

A Test Lab Techno Corp.

Changan Lab: No. 140 -1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.
Tel: +886--271-0188 / Fax: +886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 0901FS12-02

Applicant : Acer Inc. FCC ID : HLZZG5

Product Type : Notebook Computer

Trade Mark : acer

Model Number : KAV10 , Aspire one , AOD 150

Dates of Test : Jan. 14 ~ Jan. 15, 2009

Test Environment : Ambient Temperature : 22 \pm 2 $^{\circ}$ C

Relative Humidity: 40 - 70 %

Test Specification : Standard C95.1-2005

IEEE Std. 1528-2003

2.1093;FCC/OET Bulletin 65 Supplement C [July 2001] FCC: SAR Measurement Requirements For 3-6GHz FCC: SAR Measurement Requirements For 802.11

a/b/g Transmitters

FCC: KDB 616217 D02 SAR Polcy Laptop with Screen Ant

v01r01

Max. SAR : 0.040 W/kg Body SAR

Test Lab : Chang-An Lab

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- 2.The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full.

Country Huang

/ 20090202

Measurement Center Manager

Sam Chuang

20090202

Testing Engineer

Contents

1.	Description of Equipment Under Test (EUT)3								
2.	Other Accessories5								
3.	Introduction6								
4.	SAR Definition6								
5.	SAR Measurement Setup7								
6.	Syster	m Components	9						
	6.1	DASY5 E-Field Probe System	9						
	6.2	Data Acquisition Electronic (DAE) System	12						
	6.3	Robot							
	6.4	Measurement Server							
	6.5	Device Holder for Transmitters	_						
	6.6	Oval Flat Phantom - ELI 4.0	14						
	6.7	Data Storage and Evaluation	14						
7.	Test E	quipment List	17						
8.	Tissue	Simulating Liquids	18						
	8.1	Ingredients	19						
	8.2	Recipes	19						
	8.3	Liquid Confirmation	20						
9.	Measu	rement Process	21						
	9.1	Device and Test Conditions	21						
	9.2	System Performance Check	22						
	9.3	Dosimetric Assessment Setup	24						
	9.4	Spatial Peak SAR Evaluation	26						
10.	. Measu	rement Uncertainty	27						
11.	SAR T	est Results Summary	29						
	11.1	802.11b Body SAR _ EUT with Notebook bottom to Phantom (0mm spacing)	29						
	11.2	802.11g Body SAR _ EUT with Notebook bottom to Phantom (0mm spacing)	30						
	11.3	Test Setup Photo	31						
	11.4	Std. C95.1-2005 RF Exposure Limit	32						
12.	Concl	usion	33						
13	Refere	ences	34						

Appendix

Appendix A - System Performance Check

Appendix B - SAR Measurement Data

Appendix C - Calibration

1. Description of Equipment Under Test (EUT)

Applicant: Acer Inc.

8F, 88, Sec.1, Hsin Tai Wu Rd. Hsichih Taipei Hsien 221 Taiwan, R.O.C.

Manufacturer : ATHEROS COMMUNICATIONS, INC.

Manufacturer Address : 5480 Great America Parkway Santa Clara, CA 95054,

USA

FCC ID : HLZZG5

Model Name : Notebook Computer

Trade Mark : acer

Model Number : KAV10, Aspire one, AOD 150

Test Device : Production Unit

Tx Frequency : 2412 - 2462 MHz (802.11b/802.11g)

Max. RF Conducted Power : 0.128 W (21.06 dBm) 802.11b Avg.

0.123 W (20.91 dBm) 802.11g Avg.

Max. SAR Measurement : 0.040 W/kg Body SAR

HW Version : NA

SW Version : v7.6.0.260
Antenna Type : Internal Type
Antenna Gain : -1.42 dBi
Device Category : Portable

RF Exposure Environment: General Population / Uncontrolled

Power Option : Standard Application Type : Certification

The laptop is compliant with KDB 616217 , as the antennas between WiFi and BT are

22.4cm, and the BT power is less than P_ref.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-2005 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

Figure 1. EUT Photo

2. Other Accessories

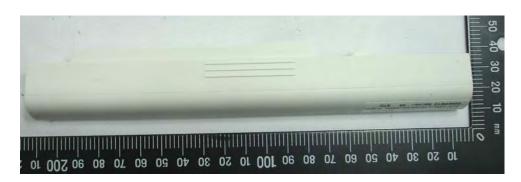


Figure 2. Battery (Li-lon 11.1V, 2200mAh)

Figure 3. AC Adapter for Base

3. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of Acer Inc. Trade Mark: acer Model(s): KAV10, Aspire one, AOD 150. The test procedures, as described in American National Standards, Institute C95.1-2005 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

4. SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 4. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

5. SAR Measurement Setup

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than ±0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length = 300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Measurement Server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The PC consists of the Intel Core(TM)2 CPU @1.86GHz computer with Windows XP system and SAR Measurement Software DASY5, Post Processor SEMCAD, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection...etc. is connected to the Electro-optical converter (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the Measurement Server.

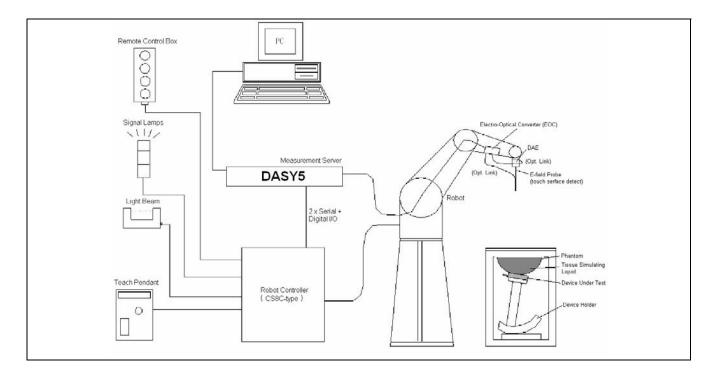


Figure 5. SAR Lab Test Measurement Setup

The DAE4 (or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [3].

