Intermec Technologies Corporation

Bluetooth (8520-00080) and 802.11(b) (2011B) with CDMA (EM3420) in 700C

July 6, 2004

Report No. ITRM0030

Report Prepared By:

1-888-EMI-CERT

© 2003 Northwest EMC, Inc

Test Report

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: June 6, 2004
Intermec Technologies Corporation

Model: Bluetooth (Model 8520-00080) and 802.11(b) (Model 2011B)

with CDMA (Model EM3420) in 700C

	Emissions		
Description		Pass	Fail
FCC 15.247(c) Spurious Radiated Emis	sions:2003		

Modifications made to the product

See the Modifications section of this report

Test Facility

• The measurement facility used to collect the data is located at:

Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal

Communications Commission) and Industry Canada.

Approved By:

Donald Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

EMC

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada. Accreditation has been granted to Northwest EMC, Inc. under Certificate Numbers: 200629-0, 200630-0, and 200676-0.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

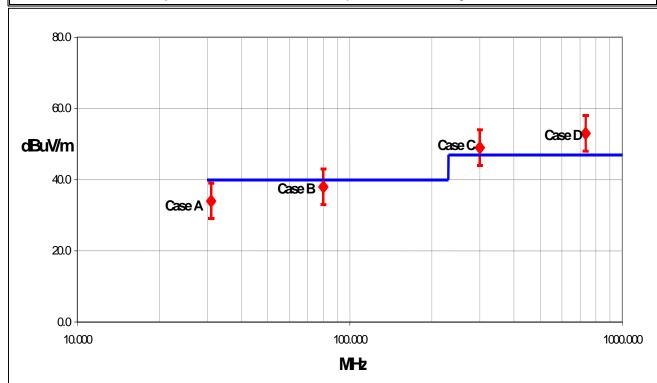
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

What is measurement uncertainty?


When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty, then test results can be interpreted from the diagram below.

Test Result Scenarios:

Case A: Product complies.

Case B: Product conditionally complies. It is not possible to say with 95% confidence that the product complies.

Case C: Product conditionally does not comply. It is not possible to say with 95% confidence that the product does not comply.

Case D: Product does not comply.

Measurement Uncertainty

Radiated Emissions ≤ 1 GHz		Value (dB)				
Probabili		Bico	nical	Log Pe	eriodic	D	ipole
	Distribution	Distribution Antenna		Ante	enna	An	tenna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty u _c (y)		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty <i>U</i>	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence ≈ 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz	Value (dB)		
	Probability Distribution	Without High Pass Filter	With High Pass Filter
Combined standard uncertainty $u_c(y)$	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty <i>U</i> (level of confidence ≈ 95%)	normal (k=2)	+ 2.57 - 2.51	+ 2.76 2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty uc(y)	normal	1.05
Expanded uncertainty <i>U</i> (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2) 2.10	
(level of confidence ≈ 95 %)	Horriai (K = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

 $\it U$ = combined standard uncertainty multiplied by the coverage factor: $\it k$. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then $\it k$ =3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Intermec Technologies Corporation
Address:	550 Second St. SE
City, State, Zip:	Cedar Rapids, IA 52401-2023
Test Requested By:	Scott Holub
Equipment Under Test:	Bluetooth and 802.11(b) radio modules co-located with new CDMA radio
Model:	8520-00080 (Bluetooth)
Woder.	2011B (802.11(b)
First Date of Test:	06-29-2004
Last Date of Test:	06-30-2004
Receipt Date of Samples:	06-15-2004
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators: Not provided at the time of test.

Functional Description of the EUT (Equipment Under Test):

Bluetooth radio and 802.11(b) radio installed in an Intermec Handheld Computer, Model 700C. These radios are co-located with a new EM3420 CDMA radio module.

Client Justification for EUT Selection:

The EUT is a representative production sample.

Client Justification for Test Selection:

These tests satisfy the requirements FCC 15.247 (c) for co-located transmitters.

EUT Photo

Modifications

Revision 4/28/03

	Equipment modifications						
Item	Test	Date	Modification	Note	Disposition of EUT		
1	Spurious Radiated Emissions	06/29/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.		
2	Spurious Radiated Emissions	06/30/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT was returned to client following testing.		

Revision 10/1/03

Justification

The EUTs are previously certified, co-located Bluetooth radio module and 802.11(b) radio module installed inside Intermec's Handheld Computer, Model 700C (FCC ID: EHABTS0080 and FCC ID: HN22011B-2, respectively). The hand-held computer also contains a new CDMA radio module, EM3420, currently undergoing certification (FCC ID: EHAEM3420). This test demonstrates compliance with FCC 15.247(c) emissions limits while the previously certified Bluetooth and 802.11(b) radios are co-located with the new CDMA radio. Each radio transmits through its own antenna.

