Intermec Technologies Corporation

PB42 Printer and CK60 w/ BTM311 Radio

January 13, 2005

Report No. INMC0163 Rev 01

Report Prepared By:

www.nwemc.com 1-888-EMI-CERT

© 2005 Northwest EMC, Inc

Certificate of Test Issue Date: January 13, 2005 Intermec Technologies Corporation Model: PB42 Printer and CK60 w/BTM311 Radio

	Emissions		
Specification	Test Method	Pass	Fail
FCC 15.247(d) Spurious Radiated Emissions:2004	ANSI C63.4:2003/ DA 00-705	\boxtimes	
FCC 15.247(d) Spurious Radiated Emissions:2004 (Simultaneous Transmit)	ANSI C63.4:2003/ DA 00-705	\boxtimes	
FCC 15.207 AC Powerline Conducted Emissions:2004	ANSI C63.4:2003	\boxtimes	

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facilities used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826

The sites have been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:
D. W. martan
Don Facteau, IS Manager

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
01	Changed comments regarding how EUT was powered	1/24/05	14-18, 21, 28-33
01	Revised model name on cover page and C.O.T.	1/24/05	1,2
01	Revised EUT name to reflect both PB42 printer and CK60 w/BTM311 radio	1/24/05	19-21,
01	Revised various EUT/Peripheral name information	1/24/05	12, 26

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is recognized under the United States Department of Commerce, National Institute of Standards and Technology, National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (NVLAP)

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Nos. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Newberg: C-1877 and R-1760, Sultan: R-871, C-1784 and R-1761)*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

BSMI

N NEMKO

Revision 01/04/05

What is measurement uncertainty?

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

The following documents were the basis for determining the uncertainty levels of our measurements:

- "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000

How might measurement uncertainty be applied to test results?

If the diamond marks the measured value for the test and the vertical bars bracket the range of + and measurement uncertainty, then test results can be interpreted from the diagram below.

Case D: Product does not comply.

Radiated Emissions ≤ 1 GHz	Value (dB)							
	Probability Biconical		Log Pe	eriodic	Di	pole		
	Distribution	ion Antenna		Ante	Antenna		Antenna	
Test Distance		3m	10m	3m	10m	3m	10m	
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25	
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25	
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49	
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49	

Radiated Emissions > 1 GHz	Value (dB)		
	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29	+ 1.38
		- 1.25	- 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence \approx 95%)		- 2.51	2.70

Conducted Emissions		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

Radiated Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U	normal $(k - 2)$	2 11
(level of confidence \approx 95 %)	$\operatorname{Hormal}\left(R=2\right)$	2.11

Conducted Immunity		
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.10

Legend

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties

U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

Facilities

California

Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 FAX (503) 844-3826

Oregon

Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy., Suite 400 Hillsboro, OR 97124 (503) 844-4066 FAX (503) 844-3826

Oregon

Trails End Facility Labs TE01 – TE03

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Washington

Sultan Facility

Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378 FAX (360) 793-2536

Party Requesting the Test		
Company Name:	INTERMEC Technologies Corporation	
Address:	6001 36th Avenue West	
City, State, Zip:	Everett, WA 98203-1264	
Test Requested By:	Katie Molina	
Model:	PB42 Printer and CK60 w/BTM311 Radio	
First Date of Test:	12-20-2004	
Last Date of Test:	01-10-2005	
Receipt Date of Samples:	12-20-2004	
Equipment Design Stage:	Production	
Equipment Condition:	No visual damage.	

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided at the time of test.
I/O Ports:	Communication

Functional Description of the EUT (Equipment Under Test):

The PB42 is a portable printer. The CK60 is a handheld mobile computer that scans barcodes and transmits data to the PB42 for printing.

Client Justification for EUT Selection:

Engineering sample with typical load configuration.

Client Justification for Test Selection:

These tests satisfy the FCC and IC requirements for the US and Canadian markets.