6. System Components

6.1 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

6.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

System

Built-in shielding against static charges

PEEK enclosure material

(resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at

frequencies of 450MHz, 900MHz, 1800MHz, 2000MHz, 1950MHz, 2300MHz, 2450MHz, 2600MHz, 3500MHz,

5200MHz, 5500MHz and 5800MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity ±0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dynamic Range $10\mu W/g$ to > 100mW/g; Linearity: $\pm 0.2dB$

Surface Detection ±0.2 mm repeatability in air and clear liquids

over diffuse reflecting surface

Dimensions Overall length: 330mm

Tip length: 20mm

Body diameter: 12mm

Tip diameter: 2.5mm

Distance from probe tip to dipole centers: 1.0mm

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Figure 6. E-field Probe

Figure 7.
Probe setup on robot

6.1.2 E-Field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure described in [4] with accuracy better than ±10%. The spherical isotropy was evaluated with the procedure described in [5] and found to be better than ±0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1GHz, and in a wave guide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core(TM)2 CPU

Clock Speed: @ 1.86GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 v5.0 (Build 120) & SEMCAD X Version 13.2 Build 87

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

6.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability: ±0.02 mm

No. of Axis: 6

6.4 Measurement Server

Processor: PC/104 with a 400MHz intel ULV Celeron

I/O-board: Link to DAE4(or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface

Serial link to robot

Direct emergency stop output for robot

6.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the IEEE SCC34-SC2 and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [6]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Larger DUT cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

Figure 8. Device Holder

6.6 Oval Flat Phantom - ELI 4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

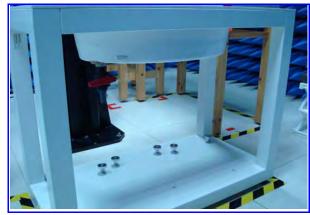


Figure 9. Oval Flat Phantom

Shell Thickness	2 ±0.2 mm
Filling Volume	Approx. 30 liters
Dimensions	190×600×400 mm (H×L×W)

Table 1. Specification of ELI 4.0

6.7 Data Storage and Evaluation

6.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA5. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

6.7.2 Data Evaluation

The DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters : - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$

H-field probes :
$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

μV/(V/m)² for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

*Note: that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

7. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calib	ration
Manufacturer	Name of Equipment	турелиочен	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Field Probe	EX3DV4	3578	May. 20, 2008	May. 20, 2009
SPEAG	2450MHz System Validation Kit	D2450V2	712	Jan. 30, 2008	Jan. 30, 2009
SPEAG	Data Acquisition Electronics	DAE4	779	Nov. 11, 2008	Nov. 11, 2009
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom ELI 4.0	QD OVA 001 BB	1036	NCR	NCR
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	NCR	NCR
SPEAG	Software	DASY5 V5.0 Build 119	N/A	NCR	NCR
SPEAG	Software	SEMCAD V13.2 Build 87	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 011 AA	1025	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071B	MY42402996	Nov. 14, 2008	Nov. 14, 2009
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	NCR
R&S	Power Sensor	NRP-Z22	100179	Apr. 23, 2008	Apr. 23, 2009
Agilent	Signal Generator	E8257D	MY44320425	Jul. 03, 2008	Jul. 03, 2009
Agilent	Dual Directional Coupler	778D	50334	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	NCR
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR	NCR

Table 2. Test Equipment List

8. Tissue Simulating Liquids

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8720ES Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Во	dy
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2300	-	-	52.9	1.80
2450	39.2	1.80	52.7	1.95
2600	-	-	52.5	2.16
3000	38.5	2.40	52.0	2.73
5200	36.0	4.66	49.0	5.30
5200	35.6	5.0	48.6	5.6
5800	35.3	5.27	48.2	6.00
(ε_r = relative per	mittivity, σ = c	onductivity an	$d \rho = 1000 \text{ kg/}$	/m³)

Table 3. Tissue dielectric parameters for head and body phantoms

8.1 Ingredients

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity $\geq 16 \text{ M } \Omega$ -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 °C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

8.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands.

Note: The goal dielectric parameters (at 22 °C) must be achieved within a tolerance of $\pm 5\%$ for ϵ and $\pm 5\%$ for σ .

Liquid type	MSL 2	450-B
Ingredient	Weight (g)	Weight (%)
Water	686.35	68.64
DGBE	313.65	31.37
Salt	-	0.00
Total amount	1,000.00	100.00
Goal dielectric parameters		
Frequency [MHz]	24	50
Relative Permittivity	52	2.7
Conductivity [S/m]	1.9	95

8.3 Liquid Confirmation

8.3.1 Parameters

Liquid Verify									
Ambient Temperature \colon 22 \pm 2 $^{\circ}\!$									
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date	
2450MHz	2450MHz	2450MU-	22.0	εr	52.7	53.7	1.90	± 5	lan 14 2000
Body		22.0	σ	1.95	1.91	-2.05	± 5	Jan. 14, 2009	

Table 4. Measured Tissue dielectric parameters for head and body phantoms

8.3.2 Liquid Depth

The liquid level was during measurement 15cm ±0.5cm.

