DASY4 Validation Report for Head TSL Date/Time: 17.12.2007 12:12:25 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN1117 Communication System: CW-1950; Frequency: 1950 MHz; Duty Cycle: 1:1 Medium: HSL1950; Medium parameters used: f = 1950 MHz; σ = 1.39 mho/m; ϵ_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ### DASY4 Configuration: Probe: ET3DV6 - SN1507 (HF); ConvF(4.78, 4.78, 4.78); Calibrated: 26.10.2007 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.01.2007 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;; Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172 ## Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.8 V/m; Power Drift = 0.012 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.24 mW/g Maximum value of SAR (measured) = 11.3 mW/g 0 dB = 11.3 mW/g ## Impedance Measurement Plot for Head TSL ## **DASY4 Validation Report for Body TSL** Date/Time: 20.12.2007 14:08:46 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1950 MHz; Type: D1950V3; Serial: D1950V3 - SN1117 Communication System: CW-1950; Frequency: 1950 MHz; Duty Cycle: 1:1 Medium: MSL1950; Medium parameters used: f = 1950 MHz; σ = 1.51 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ## DASY4 Configuration: - Probe: ET3DV6 SN1507 (HF); ConvF(4.33, 4.33, 4.33); Calibrated: 26.10.2007 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.01.2007 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA;; - Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172 # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.9 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.44 mW/g Maximum value of SAR (measured) = 11.7 mW/g 0 dB = 11.7 mW/g ## Impedance Measurement Plot for Body TSL S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Accreditation No.: SCS 108 Certificate No: ES3-3150 Jan08 ## CALIBRATION CERTIFICATE Object ES3DV3 - SN:3150 Calibration procedure(s) QA CAL-01.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 9, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|---|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Power sensor E4412A | MY41495277 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Power sensor E4412A | MY41498087 | 29-Mar-07 (METAS, No. 217-00670) | Mar-08 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 8-Aug-07 (METAS, No. 217-00719) | Aug-08 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-07 (METAS, No. 217-00671) | Mar-08 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 8-Aug-07 (METAS, No. 217-00720) | Aug-08 | | Reference Probe ES3DV2 | SN: 3013 | 2-Jan-08 (SPEAG, No. ES3-3013_Jan08) | Jan-09 | | DAE4 | SN: 654 | 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) | Apr-08 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (SPEAG, in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (SPEAG, in house check Oct-07) | In house check: Oct-08 | | | Name | Function | Signature | | Calibrated by: | Katja Pokovic | Technical Manager | R. M. | | Approved by: | Fin Bomholt | R&D Director | | Issued: January 10, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. January 9, 2008 ### ES3DV3 SN:3150 # Probe ES3DV3 SN:3150 Manufactured: Calibrated: June 12, 2007 January 9, 2008 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) ## DASY - Parameters of Probe: ES3DV3 SN:3150 | | 3.5 | 200 | ۸ | |-------------|------|------|--------| | Sensitivity | in | Free | Space" | | OCHOILIVILY | 11.1 | 1100 | Opuoo | Diode Compression^B | NormX | 1.24 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 89 mV | |-------|--------------|-----------------|-------|-------| | NormY | 1.25 ± 10.1% | $\mu V/(V/m)^2$ | DCP Y | 93 mV | | NormZ | 1.24 ± 10.1% | $\mu V/(V/m)^2$ | DCP Z | 98 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. ## Boundary Effect TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cente | r to Phantom Surface Distance | 3.0 mm | 4.0 mm | |-----------------------|-------------------------------|--------|--------| | SAR _{be} [%] | Without Correction Algorithm | 11.0 | 6.8 | | SAR _{be} [%] | With Correction Algorithm | 0.8 | 0.5 | TSL 1810 MHz Typical SAR gradient: 10 % per mm | Sensor Center | to Phantom Surface Distance | 3.0 mm | 4.0 mm | | |-----------------------|------------------------------|--------|--------|--| | SAR _{be} [%] | Without Correction Algorithm | 11.5 | 7.2 | | | SAR _{be} [%] | With Correction Algorithm | 0.3 | 0.6 | | #### Sensor Offset Probe Tip to Sensor Center 2.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ⁸ Numerical linearization parameter: uncertainty not required. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^C | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.77 | 1.35 | 6.23 ± 11.0% (k=2) | | 1810 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.89 | 1.24 | 5.11 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.66 | 1.48 | 4.84 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.63 | 1.52 | 4.54 ± 11.8% (k=2) | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.80 | 1.30 | 6.00 ± 11.0% (k=2) | | 1810 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.96 | 1.12 | 4.95 ± 11.0% (k=2) | | 2000 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.76 | 1.29 | 4.55 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.63 | 1.48 | 4.19 ± 11.8% (k=2) | ^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ## **Deviation from Isotropy in HSL** Error (\$\phi\$, \$9), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Auden Certificate No: EX3-3578_May08 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3578 Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: May 20, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 1-Apr-08 (No. 217-00788) | Apr-09 | | Power sensor E4412A | MY41495277 | 1-Apr-08 (No. 217-00788) | Apr-09 | | Power sensor E4412A | MY41498087 | 1-Apr-08 (No. 217-00788) | Apr-09 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 8-Aug-07 (No. 217-00719) | Aug-08 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 31-Mar-08 (No. 217-00787) | Apr-09 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 8-Aug-07 (No. 217-00720) | Aug-08 | | Reference Probe ES3DV2 | SN: 3013 | 2-Jan-08 (No. ES3-3013_Jan08) | Jan-09 | | DAE4 | SN: 660 | 3-Sep-07 (No. DAE4-660_Sep07) | Sep-08 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-07) | In house check: Oct-08 | | | Name | Function | Signature | | Calibrated by: | Katja Pokovic | Technical Manager | Men let | | Approved by: | Fin Bomholt | R&D Director | F. Brulid | | | | | | Issued: May 21, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. # Probe EX3DV4 SN:3578 Manufactured: November 4, 2005 Last calibrated: April 24, 2007 Recalibrated: May 20, 2008 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)