Additional Information:

Utilize the existing FCC grant for the Mitsumi radio in the PB42 to complete the Intermec grant for the overall product. The PB42 can be worn near the body. The initial release of the product will be for a specific customer application in which the PB42 will be used in conjunction with the CK60 handheld terminal. The CK60 contains the BTM311 Bluetooth radio recently certified.

EUT Photo

	Equipment modifications				
Item	Test	Date	Modification	Note	Disposition of EUT
1	Spurious Radiated Emissions – Co-located Radios	12/23/2004	No EMI suppression devices were added or modified during this test.	Same configuration as delivered.	EUT remained at Northwest EMC.
2	Spurious Radiated Emissions - Standalone	12/23/2004	No EMI suppression devices were added or modified during this test.	Standalone configuration.	EUT remained at Northwest EMC.
3	AC Powerline Conducted Emissions	12/23/2004	No EMI suppression devices were added or modified during this test.	Same configuration as in previous test.	EUT remained at Northwest EMC.
4	Spurious Radiated Emissions – Co-located Radios	12/26/2004	No EMI suppression devices were added or modified during this test.	Co-located radios configuration.	EUT remained at Northwest EMC.
5	Spurious Radiated Emissions - Standalone	12/26/2004	No EMI suppression devices were added or modified during this test.	Standalone configuration.	EUT remained at Northwest EMC.

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated:	
Maximum	

Power Input Settings Investigated:	
120 VAC, 60 Hz.	
Battery	

Other Settings Investigated:	
Co-located with CK60	
Standalone	

Frequency Range Invest	igated		
Start Frequency	30 MHz	Stop Frequency	26 GHz

Software\Firmware Applied During Test												
Exercise software	BlueTest	Version	Unknown									
Description												
The Bluetest software exe	rcises the Bluetooth radio in	n the printer and the handh	eld computer and allows									
for channel selection.												

EUT and Peripherals			
Description	Manufacturer	Model/Part Number	Serial Number
Radio (CK60)	Actiontec	BTM311	Unknown
Bluetooth Enabled Printer	Intermec Technologies Corporation	PB42	SAC001
AC Adapter	Elpac Power Systems	FW5012-760	004275
Host - Handheld Mobile Computer	Intermec Technologies Corporation	СК60	26390400073

Remote Equipment Outside of Test Setup Boundary											
Description	Manufacturer	Model/Part Number	Serial Number								
Laptop Computer	Dell	Latitude	Loaner #5								
Equipment isolated from the EUT set	o as not to contribute to the me	asurement result is considered to be outside	de the test setup boundary								

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Communication	No	2.0	No	Host - Printer	Unterminated during test
Cable	NO	2.0	NO		(Connected during set-up)
DC Leads	PA	1.6	PA	Host - Printer	AC Adapter
AC Power	No	2.0	AC Adapter	AC Mains	
PA = Cable is permane	ntly attach	ed to the devi	ice. Shield	ding and/or prese	ence of ferrite may be unknown.

Measurement Equipme	nt				
Description	Manufact urer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett- Packard	8566B	AAL	12/02/2004	13 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	12/02/2004	13 mo
Quasi-Peak Adapter	Hewlett- Packard	85650A	AQF	12/02/2004	13 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	02/05/2004	13 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APJ	01/05/2004	13 mo
Antenna, Horn	EMCO	3115	AHC	09/07/2004	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/03/2003	24 mo
Antenna, Horn	EMCO	3160-08	AHK	NCR	NA
Pre-Amplifier	Miteq	AMF-4D-005180-24-10P	APC	10/08/2003	15 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/08/2003	15 mo
Antenna, Horn	EMCO	3160-09	AHG	NCR	NA

Test Description

<u>Requirement</u>: The field strength of any spurious emissions or modulation products that fall in a restricted band, as defined in 47 CFR 15.205, is measured. The peak level must comply with the limits specified in 47 CFR 15.35(b). The average level (taken with a 10Hz VBW) must comply with the limits specified in 15.209.

