4.722 4.647 4.547 4.547 4.547 4.547 4.547 4.347	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 0 18.1		\\ \tag{\dagger}	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.4	Externa Attenuati (dB)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		Α	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.872 4.172 4.347 4.397 17.820	(dBuV) 7 16.4 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 0 18.1 7 13.4		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.3	Externa Attenuati (dB)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		Α	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.547 4.872 4.172 4.347 4.397 17.820 4.097 17.910 17.970	(dBuV) 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 18.1 7 13.4 0 17.6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.3 -0.7 -0.3	MHz Externa Attenuati (dB) 20 20 20 20 20 20 20 20 20 20 20 20 20	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4	dBı	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.847 4.872 4.172 4.347 4.397 17.820 4.097 17.910 17.970 0.303	(dBuV) 16.4 16.3 16.2 15.5 15.1 14.1 14.2 14.3 14.2 13.8 18.1 17.6 17.6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.7 -0.3 -0.7 -0.7	MHz Externa Attenuati (dB) 20 20 20 20 20 20 20 20 20 20 20 20 20	on		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4 33.1 36.9 36.8	dBı	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Spi (d	are pec iB) -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.872 4.172 4.347 4.397 17.820 4.097 17.910 17.970 0.303 3.796	(dBuV) 7 16.4 7 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 0 18.1 7 13.4 0 17.5 3 17.1 6 13.0		\\ \frac{1}{2} \cdot \cd		1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.4 -0.3 -0.3 -0.7 -0.3 -0.7 -0.7 -0.1	Externa Attenuati (dB) 20 21 21 22 21 22 22 22 22 22 22 22 22 22	on		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.5 37.4 33.1 36.9 36.8 37.0 32.7	dBı	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Composition Sp(d)	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.347 17.820 4.097 17.910 0.303 3.796 18.060	(dBuV) 7 16.4 2 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 0 18.1 7 13.4 0 17.6 0 17.5 3 17.1		\\ \frac{1}{2} \cdot \cd		1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.7 -0.7 -0.1 -0.3 -0.7	Externa Attenuati (dB) 20 21 21 22 21 22 22 22 22 22 22 22 22 22	on		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4 33.1 36.9 36.6	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Compp Sp (d	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.347 4.347 4.397 17.820 4.097 17.910 17.970 0.303 3.796 18.060 18.360	(dBuV) 7 16.4 16.3 7 16.2 7 15.5 7 15.1 2 14.5 2 14.3 7 14.2 7 13.8 0 18.1 7 13.4 0 17.6 0 17.5 3 17.1 6 13.0 0 17.3		*********	*	1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.7 -0.7 -0.1 -0.3 -0.7 -0.7 -0.7	MHz Externa Attenuati (dB) 20 20 20 20 20 20 20 20 20 20 20 20 20	on		(6)	10 Detection to the coupling t	tor peaks		А	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4 33.1 36.8 37.0 32.7 36.6	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 20 10 0.1 Freq (MHz) 4.797 4.722 4.647 4.247 4.547 4.347 17.820 4.097 17.910 0.303 3.796 18.060	(dBuV) 16.4 16.3 16.2 15.5 15.1 14.5 14.2 14.3 14.2 13.8 18.1 17.1 13.4 17.5 17.6 17.5 17.1 13.0 17.3 17.3		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.3 -0.3 -0.3 -0.7 -0.7 -0.1 -0.3 -0.7	MHz Externa Attenuati (dB) 20 20 20 20 20 20 20 20 20 20 20 20 20	on		(6)	10 Detection to the coupling t	tor peaks		A	36.0 35.9 35.8 35.2 34.7 34.1 34.0 33.9 33.5 37.4 33.1 36.9 36.6	dBi	46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0	Comp Sp (d	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

INMC0071 138/139

	EMC			CO	N	D	U	C	T	ED	EM	ISS	IC	N	S) A	IΑ	A	SF	ΙE	ET				C
		UT: 802N																				Order:		Coos	81	06/23
Se	erial Numb																					Date:				
	Custon	ner: INTE	RMEC	Techn	olog	ies	Cor	poı	ratio	n										Т		erature:	75			
	Attende	ees:																				ımidity:				
С	ust. Ref. N													100.	•-				Ba	romet		ressure				
ST 6		by: Dan										Pov	/er: ′	120V	AC,	60F	1Z				Jo	ob Site:	EV()4		
	PECIFIC Specificati																					Year:	200	2		
•		od: ANS																				Year:				
MPL	E CALC																									
Ondu		ons: Adjust	ted Level =	= Measu	red Le	evel +	+ Trai	nsdı	ucer F		ble Factor - Ai Cable Attenu							lucio	or - Exter	That 7 the	maak					
.11(g)	PERATIN modulatio	n, transmi	tting High			6MB																				
	TIONS FR tions. TS	ROM TES	ST STAN	IDARL															Line				Rur	n #		
ss																					N		IXGI	. "	6	
ner																/	/	Dan	L gu	ar .						