All possible combinations of harmonic emissions from the CDMA, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. All the radios were configured for simultaneous transmission at the channels specified below:

Channels in Specified Band Investigated:		
802.11(b):	1,11	
CDMA (Cellular):	54, 55, 395, 467	
CDMA (PCS):	1, 35, 1153	
Bluetooth:	5, 11, 62, 68, 79	

Operating Modes Investigated:
Bluetooth and 802.11(b) Radios Simultaneously Transmitting with CDMA PCS (high band)
Simultaneous transmission of Bluetooth Ch. 11, CDMA (PCS) Ch. 1, and 802.11(b) Ch. 1
Simultaneous transmission of Bluetooth Ch. 11, CDMA (PCS) Ch. 1153, and 802.11(b) Ch. 1
Simultaneous transmission of Bluetooth Ch. 68, CDMA (PCS) Ch. 35, and 802.11(b) Ch. 11
Simultaneous transmission of Bluetooth Ch. 62, CDMA (PCS) Ch. 1153, and 802.11(b) Ch. 11
Bluetooth and 802.11(b) Radios Simultaneously Transmitting with CDMA Cellular (low band)
Simultaneous transmission of Bluetooth Ch. 11, CDMA (cellular) Ch. 467, and 802.11(b) Ch. 1
Simultaneous transmission of Bluetooth Ch. 5, CDMA (cellular) Ch. 395, and 802.11(b) Ch. 1
Simultaneous transmission of Bluetooth Ch. 79, CDMA (cellular) Ch. 55, and 802.11(b) Ch. 11
Simultaneous transmission of Bluetooth Ch. 79, CDMA (cellular) Ch. 54, and 802.11(b) Ch. 11

Data Rates Investigated: Maximum

Antennas Investigated:		
802.11(b):	Custom internal to 700C	
CDMA (Cellular):	805-606-102 Dual Band CDMA 900/1900MHz Antenna (SB555)	
CDMA (PCS): 805-666-204 Single Band CDMA 1900MHz Antenna (SB555)		
Bluetooth:	Integral PCB trace	

Output Power Setting(s) Investigated:	
Maximum	

Power Input Settings Investigated:	
120 VAC, 60 Hz.	

Frequency Range Invest	igated		
Start Frequency	1 GHz	Stop Frequency	26 GHz

Spurious Radiated Emissions

Revision 10/1/03

Software\Firmware Applied During Test									
Exercise software	Blue Test CDMA FCC Test PrismTestCe	Version	Unknown 6/7/04 6/1/04						
Description									

The system was tested using special test software to exercise the functions of the device during the testing such as channels, power, and modulation.

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Radio	Intermec Technologies Corporation	8520-0080	Unknown
802.11(b) Radio	Intermec Technologies Corporation	2011B	N/A
CDMA Radio	Intermec Technologies Corporation	EM3420	Unknown
AC Adapter	Elpac Power Systems	FW1812	014869
Handheld Computer	Intermec Technologies Corporation	700C	13790400008

Cables								
Cable Type Shield		Length (m)	Ferrite	Connection 1	Connection 2			
DC Leads PA AC Power No		1.4	No	Handheld Computer	AC Adapter			
		2.0	No	AC Adapter	AC Mains			
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.								

Measurement Equi	pment				
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	12 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	10/08/2003	12 mo
Antenna, Horn	EMCO	3115	AHC	09/18/2003	12 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	04/13/2004	13 mo
Attenuator	Pasternack	PE7001-10	ATD	02/03/2004	13 mo
Attenuator		2082-6148-20	ATE	02/03/2004	13 mo
Antenna, Horn	EMCO	3115	AHF	03/18/2004	24 mo
Signal Generator	Hewlett Packard	8341B	TGN	01/23/2004	13 mo
Antenna, Dipole (ADAA included)	Roberts	Roberts	ADA	12/27/2002	24 mo
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/23/2003	13 mo

Test Description

Requirement: Per 15.247(c), the field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 15.205, is measured. The peak level must comply with the limits specified in 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

Spurious Radiated Emissions

Revision 10/1/03

<u>Configuration</u>: The EUTs are previously certified, co-located Bluetooth radio module and 802.11(b) radio module installed inside Intermec's Handheld Computer, Model 700C (FCC ID: EHABTS0080 and FCC ID: HN22011B-2, respectively). The hand-held computer also contains a new CDMA radio module, EM3420, currently undergoing certification (FCC ID: EHAEM3420). Each radio transmits through its own antenna.

The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

All possible combinations of harmonic emissions from the CDMA, 802.11(b), and Bluetooth radios were compared numerically. It was determined that there were no possible coincidental harmonics below 1 GHz. The frequency range from 1 GHz to 26 GHz was investigated for channel combinations that would produce coincidental harmonics. Compliance with the restricted band at 2483.5 – 2500 MHz was also measured.

All the radios were configured for simultaneous transmission at the channels specified in the previous pages. The highest gain antennas to be used with the radios were tested. The spectrum was scanned throughout the specified range. While scanning, emissions from the radios were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antennas in three orthogonal axes, and adjusting the measurement antenna height and polarization (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Bandwidths Used for Me	asurements		
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 – 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were n	nade using the bandwidths	and detectors specified. No	video filter was used.

Completed by:

Holy Arling

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

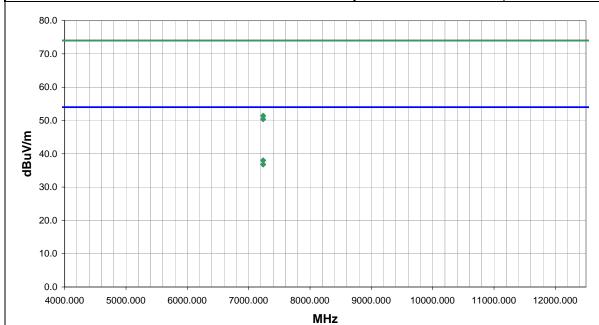
COMMENTS

Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 1 CDMA PCS, 802.11b channel 1, Bluetooth channel 11

DEVIATIONS FROM TEST STANDARD


No deviations.