<u>Configuration</u>: The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Simultaneous Transmission: For co-located radios, it is necessary to measure the field strength of spurious emissions, while co-located radios are transmitting simultaneously. The following is an excerpt from the FCC/TCB training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

Bandwidths Used for Me	asurements		
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 – 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
Measurements were n	hade using the bandwidths	and detectors specified No	video filter was used

Completed b	y:
Holy	Aligh

N	orthwest				F	R A	١D	IA	T	Ε	D	-	N		S	SIC	D	15	S I	D	A	ΓΑ		Sł	-16		T					12/	REV df4.7 /21/2004
		EUT:	PB42	printe	r																					Wor	k Order	: IN	M	2016	53		-
S	erial Nu	nber:	SAC00)1																							Date	: 1:	2/23	3/04			
	Cust	omer:	INTER	MEC	Tech	nol	ogies	i Coi	por	atio	n														٦	emp	erature	: 2	2				
	Atten	dees:	none																							H	umidity	: 3	2%				
C	Cust. Ref	. No.:																						Baro	ome	tric P	ressure	e 3	0.53	3			
	Teste	ed by:	y: Holly Ashkannejhad Power: 1												120	VAC	, 60)Hz					J	ob Site	: E	V01	Í						
TEST S	SPECIF	CATI	ONS															-															
:	Specific	ation:	FCC 15.247(d) Spurious Radiated Emissions:2004 Method: ANSI C63.													3.4:2	2003																
SAMP	LE CAL	CULA	TIONS	;																													
Rad	iated Emis	ssions:	Field Str	ength =	Meas	sured	Level	+ Ante	enna	Facto	or + C	able	Fac	tor - A	\mpli	ifier Ga	in + [Dista	nce Ac	djust	ment	Facto	r + E:	xterna	al Att	enuat	ion						
Condu	ucted Emi	ssions:	Adjustec	Level	= Mea	sured	d Leve	+ Tra	Insdu	icer F	actor	+ Ca	able	Atten	uatio	n Facto	or + E	xterr	nal Atte	enua	ator									_	_		
CONIN	ENIS																																
AC POW	erea																																
EUT O	PERAT	NG M	ODES																														
Transmi	tting no-h	op, hig	h chanr	nel (248	30MHz	z).																										-	
	-			-																													
DEVIA	TIONS	FROM	TEST	STAN	NDA	RD																											
No devia	ations.																														_	-	
RESUL	LTS																											R	un	#			
Pass																															5		
Other																												0					
																					. /	0		Λ	1	,	1 1	1					
																				2	11	li	2	12	r	m	n	/					
																				1	A	0 0	/ /			1							
																									Test	ed B	iy:						
	80.0 -																																
																									-					+++	+	+	
	70.0 -											-									_								-			_	
	60.0 -		_			+ +	_			_		-				_					_							_	_		—	-	
		+																												+++	—	+	
	50.0 -					+ +																										-	
۲																																	
1																																	
n l	40.0 -					+ +						-									-									+	_	-	
<u>m</u>																																	
σ																																	
	30.0 -											-													-							-	
	20.0 -									_															-					+	_	-	
	10.0 -																													+++		-	
	0.0 -					· · ·			-				+						-									1				-	
	1000	.000	120	0.000	1	400	.000	16	500.	000	1	800	0.00	00	20	00.00	00	22	00.0	00	24	100.0	000	2	600	.000) 28	00.	000) :	300)0.0)00
															N	11 -																	
															n																		
	_				-		1		Τ			Τ	_		Τ	Extern	al		-	Τ				Dista	nce			Τ	_		(Com	pared to
	Freq		Amplit	ude	Fac	tor	A	zimuth	1	He	ight		Dist	ance	A	Attenua	tion	Р	olarity		Det	ector	A	djust	ment	A	djusted	5	Spec	. Limi	it	S	pec.
	(MHz)		(dBu	V)	(dE	⇒)	(de	grees	3)	(me	eters)	1	(me	ters)		(dB)	0.5	Ļ						(dE	5)	l q	BuV/m		dBu	IV/m	ㅗ	((dB)
	248	3.500	1	32.4		-2.2	2	100	0.0		1.	1		3.	U	2	20.0	H	-Horr	n i	A	NV .			0.0	J	50.2	2		54.	.0		-3.8
	248	3.500		32.2		-2.2	<u> </u>	237	0.0		1.	4		3.	U	2	20.0	V.	-Horr	1	A	۸V			0.0)	50.0	5		54.	.0		-4.0
	248	3.500	4	45.9		-2.2	<u> </u>	100	0.0		1.	1		3.	0	2	0.0	H	-Horr	1	۲ -	'K			0.0) N	63.	1		74.	0.		-10.3
	248	3.500	4	45.6		-2.2	<u> </u>	237	.0		1.	4		3.	0	2	0.0	V.	-Horr	1	+	ĸ			0.0) N	63.4	4		/4.	0.		-10.6
	108	J.220		31.J		-8.6	2	104	F.U		1.	0		3.	0	2	0.0	H	-Horr	1	P	۷۷ ملا			0.0) N	42.5	5		54. 74	0.		-11.5
	108	J.220	4	42.7		-8.8	5	104	H.U		1.	J		3.	υ	2	20.0	H	-Horr	1	H	'K			0.0	J	53.9	9		74.	.0		-20.1