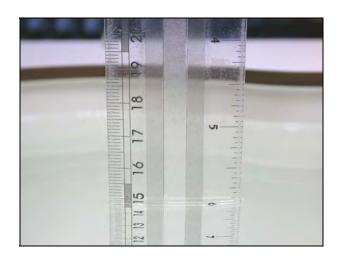


Figure 10. Head-Tissue-Simulating-Liquid

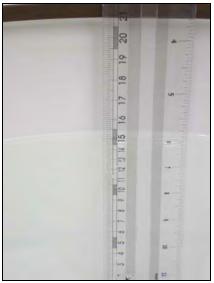


Figure 11. Body-Tissue-Simulating-Liquid

9. Measurement Process

9.1 Device and Test Conditions

The Test Device was provided by Acer Inc. for this evaluation. The spatial peak SAR values were assessed for the lowest, middle and highest channels defined by below table. The antenna(s), battery and accessories shall be those specified by the manufacturer. The battery shall be fully charged before each measurement and there shall be no external connections.

Frequency & Conducted power list

Usage	Operates wit	Operates with a built-in test mode by client					
Simulating human Head/Body	Body						
EUT Power Source	Li-Ion Battery	/					
				Conducted	oower (dBm)		
Band	Rate	СН	Frequency (MHz)	Before SAR Test	After SAR Test		
		1	2412	19.96	19.92		
	1 M	6	2437	20.95	20.91		
802.11 b		11	2462	20.57	20.53		
002.11 b	11 M	1	2412	20.07	20.06		
		6	2437	20.91	20.88		
		11	2462	21.06	21.03		
		1	2412	20.73	20.70		
	6 M	6	2437	20.67	20.65		
802.11 g		11	2462	20.08	20.05		
002.11 g	54 M	1	2412	20.91	21.89		
		6	2437	20.85	20.83		
		11	2462	20.44	20.42		

9.2 System Performance Check

9.2.1 Symmetric Dipoles for System Validation

Construction Symmetrical dipole with I/4 balun enables measurement

of feed point impedance with NWA matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input power at the flat phantom in head simulating solutions.

Frequency 450, 900, 1800, 2000, 2450, 5200MHz, 5800MHz

Return Loss > 20 dB at specified validation position

Power Capability > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other

calibration conditions are available upon request

Dimensions D450V2: dipole length 270 mm; overall height 330 mm

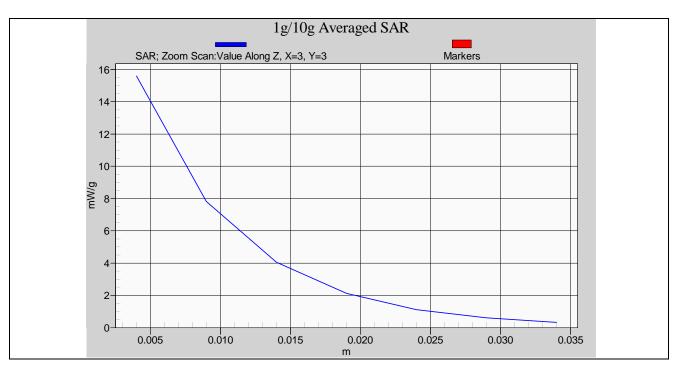
D900V2: dipole length 149 mm; overall height 330 mm D1800V2: dipole length 72 mm; overall height 300 mm

D2000V2: dipole length 65 mm; overall height 300 mm

D2450V2: dipole length 51.5 mm; overall height 300 mm

D5GHzV2: dipole length 20.6 mm; overall height 450 mm

Figure 12. Validation Kit


9.2.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 2450MHz.

Validation kit		Mixture Type	SAR _{1g} [mW/g]		SAR _{10g} [mW/g]		Date of Calibration
D2450V2-SN712		Body	53.6		24.8		Jan. 30, 2008
Frequency (MHz)	Power	ower SAR _{1g} SAR _{10g} Drift (mW/a) (dB)		Difference percentage		Date	
(1411 12)		(mW/g)	(mW/g)	(ub)	1g	10g	
2450	250mW	13.5	6.19	0.062	0.7 %	-0.2 %	lon 14 2000
(Body)	Normalize to 1 Watt	54	24.76	0.062	0.7 %	-U.Z %	Jan. 14, 2009

Detail results see Appendix A.

Z-axis Plot of System Performance Check

Body-Tissue-Simulating-Liquid 2450MHz

9.3 Dosimetric Assessment Setup

9.3.1 Body-Worn Test Position

Body-Worn Configuration

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances.

For this test:

□ The EUT is placed into the holster/belt clip and the holster is positioned against the surface of the phantom in a normal operating position.

■ Since this EUT doesn't supply any body-worn accessory to the end user, a distance of 2 mm was tested to confirm the necessary "minimum SAR separation distance".

(*Note: This distance includes the 2 mm phantom shell thickness.)

Test Report No: 0901FS12-02 ©2009 A Test Lab Techno Corp.

9.3.2 Measurement Procedures

The evaluation was performed with the following procedures:

Surface Check:

A surface check job gathers data used with optical surface detection. It determines the distance from the phantom surface where the reflection from the optical detector has its peak. Any following measurement jobs using optical surface detection will then rely on this value. The surface check performs its search a specified number of times, so that the repeatability can be verified. The probe tip distance is 1.3mm to phantom inner surface during scans.

Reference:

The reference job measures the field at a specified reference position, at 4 mm from the selected section's grid reference point.

Area Scan:

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines can find the maximum locations even in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. Any following zoom scan within the same procedure will then perform fine scans around these maxima. The area covered the entire dimension of the EUT and the horizontal grid spacing was $15 \text{ mm} \times 15 \text{ mm}$.

Zoom Scan:

Zoom scans are used to assess the highest averaged SAR for cubic averaging volumes with 1 g and 10 g of simulated tissue. The zoom scan measures 5 x 5 x 7 points in a 32 x 32 x 30 mm cube whose base faces are centered around the maxima returned from a preceding area scan within the same procedure.