 RESULTS
 Run #

 Pass
 41

Other

Holy Arling Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
7236.000	27.6	10.4	299.0	1.8	3.0	0.0	H-Horn	AV	0.0	38.0	54.0	-16.0	
7236.000	26.4	10.4	24.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2	
7236.000	41.0	10.4	299.0	1.8	3.0	0.0	H-Horn	PK	0.0	51.4	74.0	-22.6	
7236.000	40.0	10.4	24.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.4	74.0	-23.6	

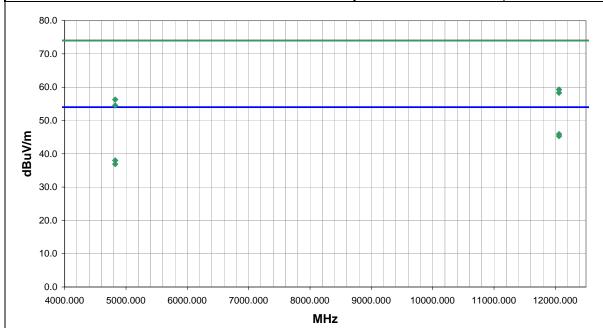
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 1153 CDMA PCS, 802.11b channel 1, Bluetooth channel 11


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 42 Pass

Other

Holy Aligh Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
12060.000	25.3	20.6	190.0	2.4	3.0	0.0	V-Horn	AV	0.0	45.9	54.0	-8.1	
12060.000	24.7	20.6	241.0	1.3	3.0	0.0	H-Horn	AV	0.0	45.3	54.0	-8.7	
12060.000	38.7	20.6	190.0	2.4	3.0	0.0	V-Horn	PK	0.0	59.3	74.0	-14.7	
12060.000	37.7	20.6	241.0	1.3	3.0	0.0	H-Horn	PK	0.0	58.3	74.0	-15.7	
4824.000	34.6	3.4	313.0	1.3	3.0	0.0	H-Horn	AV	0.0	38.0	54.0	-16.0	
4824.000	33.5	3.4	250.0	1.3	3.0	0.0	V-Horn	AV	0.0	36.9	54.0	-17.1	
4824.000	52.9	3.4	313.0	1.3	3.0	0.0	H-Horn	PK	0.0	56.3	74.0	-17.7	
4824.000	51.1	3.4	250.0	1.3	3.0	0.0	V-Horn	PK	0.0	54.5	74.0	-19.5	

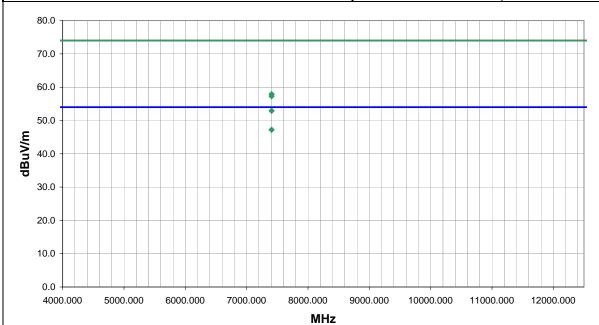
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 35 CDMA PCS, 802.11b channel 11, Bluetooth channel 68


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 43 Pass

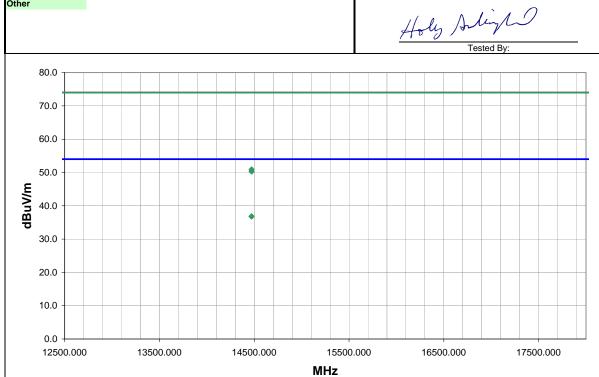
Other

Holy Aligh Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
7407.000	41.9	11.0	29.0	1.3	3.0	0.0	H-Horn	AV	0.0	52.9	54.0	-1.1	
7407.000	36.2	11.0	48.0	1.2	3.0	0.0	V-Horn	AV	0.0	47.2	54.0	-6.8	
7407.000	46.9	11.0	29.0	1.3	3.0	0.0	H-Horn	PK	0.0	57.9	74.0	-16.1	
7407.000	46.3	11.0	48.0	1.2	3.0	0.0	V-Horn	PK	0.0	57.3	74.0	-16.7	

NORTHWEST EMC	RADIATED EMIS	SIONS DATA	SHEET		REV df4.13 05/06/2004
EUT:	802.11(b) and Bluetooth radios in 700C co-located wit	h CDMA radio	Work Order:	ITRM0030	
Serial Number:		Date:	06/29/04		
Customer:	Intermec Technologies Corporation	Temperature:	75		
Attendees:	none	Humidity:	45%		
Cust. Ref. No.:			Barometric Pressure	30.16	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions	_	Year:	2003	
Method:	ANSI C63.4	Year:	2001		
SAMPLE CALCULA	TIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator


Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)

EUT OPERATING MODES
Transmitting channel 1 CDMA PCS, 802.11b channel 1, Bluetooth channel 11

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS 44 Pass

Other

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
14472.000	26.9	9.9	84.0	2.6	3.0	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2
14472.000	26.9	9.9	138.0	2.8	3.0	0.0	H-Horn	AV	0.0	36.8	54.0	-17.2
14472.000	41.0	9.9	84.0	2.6	3.0	0.0	V-Horn	PK	0.0	50.9	74.0	-23.1
14472.000	40.4	9.9	138.0	2.8	3.0	0.0	H-Horn	PK	0.0	50.3	74.0	-23.7