																_				Test	ed B	y:			_	
	80							T	П																	
	70								1																	
		\																								
	60								1																	+
	50								Ш																	Ш
									+					4												
dBuV	40			٨					+											4						
	30)	Λ	/\			۸.	۱.		Λην	the			444	l.		411	dell	أسطال	L						
		$$ \vee_{\vee}	۸۸ / L	/ 1 / 11	V 4. IV 4	JAJ	M	W	المسارا	/ V V /v		./w/w///w.		UI a	life	r II	j-Jt J.	أرشان	մերըմկիլ <mark>։</mark>	Name of Street						
		\sim \sim	~\\ \\	/ hap!	AW A	nr m/d	ין יעיין	"	al date			A.A	hilina	4 (87 4												+
	20	· · · · · · · · · · · · · · · · · · ·	~\/ \m	/ July	AM A	nr nyi	, , , , , , , , , , , , , , , , , , ,	-	rq ryaq			· 1/4	in Marillalar	4 (M) 4												
			~V \	J hap!	AM A	ur nyq		"	1917		, , , , , ,	. 1/4/	ian kalifaka													
	20	······································	~~\\	, Publ	WW.	ar reju			- Trans			Y	ianwalihi.													
		₩	~V YMY	1 July		ar repa		"	71 1784		, ,		i i i i i i i i i i i i i i i i i i i													+
	20		~V YMM	1 July	W 4	ir nyq	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	71 1784		, ,	Y	<u>kandilda</u>													
	20	· · · · · · · · · · · · · · · · · · ·	W/ /WM	1 1.41	W.	ar nya					,		ia Piculinia													
	20	· · · · · · · · · · · · · · · · · · ·	WY WWY	1 141	W 4				1			MHz					10	0								100
	20		blitude BuV)	/ \w\		11 11/4			1 Trans	sducer (B)	Cable (dB)		al			(bl	Det:	O ector yual peak	ks			djusted dBuV		ec. Lim		100 ompar Sper (dB
	20 10 0.1 Freq (MHz)	(dE	3uV) 14.7	/ \mp/ \					1 Trans	sducer iB)	Cable (dB)	MHz Extern Attenual (dB)	al lion 0.0			(bl	Det:	ector	ks			34.3		dBuV 46	.0	ompar Spe (dB
	20 10 0.1 Freq (MHz)	372 303	14.7 18.3	1 1.44					1 Trans	sducer dB)	Cable (dB) -0.4 -0.1	MHz Extern Attenual (dB)	0.0 0.0			(bl	Det:	ector	ks			34.3 38.2		46 50	.0 .2	ompar Spe (dB
	20 10 0.1 Freq (MHz) 4.8	372 303 722	14.7 18.3 13.3	<u> </u>					1 Trans	0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4	MHz Extern Attenual (dB)	0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9		46 50 46	.0 .2	ompar Spec (dB
	20 10 0.1 Freq (MHz) 4.8 0.3 4.6	372 303 722 647	14.7 18.3 13.3 12.9						1 Trans	sducer dB)	Cable (dB) -0.4 -0.1 -0.4	MHz Extern Attenual (dB)	0.0 0.0			(bl	Det:	ector	ks			34.3 38.2		46 50 46 46	.0 .2 .0	ompar Spe (dB
	20 10 0.1 Freq (MHz) 4.8 0.3 4.6	372 303 722 647 797	14.7 18.3 13.3						1 Trans	0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.4 -0.4	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5		46 50 46	.0 .2 .0 .0	ompar Spec (dB
	20 10 0.1 Freq (MHz) 4.8 4.7 4.6 4.7	372 303 722 647 797	14.7 18.3 13.3 12.9 12.9	1					1 Trans	0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.4 -0.4	Extern Attenual (dB)	0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5		46 50 46 46 46	.0 .2 .0 .0	ompar Sper (dB
	20 0.1 Freq MHz) 4.6 4.7 17.8 17.6	(dE 372 303 722 647 797 970 960 670	14.7 18.3 13.3 12.9 12.9 17.1 17.1						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.4 -0.7 -0.7 -0.7	MHz Extern Attenual (dB) 22 22 22 22 22 22 22 22 22	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3		46 50 46 46 46 50 50	.0 .2 .0 .0 .0	ompar Sper (dB
	20 10 0.1 Freq (MHz) 4.8 4.7 4.6 4.7 17.8 17.8 17.8	(dE 372 303 722 647 797 970 960 670 320	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1		46 50 46 46 46 50 50 50	.0 .2 .0 .0 .0 .0	ompar Sper (dB
	20 0 0.1 Freq (MHz) 4.8 4.7 17.8 18.0 17.6 17.6 17.6 0.3	(dE 372 303 722 547 797 970 960 670 320 382	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.3 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2		46 50 46 46 46 50 50 50 48	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2	ompar Speidel
	20 0 0.1 Freq (MHz) 4.6 4.7 17.8 18.0 17.6 17.8 0.3 17.8	(dE 3372 303 722 647 797 970 960 660 670 320 382 910	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3 16.4						1 Trans	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2 35.7		46 50 46 46 46 50 50 50 48 50	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .2 .0 .0 .2 .0	ompar Speidel