(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
(1911 12)	(=====)	()	(113:000)	(((===)			(20)			()
9920.004	31.5	16.2	278.0	1.2	3.0	0.0	V-Horn	AV	0.0	47.7	54.0	-6.3
9920.004	28.7	16.2	199.0	1.3	3.0	0.0	H-Horn	AV	0.0	44.9	54.0	-9.1
7439.983	33.7	11.1	206.0	1.2	3.0	0.0	H-Horn	AV	0.0	44.8	54.0	-9.2
7439.983	33.5	11.1	224.0	1.2	3.0	0.0	V-Horn	AV	0.0	44.6	54.0	-9.4
9920.004	47.9	16.2	278.0	1.2	3.0	0.0	V-Horn	PK	0.0	64.1	74.0	-9.9
4959.990	39.9	3.6	244.0	1.1	3.0	0.0	H-Horn	AV	0.0	43.5	54.0	-10.5
4959.990	37.1	3.6	258.0	1.3	3.0	0.0	V-Horn	AV	0.0	40.7	54.0	-13.3
4959.990	56.9	3.6	258.0	1.3	3.0	0.0	V-Horn	PK	0.0	60.5	74.0	-13.5
7439.983	47.8	11.1	206.0	1.2	3.0	0.0	H-Horn	PK	0.0	58.9	74.0	-15.1
7439.983	47.8	11.1	224.0	1.2	3.0	0.0	V-Horn	PK	0.0	58.9	74.0	-15.1
4959.990	55.2	3.6	244.0	1.1	3.0	0.0	H-Horn	PK	0.0	58.8	74.0	-15.2
9920.004	42.6	16.2	199.0	1.3	3.0	0.0	H-Horn	PK	0.0	58.8	74.0	-15.2