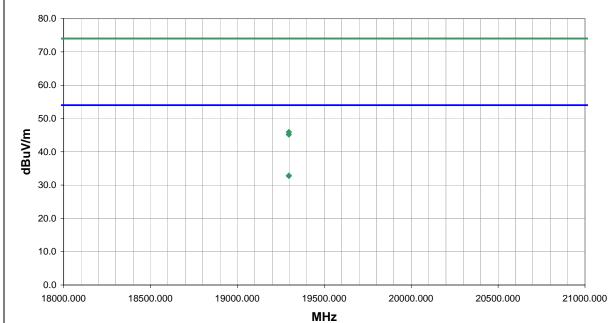
NORTHWEST EMC	RADIATED EMISS	SIONS DATA	SHEET		REV df4.13 05/06/2004								
EUT:	802.11(b) and Bluetooth radios in 700C co-located with	CDMA radio	Work Order:	ITRM0030									
Serial Number:			Date:	06/29/04									
Customer: Intermec Technologies Corporation Temperature: 75													
Attendees:	none		Humidity:	45%									
Cust. Ref. No.:			Barometric Pressure	30.16									
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01									
TEST SPECIFICATI	ONS												
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003									
Method:	ANSI C63.4	_	Year:	2001									
SAMPLE CALCULA	TIONS												
B # 1 F 1 F	E. 110: 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E . 110 0										

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)


EUT OPERATING MODES
Transmitting channel 1153 CDMA PCS, 802.11b channel 1, Bluetooth channel 11

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 50

Other

Holy Aligher
Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
19296.000	24.8	8.0	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	32.8	54.0	-21.2	_
19296.000	24.8	8.0	-1.0	1.0	3.0	0.0	V-High Horr	AV	0.0	32.8	54.0	-21.2	
19296.000	37.9	8.0	-1.0	1.0	3.0	0.0	V-High Horr	PK	0.0	45.9	74.0	-28.1	
19296.000	37.2	8.0	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	45.2	74.0	-28.8	

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

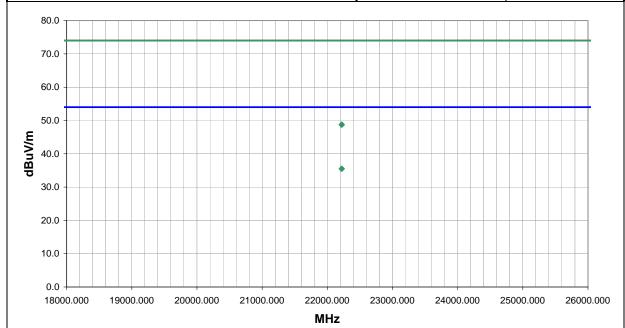
COMMENTS

Simultaneous transmission of 700C (CDMA(PCS)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 35 CDMA PCS, 802.11b channel 11, Bluetooth channel 35

DEVIATIONS FROM TEST STANDARD


No deviations.

 RESULTS
 Run #

 Pass
 51

Other

Holy Arling Tested By:

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
22221.000	26.5	9.0	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	35.5	54.0	-18.5	
22221.000	26.5	9.0	-1.0	1.0	3.0	0.0	V-High Horr	AV	0.0	35.5	54.0	-18.5	
22221.000	39.8	9.0	-1.0	1.0	3.0	0.0	V-High Horr	PK	0.0	48.8	74.0	-25.2	
22221.000	39.7	9.0	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	48.7	74.0	-25.3	