	20 0.1 10 0.1 4.6 4.7 17.8 0.3 17.8 17.8 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	(dE 372 303 722 647 797 970 960 670 320 382 910 247	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3 16.4 12.0						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.1 -0.7 -0.7	MHz Extern Attenual (dB) 22 22 22 22 22 22 22 22 22 22 22 22 22	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 36.4 36.4 36.3 36.1 34.2 35.7 31.7		46 50 46 46 46 50 50 50 48 50 46	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ompar Spei (dB
	20 0 0.1 Freq (MHz) 4.6 4.7 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8	(dE 372 303 722 647 797 970 960 6670 320 382 910 247 430	14.7 18.3 13.3 12.9 12.9 17.1 17.0 16.8 14.3 16.4 12.0 16.3	<u> </u>					1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.1 -0.4 -0.6	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 36.4 36.4 36.3 36.1 34.2 35.7 31.7 35.7		46 50 46 46 46 50 50 50 48 50 46 50	.00200000000	ompar Spei (dB
	20 10 0.1 Freq (MHz) 4.8 4.7 4.6 4.7 17.8 17	(dE 372 303 722 647 797 970 960 6670 320 382 910 247 430	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3 16.4 12.0	<u> </u>					1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.1 -0.7 -0.6 -0.7	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 36.4 36.4 36.3 36.1 34.2 35.7 31.7		46 50 46 46 46 50 50 50 48 50 46	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ompar Spei (dB
	20 10 0.1 Freq (MHz) 4.8 4.7 4.6 4.7 17.8 17	(dE 3372 303 722 647 797 970 960 670 320 382 910 247 430 588 755	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3 16.4 12.0 16.3 16.3						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.3 -0.6 -0.7 -0.2	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2 35.7 35.7 35.7		46 50 46 46 46 50 50 50 48 50 46 50	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	omparr SpeiddB
	20 0 0.1 Freq (MHz) 4.8 0.3 4.7 17.8 18.0 17.6 17.6 17.8 4.2 17.5 17.	(dE 3372 303 722 547 797 970 960 560 560 320 382 910 247 430 580 755	14.7 18.3 13.3 12.9 17.1 17.0 16.8 14.3 16.4 12.0 16.3 16.3 11.8						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.3 -0.6 -0.7 -0.2 -0.7	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2 35.7 35.7 35.6 31.6		46 50 46 46 46 46 50 50 50 48 50 46 50 46	.00 .22 .00 .00 .00 .00 .00 .00 .00 .00	omparr Speid (dB
	20 0.1 10 0.1 Freq (MHz) 4.6 4.7 17.5 18.6 17.6 17.7 18.6 17.6 17.7 18.6 17.6 17.7 18.6 17.6 17.7 18.6 17.6 17.7 18.6 17.6 17.7 18.6 17.6 17.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	(dE 3372 303 722 647 797 970 960 667 320 382 941 247 430 580 755 730 120 947	14.7 18.3 13.3 12.9 12.9 17.1 17.0 16.8 14.3 16.4 12.0 16.3 11.8 16.2						1 Trans	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.7 -0.7 -0.7 -0.7 -0.1 -0.7 -0.2 -0.7 -0.7 -0.7 -0.2	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2 35.7 35.7 35.6 31.6 35.5 35.4		466 500 500 466 500 500 466 500 500 466 500 500 466 500 500 466 500 500 466 500 600 600 600 600 600 600 600 600 6	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ompar Speed (dB
	20 10 0.1 Freq (MHz) 4.6 4.7 17.9 18.0 17.8	(dE 3372 3303 722 547 797 970 060 5320 3382 910 247 430 5580 755 730 120	14.7 18.3 13.3 12.9 12.9 17.1 17.1 17.0 16.8 14.3 16.4 12.0 16.3 16.3 11.8						1 Trans	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Cable (dB) -0.4 -0.1 -0.4 -0.4 -0.7 -0.7 -0.7 -0.7 -0.7 -0.1 -0.7 -0.2 -0.7 -0.4 -0.4	MHz Extern Attenual (dB) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			(bl	Det:	ector	ks			34.3 38.2 32.9 32.5 32.5 36.4 36.4 36.3 36.1 34.2 35.7 35.7 35.6 31.6 35.5 35.4		466 500 466 500 466 500 466 500 466 500 500 500 500 500 500 500 500 500 5	.0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ompara Sper (dB

INMC0071 139/139