Drift:

The drift job measures the field at the same location as the most recent reference job within the same procedure, with the same settings. The drift measurement gives the field difference in dB from the last reference measurement. Several drift measurements are possible for each reference measurement. This allows monitoring of the power drift of the device in the batch process. If the value changed by more than 5%, the evaluation was repeated.

9.4 Spatial Peak SAR Evaluation

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values. Based on the Draft: SCC-34, SC-2, WG-2 - Computational Dosimetry, IEEE P1529/D0.0 (Draft Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of $(32\times32\times30)$ mm³ $(5\times5\times7$ points). The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Postprocessing engine (SEMCAD). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into three stages:

Interpolation and Extrapolation

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and SAR extrapolation routines. The interpolation, Maxima Search and extrapolation routines are all based on the modified Quadratic Shepard's method [7].

10. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 21.5 \%$ [8].

According to Std. C95.3 $\{9\}$, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

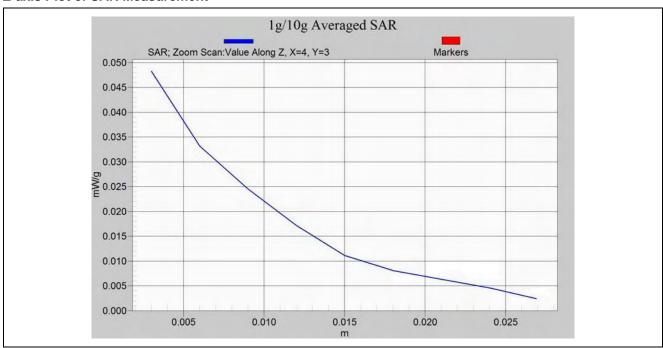
According to CENELEC (10) , typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Uncertainty Component	Uncertainty Value	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	Standard Uncertainty ±1% (1-g)	Standard Uncertainty ±1% (10-g)	v _i or V _{eff}
Measurement System					•			
Probe Calibration (k=1)	4.8	Normal	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	1.9	1.9	∞
Hemispherical Isotropy	9.6	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	$\sqrt{0.5}$	3.9	3.9	∞
Boundary Effect	0.8	Rectangular	$\sqrt{3}$	1	1	0.5	0.5	8
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	8
System Detection Limit	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Integration Time	1.9	Rectangular	$\sqrt{3}$	1	1	1.1	1.1	∞
RF Ambient Conditions	3.0	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	1.4	Rectangular	$\sqrt{3}$	1	1	0.8	0.8	80
Probe Positioning with respect to Phantom Shell	2.9	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	80
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	4.5	Rectangular	$\sqrt{3}$	1	1	2.6	2.6	∞
Test sample Related								
Test sample Positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device Holder Uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
Output Power Variation – SAR drift measurement	5.0	Rectangular	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4.0	Rectangular	$\sqrt{3}$	1	1	2.3	2.3	80
Liquid Conductivity – deviation from target values	5.0	Rectangular	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
Liquid Conductivity – measurement uncertainty	5.0	Normal	1	0.64	0.43	3.2	2.2	8
Liquid Permittivity - deviation from target values	5.0	Rectangular	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
Liquid Permittivity - measurement uncertainty	5.0	Normal	1	0.6	0.49	3.0	2.5	∞
Combined standard uncer	tainty	RSS				11.2	10.7	388
Expanded uncertaint		k=2				22.4	21.5	

Table 5. Uncertainty Budget of DASY

11. SAR Test Results Summary

11.1 802.11b Body SAR _ EUT with Notebook bottom to Phantom (0mm spacing)


Ambient : Temperature ($^{\circ}$ C) : 22 \pm 2 Relative HUMIDITY ($^{\circ}$ C) : 40 - 70 Liquid : Mixture Type : MSL2450 Liquid Temperature ($^{\circ}$ C) : 22.0 Depth of liquid (cm) : 15

Crest Factor: 1 Probe S/N: 3578

Frequency (MHz)	Data Rate	Phantom Position	EUT to Phantom Setup	SAR _{1g} [mW/g]	Power Drift (dB)	Amb. Temp.	Remark
2412	11 M	Flat	Bottom	0.008	0.150	22.0	_
2437	11 M	Flat	Bottom	0.040	-0.168	22.0	_
2462	11 M	Flat	Bottom	0.031	0.046	22.0	_
Unc	S	-2005 - Safet patial Peak oosure/Gener	y Limit al Population		1.6 W/kg (r Averaged ove		

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

SAR Measurement (Flat Section) _ 802.11b 11M / CH06

11.2 802.11g Body SAR _ EUT with Notebook bottom to Phantom (0mm spacing)

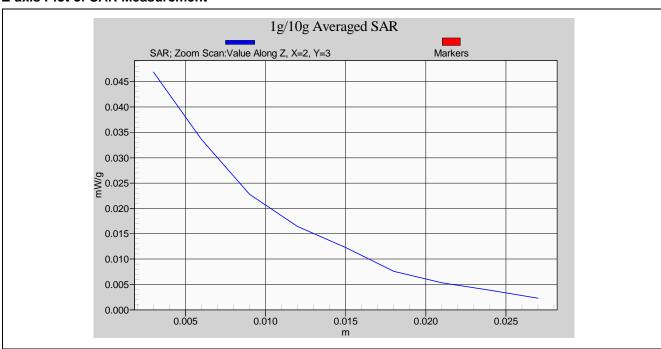
Ambient:

Temperature ($^{\circ}$): 22 \pm 2 Relative HUMIDITY ($^{\circ}$): 40 - 70

Liquid:

Mixture Type: MSL2450 Liquid Temperature (°C): 22.0

Depth of liquid (cm): 15


Measurement:

 Crest Factor :
 1
 Probe S/N :
 3578

Frequency (MHz)	Data Rate	Phantom Position	EUT to Phantom Setup	SAR₁ց [mW/g]	Power Drift (dB)	Amb. Temp.	Remark
2412	54 M	Flat	Bottom	0.038	-0.113	22.0	_
2437	54 M	Flat	Bottom	0.007	0.015	22.0	_
2462	54 M	Flat	Bottom	0.016	0.136	22.0	_
Unc	S	-2005 - Safet patial Peak oosure/Gener	y Limit ral Population		1.6 W/kg (r Averaged ove		

Detail results see Appendix B.