EUT 802-11(b) and Bluetcoth radios in 700C co-located with CDMA radio Date 06/2304		RTHWEST					D	Λ		1.4	5		Б	1	-	VЛ	ıc	20	21	\bigcirc	AI C	2	ח	۸٦	F /		٠	11	7	-	-					RE df4.1
Series Cours of Mail Cou	E	MC					K	A	L	/L/=	۷I	Ŀ	Ŀ	י י		VI	16) (וכ	UI	V)	U.	A	J /-	•	Эľ	Ш	4	3					0	
Temperature				802.1°	1(b)	and	Blu	eto	oth	radi	os i	n 7)0C	co-	loc	ate	d w	ith	CDI	MA ra	idio								Wor							
Attendesis Colar Ref. No. September Colar Ref. September	Se			Intorn	200	Tool	hnol	ogi	oc (`orn	ora	lion																_	omr			_		04		
Tested By:					ilec	reci	IIIIOI	ogi	E5 (Joip	UI a	LIUI																								
Specification ECC 15.247(c) Spurious Radiated Emissions Year 2003 Year 2003 Year 2003 Year 2005 Year 2	С	ust. Ref.	No.:																								Barc	met	ric F	Pres	ssure	e 30).16			
Specification FCC 15.247(c) Spurious Radiated Emissions					Ash	kan	nejh	nad											Po	wer:	120	VAC	C, 6)Hz						Job	Site	: E	/01			
Method: ANSI C63.4 Method: ANSI C63.4 Method: Antionic Factor + Cable Factor + Cable Factor + Cable Factor + Cable Attenuation Experiment Experim					15.2/	17(c)	\ Sn	uric	aue.	Padi	ato	d E	mie	eior	16																Voar	. 20	103			
SAMPLE CALCULATIONS							<i>,</i> 5p	unc	Jus	ivau	ate	u L	11113	3101	13																					
Conducted Errasions: Adjusted Level = Measured Level = Transducer Factor + Cable Attenuation Factor + External Attenuation Studies Conducted External Attenuation Conducted Conducted External Attenuation Conducted External	SAMPL																																			
SOMMENTS					_													-					-		Facto	r + Ex	kterna	al Atte	enua	tion						
### Amplitude Factor Amplitude Factor Adjustine Factor Amplitude Amplitude Factor Amplitude Amplitude Factor Amplitude Amplitude Factor Amplitude Amplitude Amplitude Factor Amplitude Ampli			sions:	Adjuste	d Lev	el = N	vieasi	urea	Leve	el + Ir	anso	ucer	Fact	tor +	Cabi	e At	tenu	iatioi	n Fac	ctor + E	xtern	nai At	tenu	ator												
Part			smiss	ion of 7	700C	(CDN	IA(PC	CS)/8	802.1	1b/BI	ueto	oth)																								
Part																																				
Part	EUT OF	DEDATI	NG N	IODES																																
Second S						S, 80	02.11	b ch	anne	el 11,	Blue	toot	h ch	anne	l 62																					
Second S					_		_														_										_					
No. Sept.			RON	TEST	ST	AND	ARI	D																												
Solution Section Sec																																В	un #			
Tested By:		13																														K	an #		52	
Tested By:																																				
No.	Other																																			
No.																																				
No.																																				
Total Tota																											-	Гest	ed E	Зу:					-	
Total Tota																																				
Freq		80.0 T														Т	T															_			\Box	
Freq		ļ					Ш	_																											Ш	
Solution Freq Amplitude Factor Azimuth Height Height Gegrees (meters)		70.0					Ш	4																											Ш	
Solution Freq Amplitude Factor Azimuth Height Height Gegrees (meters)																																				
Solution Freq Amplitude Factor Azimuth Height Height Gegrees (meters)																																				
40.0		60.0					П																												П	
40.0		+					+	+																						+					\vdash	•
30.0		50.0					+	-											1																\vdash	
30.0	Ε																		Į																	
30.0	⋝	40.0																																		
30.0	Bu	40.0																																		
20.0	ᄝ																																			
10.0		30.0					+	+																											\forall	
10.0																																				
10.0		20.0					Ш	_																											Ш	
Compared to Spec. Limit Compared to Spec		20.0																																		
Compared to Spec. Limit Compared to Spec																																				
2483.000 2483.100 2483.200 2483.300 2483.400 2483.500 2483.600 2483.700 2483.800 2483.900 2484.000		10.0					\Box	\top				Ħ	T		1	T		П							\Box					T					\forall	
2483.000 2483.100 2483.200 2483.300 2483.400 2483.500 2483.600 2483.700 2483.800 2483.900 2484.000																																				
Freq		0.0			+		Ш	+		Ш		Н			+				\perp			-			4			4				+			Щ	
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) External (dB) Polarity Detector (dB) Distance Adjustment (dB) Adjusted dBuV/m Spec. Limit dBuV/m Spec. Limi		2483	.000	248	3.10	00	24	83.	200	2	483	.30	0	24	83.4	400)	248	83.5	500	248	83.6	600	24	183.	700	2	483	.80	0	248	83.9	900	2	484	.000
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) External (dB) Polarity Detector (dB) Distance Adjustment (dB) Adjusted dBuV/m Spec. Limit dBuV/m Spec. Limi																		N	ЛЦ	7																
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) Spec. Limit (dB) Spec. Limit (dB) Adjustment (dB) Adjustment (dB																		11	*11	_																
Freq (MHz) Amplitude (dBuV) Factor (dB) Azimuth (degrees) Height (meters) Distance (meters) Attenuation (dB) Polarity (dB) Detector (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) Spec. Limit (dB) Spec. Limit (dB) Adjustment (dB) Adjustment (dB			-								-							1	E				-				Di. :					1			<u> </u>	
(MHz) (dBuV) (dB) (degrees) (meters) (meters) (dB)		Frea		Ampli	tude		Facto	or	Δ.	zimut	h	F	leigh	ıt	Di	istan	ice				Po	olarit	y	Det	ector				1	Adju:	sted	s	pec.	Limit		
2483.500 20.8 29.4 147.0 1.0 1.0 0.0 V-Horn AV -9.5 40.7 54.0 -13. 2483.500 31.5 29.4 206.0 1.5 1.0 0.0 H-Horn PK -9.5 51.4 74.0 -22.		(MHz)		(dBu	ıV)		(dB)		(d	legree	s)		neter	s)			rs)			3)			,)			V/m		dBu\	//m		(dB)
2483.500 31.5 29.4 206.0 1.5 1.0 0.0 H-Horn PK -9.5 51.4 74.0 -22.																																				-8.
240a auu 20 a 284 1470 10 10 10 V-Hom Pk -45 487 740 -75					31.5 28.3			29.4 29.4						1.5			1.0			0.0								-9.5 -9.5			51.4 48.2			74.0 74.0		-22. -25.