NORT	hwest MC		RA	DIA	TED	EMI	SSIOI	NS D	ΑΤΑ	SHE	ET		REV df4.6 12/14/2004
	EUT:	PB42 print	er and CK	60 w/BTM3	311 radio					٧	Vork Order:	INMC0163	
Seri	al Number:	INTERMEC	Technolo	aies Corn	oration					Те	Date:	12/20/04 22	
-	Attendees:	none	reemote	gies oorp	oration						Humidity:	33%	
Cus	st. Ref. No.:									Barometr	ic Pressure	30.48	
TEST SP	Tested by:	Dan Haas					Power:	120VAC/6	0Hz		Job Site:	EV01	
Sp	ecification:	FCC 15.247	7(d) Spurio	ous Radiat	ed Emissio	ns:2004		Method	ANSI C63	.4:2003			
SAMPLE	CALCULA	TIONS	Maggurad	aval - Anton	na Fastar - Cak	la Fastar (malifier Caia	Distance Adiu	atmont Footor	- Eutomal Atta	evetien		
Conducte	d Emissions:	Adjusted Level	= Measured I I = Measured	Level + Anten Level + Trans	na Factor + Cat sducer Factor +	Cable Atten	uation Factor + I	Distance Adju External Atten	stment Factor uator	+ External Atte	nuation		
COMMEN	NTS	,											
PB42 (SN:S	AC001) and (CK60 (SN:263	90400062) cc	o-located on t	tabletop with ra	adios instal	led.						
EUT OPE No-hop, Hig	RATING N gh channel (2	IODES 480MHz) on b	oth radios.										
DEVIATIO		I TEST STA	NDARD										
RESULTS	S											Run #	
Pass												2	2
Other													
									Danie) after			
									<u> </u>	Teste	d By:		
80.0 -													
70.0													+
70.0					*								
60.0 -													_
_													+
50.0 -													_
					*								
40.0 -													_
30.0 -													_
0010													
20.0 -													_
10.0													
10.0 -													_
0.0-													
1000	0.000											100	00.000
-		Amalituda	Fester	A =:th	11 al mine	Distant	External	Delastr	Def :	Distance	A alia a ta al	Ones Limit	Compared to
(M	eq Hz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)	Polarity	Detector	(dB)	dBuV/m	dBuV/m	(dB)
	2483.500	50.5	-2.2	242.0	2.6	3.	0 20.0	H-Horn	PK	0.0	68.3	74.0	-5.7
	2483.500 2483 500	47.9 27 7	-2.2 -2.2	330.0 242 () 1.2) 26	3.	0 20.0 0 20.0	V-Horn H-Horn	PK AV	0.0	65.7 45.5	74.0 54 0	-8.3 -8.5
	2483.500	25.5	-2.2	330.0) 1.2	3.	0 20.0	V-Horn	AV	0.0	43.3	54.0	-10.7