Z-axis Plot of SAR Measurement

SAR Measurement (Flat Section) _ 802.11g 54M / CH01

11.3 Test Setup Photo

11.3.1 EUT with Notebook bottom to Phantom (0mm spacing)

Figure 13. Body SAR Test Setup (Flat Section)

11.4 Std. C95.1-2005 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure	Occupational Controlled Exposure
	(W/kg) or (mW/g)	(W/kg) or (mW/g)
Spatial Peak SAR*	1.60	8.00
(head)		5.55
Spatial Peak SAR**	0.08	0.40
(Whole Body)	0.00	0.40
Spatial Peak SAR***	1.60	8.00
(Partial-Body)	1.00	0.00
Spatial Peak SAR****	4.00	20.00
(Hands / Feet / Ankle / Wrist)	7.00	20.00

Table 6. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

12. Conclusion

The SAR test values found for the portable mobile device **Acer Inc. Trade Mark**: **acer Model (s)**: **KAV10**, **Aspire one**, **AOD 150** is below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-2005, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokoviċ, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Pokovi c, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE", Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10KHz-300GHz, Jan. 1995.

Appendix A - System Performance Check

See following attached pages for System Performance Check.

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 1/14/2009 3:40:55 PM

System Performance Check at 2450MHz_20090114_Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

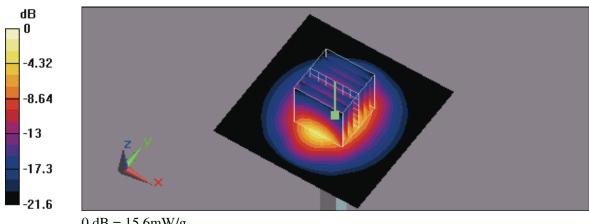
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

System Performance Check at 2450MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 14.7 mW/g

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.2 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.19 mW/g

Maximum value of SAR (measured) = 15.6 mW/g

0 dB = 15.6 mW/g

Appendix B - SAR Measurement Data

See following attached pages for SAR Measurement Data.

Date/Time: 1/14/2009 6:19:12 PM

Flat_802.11b CH1_11M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

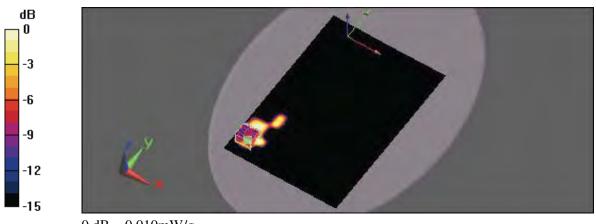
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x221x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.013 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 0.184 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.019 W/kg

SAR(1 g) = 0.0079 mW/g; SAR(10 g) = 0.00456 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

0 dB = 0.010 mW/g

Date/Time: 1/15/2009 1:36:28 AM

Flat_802.11b CH6_11M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

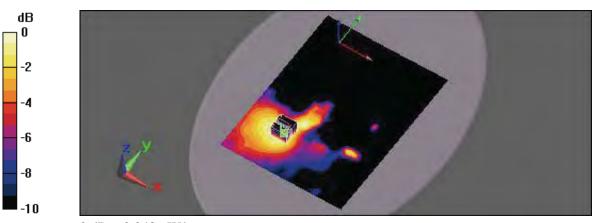
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.050 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 1.09 V/m; Power Drift = -0.168 dB

Peak SAR (extrapolated) = 0.074 W/kg

SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.048 mW/g

0 dB = 0.048 mW/g

Appendix B

Date/Time: 1/15/2009 2:37:49 AM

Flat_802.11b CH11_11M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

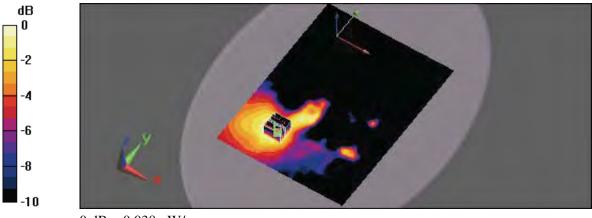
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x201x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.038 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 1.45 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.059 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.018 mW/g

Maximum value of SAR (measured) = 0.038 mW/g

0 dB = 0.038 mW/g

Appendix B

Date/Time: 1/14/2009 11:31:45 PM

Flat_802.11g CH1_54M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11g; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 53.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

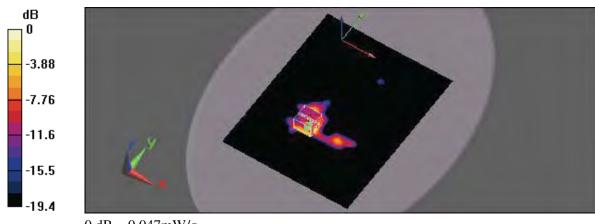
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x191x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.031 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 0.575 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.069 W/kg

SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.047 mW/g

0 dB = 0.047 mW/g

Date/Time: 1/14/2009 9:04:58 PM

Flat_802.11g CH6_54M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11g; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