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

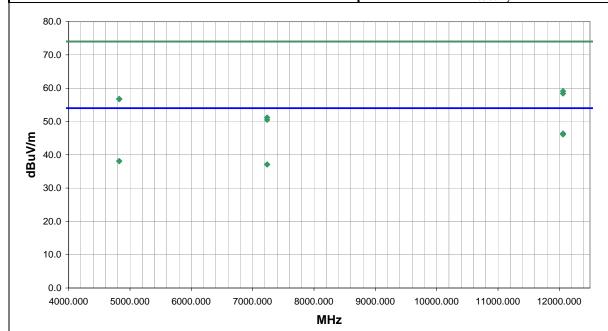
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 467 CDMA cellular, 802.11b channel 1, Bluetooth channel 11


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 39

Other

Holy Arling Tested By:

_						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
12060.000	25.8	20.6	8.0	1.2	3.0	0.0	V-Horn	AV	0.0	46.4	54.0	-7.6
12060.000	25.5	20.6	256.0	1.0	3.0	0.0	H-Horn	AV	0.0	46.1	54.0	-7.9
12060.000	38.5	20.6	8.0	1.2	3.0	0.0	V-Horn	PK	0.0	59.1	74.0	-14.9
12060.000	37.8	20.6	256.0	1.0	3.0	0.0	H-Horn	PK	0.0	58.4	74.0	-15.6
4824.000	34.7	3.4	251.0	1.0	3.0	0.0	V-Horn	AV	0.0	38.1	54.0	-15.9
4824.000	34.7	3.4	274.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.1	54.0	-15.9
7236.000	26.7	10.4	277.0	1.3	3.0	0.0	V-Horn	AV	0.0	37.1	54.0	-16.9
7236.000	26.7	10.4	19.0	1.0	3.0	0.0	H-Horn	AV	0.0	37.1	54.0	-16.9
4824.000	53.4	3.4	251.0	1.0	3.0	0.0	V-Horn	PK	0.0	56.8	74.0	-17.2
4824.000	53.3	3.4	274.0	1.0	3.0	0.0	H-Horn	PK	0.0	56.7	74.0	-17.3
7236.000	40.8	10.4	277.0	1.3	3.0	0.0	V-Horn	PK	0.0	51.2	74.0	-22.8
7236.000	40.1	10.4	19.0	1.0	3.0	0.0	H-Horn	PK	0.0	50.5	74.0	-23.5

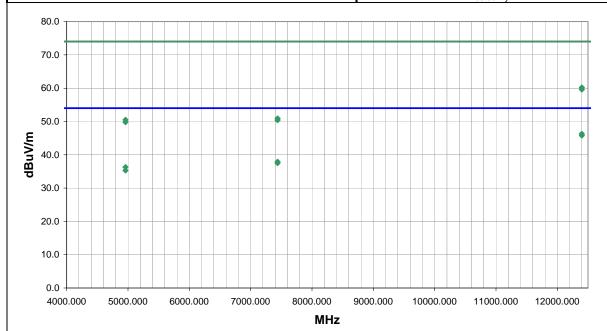
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 55 CDMA cellular, 802.11b channel 11, Bluetooth channel 79


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS 40 Pass

Other

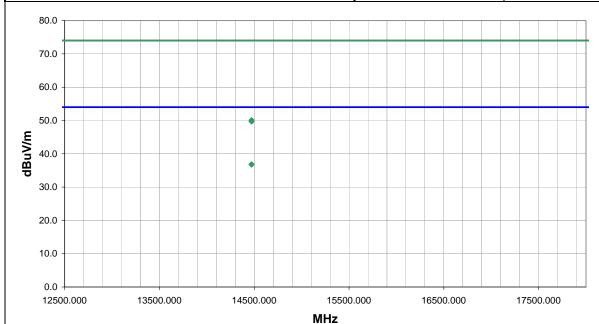
Holy Aligh Tested By:

_						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
12400.000	24.7	21.6	133.0	3.4	3.0	0.0	H-Horn	AV	0.0	46.3	54.0	-7.7
12400.000	24.2	21.6	114.0	2.4	3.0	0.0	V-Horn	AV	0.0	45.8	54.0	-8.2
12400.000	38.6	21.6	114.0	2.4	3.0	0.0	V-Horn	PK	0.0	60.2	74.0	-13.8
12400.000	38.0	21.6	133.0	3.4	3.0	0.0	H-Horn	PK	0.0	59.6	74.0	-14.4
7440.000	26.9	11.0	313.0	1.3	3.0	0.0	H-Horn	AV	0.0	37.9	54.0	-16.1
7440.000	26.5	11.0	307.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.5	54.0	-16.5
4960.000	32.5	3.8	241.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.3	54.0	-17.7
4960.000	31.5	3.8	263.0	1.3	3.0	0.0	H-Horn	AV	0.0	35.3	54.0	-18.7
7440.000	39.9	11.0	313.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.9	74.0	-23.1
4960.000	46.7	3.8	241.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.5	74.0	-23.5
7440.000	39.4	11.0	307.0	1.2	3.0	0.0	V-Horn	PK	0.0	50.4	74.0	-23.6
4960.000	46.0	3.8	263.0	1.3	3.0	0.0	H-Horn	PK	0.0	49.8	74.0	-24.2

NORTHWEST EMC	RADIATED EMIS		SHEET	(REV df4.13 05/06/2004
EUT:	802.11(b) and Bluetooth radios in 700C co-located with	CDMA radio	Work Order:	ITRM0030	
Serial Number:			Date:	06/29/04	
Customer:	Intermec Technologies Corporation		Temperature:	75	
Attendees:	none		Humidity:	45%	
Cust. Ref. No.:			Barometric Pressure	30.16	
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01	
TEST SPECIFICATI	ONS				
Specification:	FCC 15.247(c) Spurious Radiated Emissions		Year:	2003	
Method:	ANSI C63.4		Year:	2001	
SAMPLE CALCULA	TIONS				

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)


EUT OPERATING MODES
Transmitting channel 467 CDMA cellular, 802.11b channel 1, Bluetooth channel 11

DEVIATIONS FROM TEST STANDARD No deviations.

