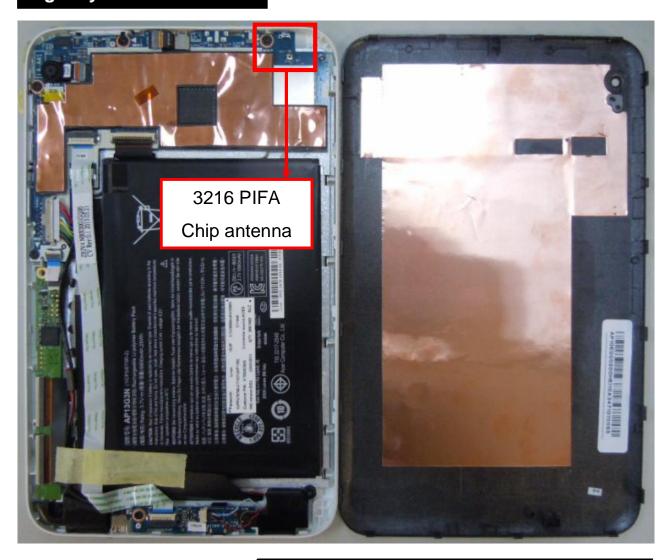


[Cheetah] Yageo 3216 PIFA mode at 2.4GHz Chip Antenna for Compal

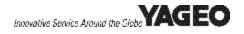
Version 04 LTCC R&D, Wireless Components BU 2013/04/17

Purpose

Our customer need Yageo to evaluate dual band ceramic chip antenna in 2.4 GHz application. Therefore Yageo carried out an evaluation report for reference.


Test condition:

(A) Chip antenna information:

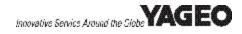

- Type: 3216 PIFA (3.2 * 1.6 * 1.2 mm) - Part number: CAN4311712112453K

- Clearance size: 5 * 6 mm

Fig.1 System overview

Matching Circuit

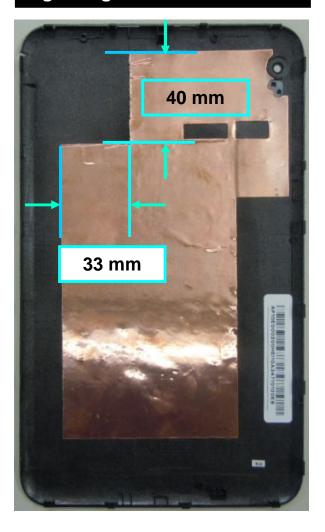
3216 PIFA mode antenna matching circuit:


- Shunt: 1 pF [P/N: CC0402CRNP09BN1R0 (Yageo)]

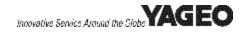
- Series: 0 ohm

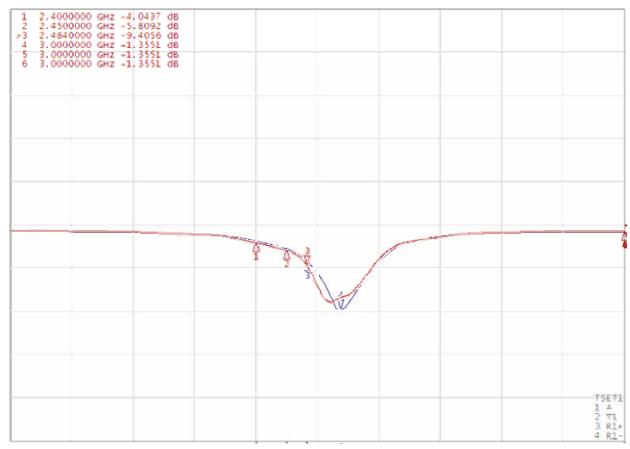
- Chip antenna: 3216 PIFA mode (P/N: CAN4311712112453K)

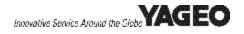
Fig.2 Position and Matching Circuit ML6:3 0 ohm Feeding 3216 PIFA 1 pF Chip antenna


Antenna Window Improvement

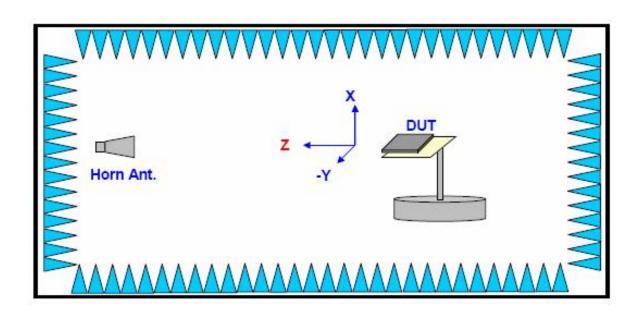
To modify antenna window for improving antenna efficiency as do not change original matching circuit value.


Fig.3 Original antenna window

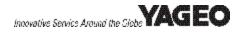

Fig.4 Original antenna window



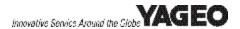
The Measurement of S-Parameter



	Frequency (MHz)	S11 (dB)
	2400	-3.4
Original rear cover	2450	-5.3
	2484	-8.3
Modify copper dimension of rear cover	Frequency (MHz)	S22 (dB)
	2400	-4.0
	2450	-5.8
	2484	-9.4



ETS Chamber


Conclusion

From the test result, only modify copper of rear cover, that frequency bandwidth just has a little shift to lower band.

Yageo still suggest customer to change matching circuit as V3 report.

	Frequency (MHz)	S11 (dB)	Peak gain (dBi)	Ave. gain (dBi)	Efficiency (%)	
Original rear cover	2400	-3.4	-2.2	-5.8	26.2	
	2450	-5.3	-0.2	-4.1	38.8	
	2484	-8.3	0.1	-3.7	41.7	
Modify copper dimension of rear cover	Frequency (MHz)	S22 (dB)	Peak gain (dBi)	Ave. gain (dBi)	Efficiency (%)	
	2400	-4.0	-2.3	-5.7	26.7	
	2450	-5.8	-0.3	-4.0	39.7	
	2484	-9.4	-0.4	-3.6	43.3	