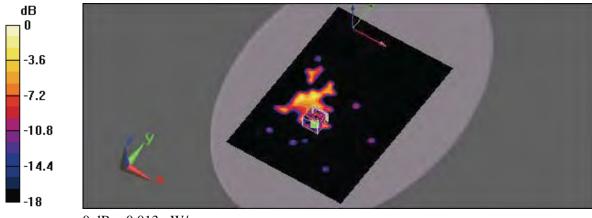
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x221x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.0084 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 0.611 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.019 W/kg

SAR(1 g) = 0.00672 mW/g; SAR(10 g) = 0.00252 mW/g

Maximum value of SAR (measured) = 0.013 mW/g

0 dB = 0.013 mW/g

Appendix B

Date/Time: 1/14/2009 10:38:17 PM

Flat_802.11g CH11_54M_Bottom Close Body

DUT: KAV10; Type: 802.11b/g PCIe Minicard; FCC ID:HLZZG5

Communication System: IEEE 802.11g; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.55, 6.55, 6.55); Calibrated: 5/20/2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn779; Calibrated: 11/11/2008

• Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1036

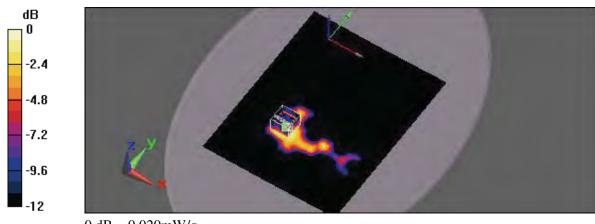
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.2 Build 87

Flat/Area Scan (151x191x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.021 mW/g

Flat/Zoom Scan (7x7x9)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 0.607 V/m; Power Drift = 0.136 dB

Peak SAR (extrapolated) = 0.032 W/kg

SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00874 mW/g

Maximum value of SAR (measured) = 0.020 mW/g

0 dB = 0.020 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D2450V2 SN:712 Calibration No.D2450V2-712_Jan08
- Probe _ EX3DV4 SN:3578 Calibration No.EX3-3578_May08
- DAE _ DAE4 SN:779 Calibration No.DAE4-779_Nov08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

ATL (Auden)

Certificate No: D2450V2-712_Jan08

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 712

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

January 30, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference 10 dB Attenuator	SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference Probe ES3DV2	SN: 3025	26-Oct-07 (SPEAG, No. ES3-3025_Oct07)	Oct-08
DAE4	SN 601	03-Jan-08 (SPEAG, No. DAE4-601_Jan08)	Jan-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-08
RF generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	(John
Approved by:	Katja Pokovic	Technical Manager	Da Wil

Issued: January 31, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as no	DASY4	V4.7
DASY Version		
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were a	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

condition	
250 mW input power	13.9 mW / g
normalized to 1W	55.6 mW / g
normalized to 1W	54.3 mW / g ± 17.0 % (k=2)
	250 mW input power

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.44 mW / g
SAR normalized	normalized to 1W	25.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	25.4 mW / g ± 16.5 % (k=2)

Page 3 of 9

Certificate No: D2450V2-712_Jan08

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

ollowing parameters and calculations were applied	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.98 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	53.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 mW / g
SAR normalized	normalized to 1W	24.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Page 4 of 9 Certificate No: D2450V2-712_Jan08

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.3 Ω + 4.7 jΩ
	– 25.2 dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 7.2 jΩ
Return Loss	– 22.8 dB

General Antenna Parameters and Design

1.148 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

Certificate No: D2450V2-712_Jan08

DASY4 Validation Report for Head TSL

Date/Time: 30.01.2008 12:18:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN712

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.41, 4.41, 4.41); Calibrated: 26.10.2007

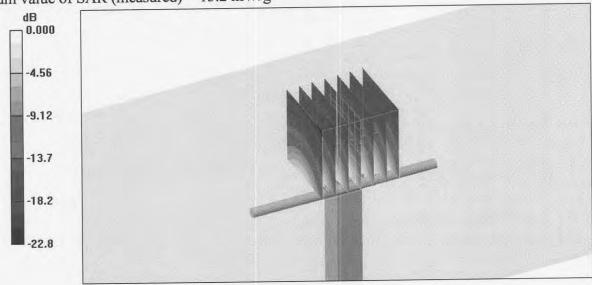
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 03.01.2008

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

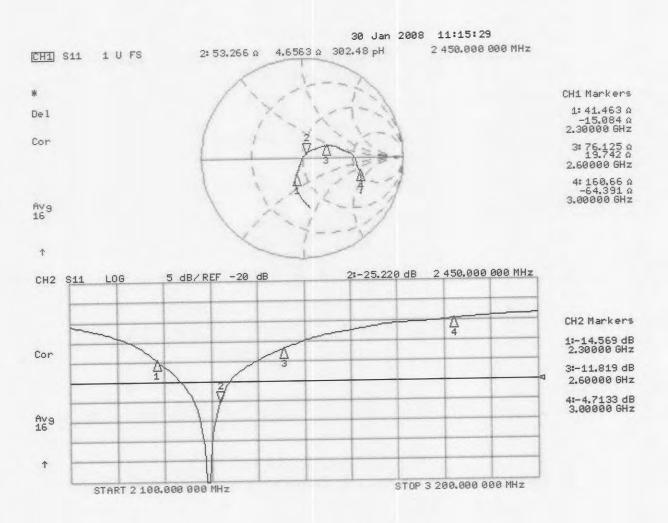
Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.1 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 29.9 W/kg


SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.44 mW/g

Maximum value of SAR (measured) = 15.2 mW/g

0 dB = 15.2 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 23.01.2008 12:30:46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN712

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.02, 4.02, 4.02); Calibrated: 26.10.2007