RESULTS Pass 45

Other

Holy Arlingho Tested By:

						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
14472.000	26.9	9.9	47.0	1.2	3.0	0.0	V-Horn	AV	0.0	36.8	54.0	-17.2
14472.000	26.9	9.9	84.0	1.3	3.0	0.0	H-Horn	AV	0.0	36.8	54.0	-17.2
14472.000	40.2	9.9	84.0	1.3	3.0	0.0	H-Horn	PK	0.0	50.1	74.0	-23.9
14472.000	39.8	9.9	47.0	1.2	3.0	0.0	V-Horn	PK	0.0	49.7	74.0	-24.3

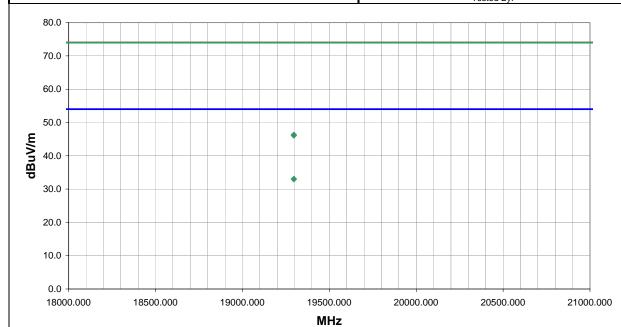
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 467 CDMA cellular, 802.11b channel 1, Bluetooth channel 11


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 47

Other

Holy Arling Tested By:

						External			Distance			Compared to	1
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	İ
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	İ
19296.000	25.0	8.0	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	33.0	54.0	-21.0	
19296.000	25.0	8.0	-1.0	1.0	3.0	0.0	√-High Horr	AV	0.0	33.0	54.0	-21.0	
19296.000	38.3	8.0	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	46.3	74.0	-27.7	
19296.000	38.1	8.0	-1.0	1.0	3.0	0.0	√-High Horr	PK	0.0	46.1	74.0	-27.9	

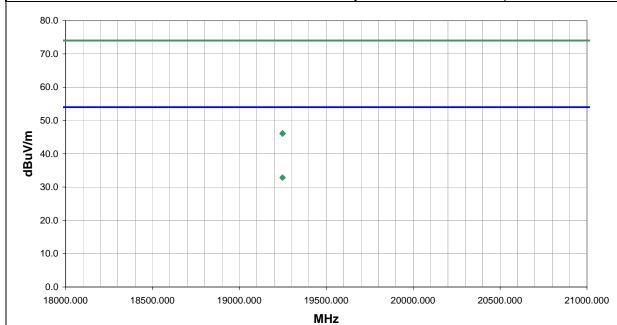
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 395 CDMA cellular, 802.11b channel 1, Bluetooth channel 5


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 48

Other

Holy Arling Tested By:

						External			Distance			Compared to	ı
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
19248.000	25.1	7.8	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	32.9	54.0	-21.1	
19248.000	25.0	7.8	-1.0	1.0	3.0	0.0	V-High Horr	AV	0.0	32.8	54.0	-21.2	
19248.000	38.4	7.8	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	46.2	74.0	-27.8	
19248.000	38.2	7.8	-1.0	1.0	3.0	0.0	V-High Horr	PK	0.0	46.0	74.0	-28.0	

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

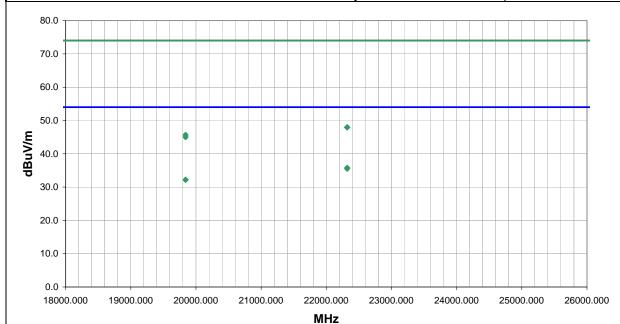
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

COMMENTS

Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES

Transmitting channel 55 CDMA cellular, 802.11b channel 11, Bluetooth channel 79


DEVIATIONS FROM TEST STANDARD

No deviations.

RESULTS Run #
Pass 49

Other

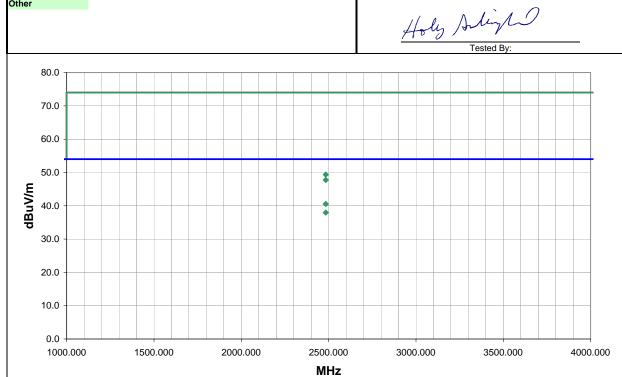
Holy Arling

						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	
22320.000	26.6	9.2	-1.0	1.0	3.0	0.0	V-High Horr	AV	0.0	35.8	54.0	-18.2	-
22320.000	26.3	9.2	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	35.5	54.0	-18.5	
19840.000	23.3	8.9	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	32.2	54.0	-21.8	
19840.000	23.3	8.9	-1.0	1.0	3.0	0.0	V-High Horr	AV	0.0	32.2	54.0	-21.8	
22320.000	38.8	9.2	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	48.0	74.0	-26.0	
22320.000	38.7	9.2	-1.0	1.0	3.0	0.0	V-High Horr	PK	0.0	47.9	74.0	-26.1	
19840.000	36.8	8.9	360.0	1.0	3.0	0.0	H-High Horr	PK	0.0	45.7	74.0	-28.3	
19840.000	36.1	8.9	-1.0	1.0	3.0	0.0	V-High Horr	PK	0.0	45.0	74.0	-29.0	