N	IORTHWEST			RA	DIAT	ED	EMIS	SIO	NS D	ΑΤΑ	SHE	ET		REV df4.7 12/21/2004
		EUT:	PB42 printe	er and CK	60 w/BTM31	1 radio					٧	Vork Order:	INMC0163	
s	Serial Nu	mber:	SAC001									Date:	12/26/04	
	Cust	omer:	INTERMEC	Technolo	gies Corpo	ration					Te	mperature:	24	
	Atter	dees:	none								-	Humidity:	31%	
(Cust. Re	f. No.:						-			Barometr	ic Pressure	30.53	
TEOT	Test	ed by:	Holly Ashk	annejhad				Power:	120VAC/60	Hz		Job Site:	EV01	
TEST	SPECIF	ICATI			De ll'ete	d Emile alex	- 0004		Mathada		4.0000			
SAMP	Specific		TIONS	(a) Spuric	ous Radiate	a Emission	15:2004		wethod.	ANSI Co3.	.4:2003			
Rac	diated Emi	ssions:	Field Strength	= Measured L	_evel + Antenna	a Factor + Cat	le Factor - An	nplifier Gain +	Distance Adjus	tment Factor	+ External Atter	nuation		
Cond COMN	ucted Emi	ssions:	Adjusted Level	= Measured	Level + Transd	ucer Factor +	Cable Attenua	ation Factor +	External Attenu	ator				
PB42 (S	N:SAC00	1) and (CK60 (SN:2639	9040073) cole	ocated on tabl	etop with rad	ios installed.	AC Powered						
EUT O No-hop	PERAT , high cha	ING M	ODES 480MHz) on bo	oth radios.										
		EPOM	TEST STA											
No devi	ations.	I KOM	TEOTOTA	NDAND									D "	
RESU Pass	LIS												Run #	7
Other									1					
										11 8,	Ale	-n	7	
										Hory	19-	1		-
ļ											Teste	ed By:		
	80.0													
	70.0													
	<u> </u>													
	60.0													
	50.0													
_	50.0							•						
Ę					•									
≥	40.0													
n n	40.0													
Вр														
	30.0				•									
	00.0													
	20.0													
	10.0													_
	0.0													_
	1800	0.000	19000	.000 2	20000.000	21000.	000 2	2000.000	23000.0	000 24	1000.000	25000.0	00 260	000.000
								MHZ						
								External			Distance			Compared to
	Freq		Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
	(MHz)		(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
	2232	0.000	26.8	9.2	337.0	1.0	3.0	0.0	V-High Horr	AV	0.0	36.0	54.0	-18.0
	2232	0.000	26.7	9.2	220.0	1.1	3.0	0.0	H-High Horr	AV	0.0	35.9	54.0	-18.1
	1984	0.000	23.2	8.9	360.0	1.0	3.0	0.0	H-High Horr	AV	0.0	32.1	54.0	-21.9
	1984	0.000	23.2	8.9	-1.0	1.0	3.0	0.0	v-High Horr	AV	0.0	32.1	54.0	-21.9
	2232	0.000	39.8	9.2	220.0	1.1	3.0	0.0	H-High Horr	PK	0.0	49.0	74.0	-25.0
	2232	0.000	39.7	9.2	337.0	1.0	3.0	0.0	v-High Horr	PK	0.0	48.9	74.0	-25.1
	1984	0.000	36.0	8.9	-1.0	1.0	3.0	0.0	v-High Horr	PK	0.0	44.9	74.0	-29.1
	1984	0.000	35.6	8.9	360.0	1.0	3.0	0.0	¬-ніgh Horr	PK	0.0	44.5	74.0	-29.5

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
High
Mid
Low

Operating Modes Investigated: No Hop

Data Rates Investigated: Maximum

Power Input Settings Investigated:

120 VAC, 60 Hz.

Other Settings Investigated: Co-located with CK60 Standalone

Software\Firmware Applied During Test									
Exercise software	BlueTest	Version	Unknown						
Description									
The Bluetest software exercises the Bluetooth radio in the printer and the handheld computer and allows									
for channel selection.		-	-						

EUT and Peripherals									
Description	Manufacturer	Model/Part Number	Serial Number						
Bluetooth Enabled Printer	Intermec Technologies Corporation	PB42	SAC001						
AC Adapter	Elpac Power Systems	FW5012-760	004275						

Remote Equipment Outside of Test Setup Boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
Laptop Computer	Dell	Latitude	Loaner #5					
Equipment isolated from the EUT so as not to contribute to the measurement result is considered to be outside the test setup boundary								

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Communication Cable	No	2.0	No	Host - Printer	Unterminated during test (Connected to Laptop for setup)		
DC Leads	PA	1.6	PA	Host - Printer	AC Adapter		
AC Power	No	2.0	No	AC Adapter	AC Mains		
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.							

Measurement Equipment										
Description	Manufacturer	Model	Identifier	Last Cal	Interval					
LISN	Solar	9252-50-R-24-BNC	LIN	12/16/2003	13 mo					
High Pass Filter	TTE	H97-100k-50-720B	HFC	02/01/2004	13 mo					
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	12/02/2004	13 mo					
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	12/02/2004	13 mo					

Test Description

<u>Requirement:</u> Per 47 15.207(d), if the EUT is connected to the AC power line indirectly, obtaining its power from another device that is connected to the AC power line, then it should be tested to demonstrate compliance with the conducted limits of 15.207.

Configuration: The EUT will be powered from a device that could be connected to the AC power line. Therefore, the measurements were made on the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.4-2003.

Completed by:								
Holy Arlight								