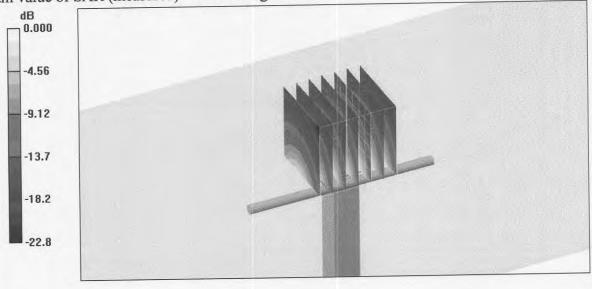
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 03.01.2008

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;

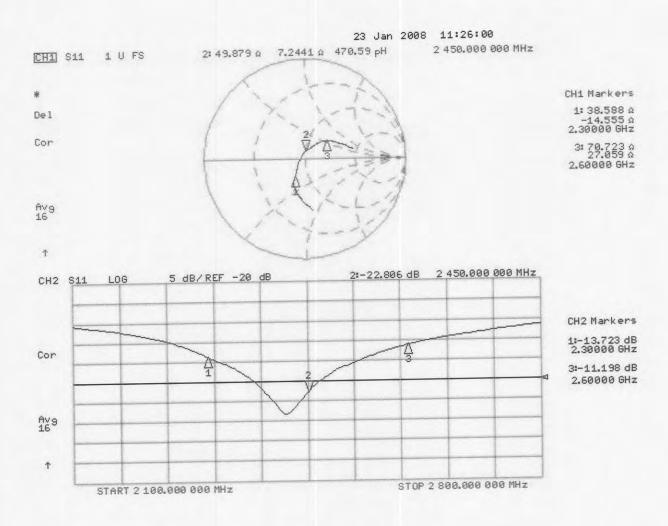
Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.3 V/m; Power Drift = 0.070 dB

Peak SAR (extrapolated) = 28.0 W/kg


SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.2 mW/g

Maximum value of SAR (measured) = 15.0 mW/g

0 dB = 15.0 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Auden

Certificate No: EX3-3578_May08

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3578

Calibration procedure(s)

QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes

Calibration date:

May 20, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	soli let
Approved by:	Fin Bomholt	R&D Director	F. Bruled
			/ 0

Issued: May 21, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ Polarization 9 φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, v, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 SN:3578 May 20, 2008

Probe EX3DV4

SN:3578

Manufactured:

November 4, 2005

Last calibrated:

April 24, 2007

Recalibrated:

May 20, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3578

Sensitivity in Free Space^A

Diode Compression^B

NormX	0.520 ± 10.1%	$\mu V/(V/m)^2$	DCP X	98 mV
NormY	0.500 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	90 mV
NormZ	0.540 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center	to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.3	5.6
SAR _{be} [%]	With Correction Algorithm	0.6	0.2

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

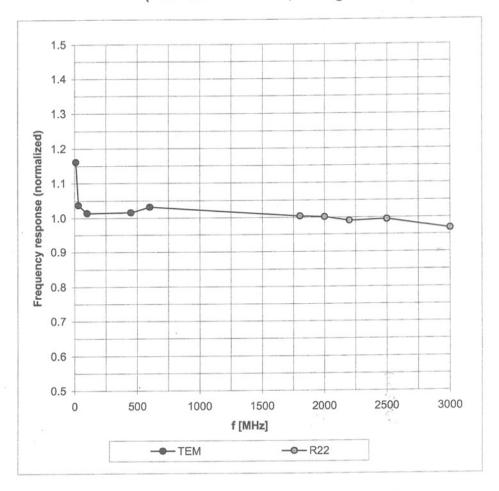
Sensor Center t	to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.2	4.6
SAR _{be} [%]	With Correction Algorithm	0.5	0.2

Sensor Offset

Certificate No: EX3-3578_May08

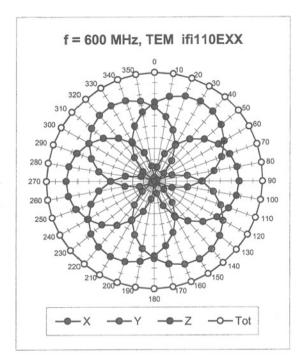
Probe Tip to Sensor Center

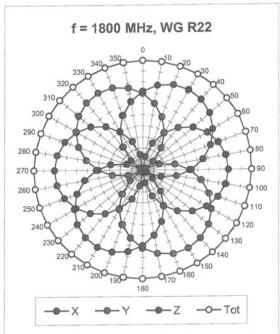
1.0 mm

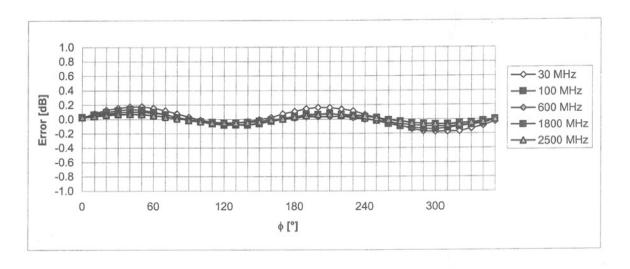

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

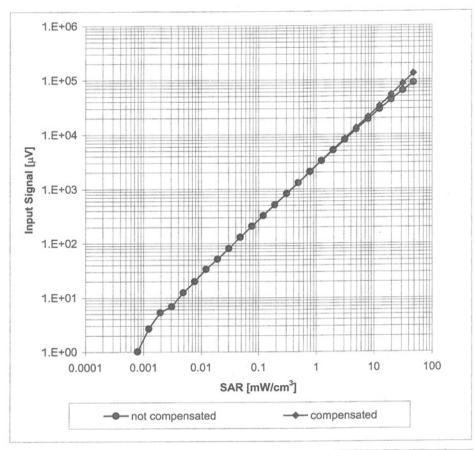

Frequency Response of E-Field

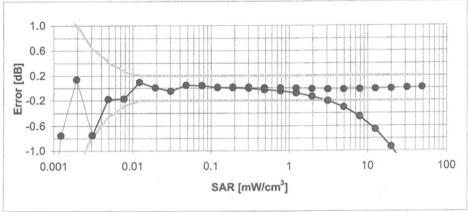

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

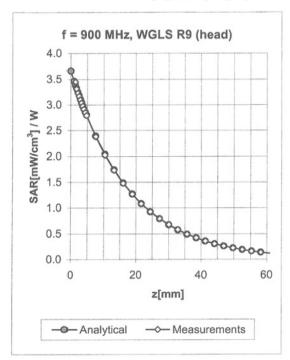
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