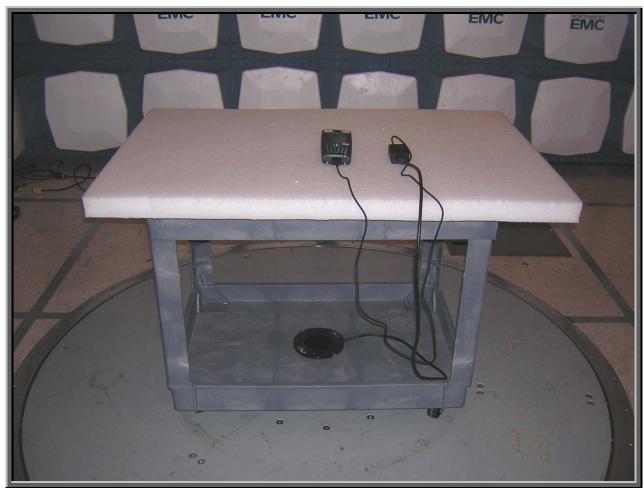
NORTHWEST EMC	RADIATED EMISSIONS DATA SHEET								
EUT:	802.11(b) and Bluetooth radios in 700C co-located wit	Work Order:	ITRM0030						
Serial Number:		Date:	06/30/04						
Customer:	Intermec Technologies Corporation	Temperature:	75						
Attendees:	none	Humidity:	45%						
Cust. Ref. No.:			Barometric Pressure	30.16					
Tested by:	Holly Ashkannejhad	Power: 120VAC, 60Hz	Job Site:	EV01					
TEST SPECIFICATI	ONS								
Specification:	FCC 15.247(c) Spurious Radiated Emissions	Year:	2003						
Method:	ANSI C63.4	Year:	2001						
SAMPLE CALCULA	TIONS								

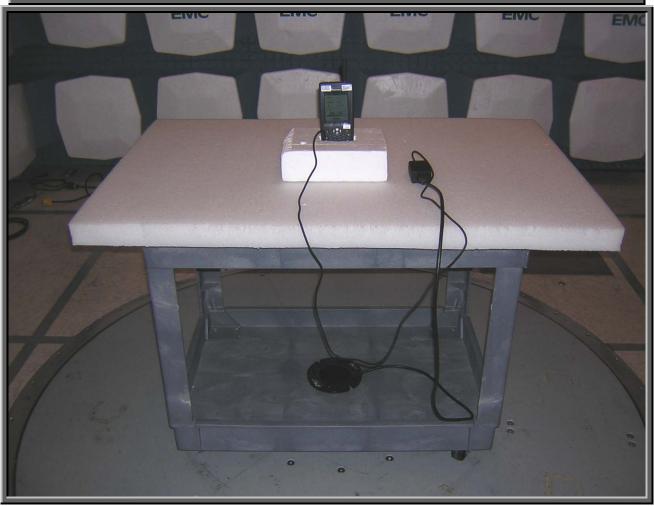
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

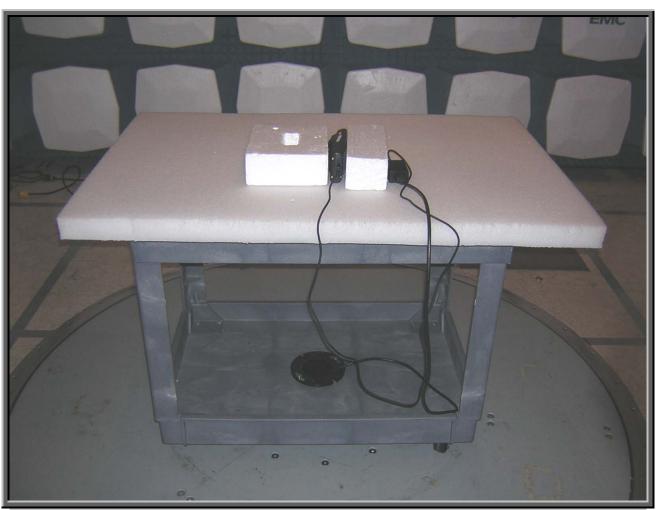
COMMENTS


Simultaneous transmission of 700C (CDMA(cellular)/802.11b/Bluetooth)

EUT OPERATING MODES
Transmitting channel 54 CDMA cellular, 802.11b channel 11, Bluetooth channel 79


DEVIATIONS FROM TEST STANDARD No deviations.


RESULTS Pass 53


Other

						External			Distance			Compared to	i
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	ĺ
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	l
2483.500	20.7	29.4	281.0	1.4	1.0	0.0	H-Horn	AV	-9.5	40.6	54.0	-13.4	•
2483.500	18.1	29.4	316.0	1.0	1.0	0.0	V-Horn	AV	-9.5	38.0	54.0	-16.0	
2483.500	29.5	29.4	281.0	1.4	1.0	0.0	H-Horn	PK	-9.5	49.4	74.0	-24.6	
2483.500	27.9	29.4	316.0	1.0	1.0	0.0	V-Horn	PK	-9.5	47.8	74.0	-26.2	