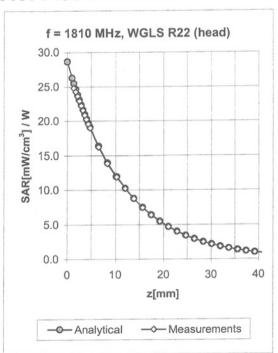




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

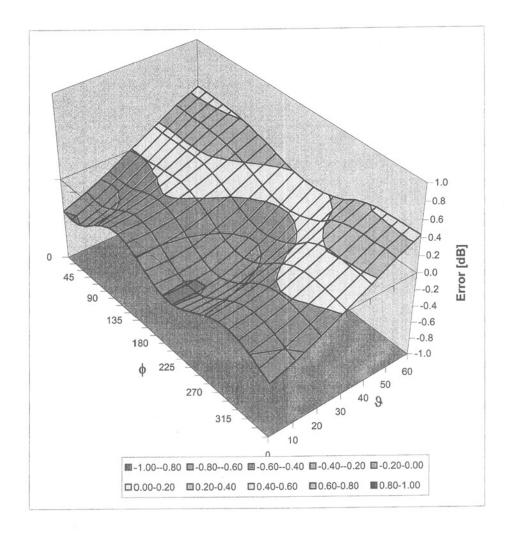
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.48	0.80	8.55 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	0.75	7.28 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.48	0.77	7.10 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	$39.2 \pm 5\%$	1.80 ± 5%	0.40	0.87	6.66 ± 11.0% (k=2)
5200	± 50 / ± 100	Head	$36.0 \pm 5\%$	4.66 ± 5%	0.43	1.70	4.65 ± 13.1% (k=2)
5500	± 50 / ± 100	Head	35.6 ± 5%	4.96 ± 5%	0.48	1.70	4.30 ± 13.1% (k=2)
5800	± 50 / ± 100	Head	$35.3 \pm 5\%$	5.27 ± 5%	0.50	1.70	4.22 ± 13.1% (k=2)
900	± 50 / ± 100	Body	$55.0 \pm 5\%$	1.05 ± 5%	0.45	0.80	8.42 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.49	0.80	7.41 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.43	0.87	7.08 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	$52.7 \pm 5\%$	1.95 ± 5%	0.55	0.80	6.55 ± 11.0% (k=2)
5200	± 50 / ± 100	Body	$49.0 \pm 5\%$	$5.30 \pm 5\%$	0.47	1.75	3.84 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	$5.65 \pm 5\%$	0.35	1.75	4.12 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.46	1.75	3.92 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

ATL (Auden)

Certificate No: DAE4-779 Nov08

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFI	ICA	ME
---------------------	-----	----

DAE4 - SD 000 D04 BJ - SN: 779 Object

QA CAL-06.v12 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

November 11, 2008 Calibration date:

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	30-Sep-08 (No: 7673)	Sep-09
Keithley Multimeter Type 2001	SN: 0810278	30-Sep-08 (No: 7670)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Signature Function Name Calibrated by:

Daniel Hess Technician

R&D Director Fin Bomholt Approved by:

Issued: November 11, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdlenst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & -100...+300 \ m\mbox{W} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & -1......+3m\mbox{V} \end{array}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	404.449 ± 0.1% (k=2)	403.679 ± 0.1% (k=2)	403.906 ± 0.1% (k=2)
Low Range	3.97989 ± 0.7% (k=2)	3.96584 ± 0.7% (k=2)	3.96834 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	88°±1°
Commoder / mg.c to accommod	

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	200000.2	0.00
Channel X + Input	20000	20004.76	0.02
Channel X - Input	20000	-20000.46	0.00
Channel Y + Input	200000	199999.9	0.00
Channel Y + Input	20000	20004.23	0.02
Channel Y - Input	20000	-20000.37	0.00
Channel Z + Input	200000	200000.1	0.00
Channel Z + Input	20000	20003.22	0.02
Channel Z - Input	20000	-20000.98	0.00

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	1999.9	0.00
Channel X + Input	200	199.15	-0.43
Channel X - Input	200	-200.23	0.11
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	198.78	-0.61
Channel Y - Input	200	-199.84	-0.08
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.55	-0.22
Channel Z - Input	200	-201.30	0.65

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.34	-5.11
	- 200	5.57	5.20
Channel Y	200	13.81	13.35
	- 200	-14.32	-13.88
Channel Z	200	2.61	2.32
	- 200	-4.14	-4.46

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	1-	2.09	0.14
Channel Y	200	-0.49		2,40
Channel Z	200	-1.47	0.22	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15617	15330
Channel Y	15810	15565
Channel Z	16216	15563

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

nput rowsz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.13	-2.92	1.64	0.57
Channel Y	-0.83	-2.41	0.83	0.63
Channel Z	-1.03	-2.84	-0.06	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.1999	202.2
Channel Y	0.1999	201.5
Channel Z	0.2000	201.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9