

FCC Test Report

Equipment	:	WPC TX
Brand Name	:	acer
Model No.	:	WPC-W-A-TX-A11-006
FCC ID	:	HLZWPC1
Standard	:	47 CFR FCC Part 15.209
Operating Band	:	110-205 kHz
FCC Classification	:	DCD (for 110-205kHz only)
Equipment Type	:	Wireless Power Transfer for Consumer Devices
Output power	:	<5W (from Each Primary Coil)
Applicant	:	Acer Incorporated 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Manufacturer	:	INPAQ Technology Co., Ltd. No. 11, Ke-Yi St., Chunan, Miaoli 350 Taiwan R.O.C.

The product sample received on Nov. 17, 2015 and completely tested on Dec. 09, 2015. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technicalstandards.

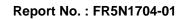
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Configuration	9
2.2	The Worst Charger Frequencies Configuration	9
2.3	The Worst Case Measurement Configuration	.10
2.4	Test Setup Diagram	.11
3	TRANSMITTER TEST RESULT	.12
3.1	AC Power-line Conducted Emissions	.12
3.2	Transmitter Radiated Emissions	.18
3.3	Emission Bandwidth	.37
4	TEST EQUIPMENT AND CALIBRATION DATA	.39


APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result	Summary	of	Test	Result
------------------------	---------	----	------	--------

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]:0.1973370MHz 48.89 (Margin 14.83dB) - QP 44.30 (Margin 9.42dB) - AV	FCC 15.207	Complied			
3.2	15.209	Transmitter Radiated Emissions	[dBuV/m at 3m]:309.360MHz 42.89 (Margin 3.11dB) - QP	FCC 15.209	Complied			
3.3	15.215(c)	Emission Bandwidth	20dB Bandwidth 2.79 [kHz]	N/A	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR5N1704-01	Rev. 03	Initial issue of report	Feb. 18, 2016

1 General Description

1.1 Information

1.1.1 General Information

Wireless Power Transfer General Information					
Frequency Range	Modulation	Charging Freq. (kHz)	Field Strength (dBuV/m)		
110-205 kHz	FSK	110-205	80.64		
Power Transfer Method Output power from each Max. coupling surface primary coil area Charging Met					
Magnetic induction and only single primary coil coupling secondary coil	<5W	63.6 cm ²	Client directly contact		
Note 1: Field strength performed peak level at 3m.					

1.1.2 Antenna Information

Antenna Category				
	Equipment placed on the market without antennas			
\boxtimes	Integral antenna (antenna permanently attached)			
	External antenna (dedicated antennas)			

1.1.3 Type of EUT

	Identify EUT				
EUT	EUT Serial Number N/A				
Presentation of Equipment 🛛 Production ; 🗌 Pre-Production ; 🗌 Prototype		Production ; Pre-Production ; Prototype			
	Type of EUT				
	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
\boxtimes	Other: The EUT place with the platform.				

1.1.4 Platform Details

Host No.	Equipment Name	Brand Name	Model No.
Host 1	PC	acer	AT5W2, Aspire T3-710, Aspire T3-780, Aspire T3-715
Host 2	PC	acer	AX5W2, Aspire X3-710, Aspire X3-780

Note 1: There have two difference housing of product. The differences are housing, PCB location and wireless charger coil location.

Note 2: The difference of above models is in sales marketing.

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle			
Operated normally mode for worst duty cycle			
Operated test mode for worst duty cycle			
Test Signal Duty Cycle (x)			
☑ 100%			

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	From System

1.2 Accessories and Support Equipment

Accessories Information					
PC	Brand Name	acer	Model Name	Aspire T3-715	
PC	Brand Name	acer	Model Name	Aspire X3-710	

Reminder: Regarding to more detail and other information, please refer to user manual.

Support Equipment							
No.	Equipment Brand Name Model Name FCC ID						
1	Test Fixture	-	-	-			

Note : The Test Fixture provides is by customer.

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013

1.4 Testing Location Information

	Testing Location								
\bowtie	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Гао Yuan City, Taiwan, R.O.C.					
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973					
	Test Site Registration Number: 636805								
	Test Cond	dition		Test Site No.	Test Engineer	Test Environment			
AC Conduction CO04-HY Anthony 22°C / 62%						22°C / 62%			
	RF Conducted TH01-HY Howard 21.5°C / 63%								
Radiated Emission 03CH03-HY Joe						22.6°C / 58.2%			

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Test Item		Uncertainty			
AC power-line conducted emissions		±2.3 dB			
Emission bandwidth		±0.6 %			
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB			
	0.15 – 30 MHz	±0.4 dB			
	30 – 1000 MHz	±0.6 dB			
All emissions, radiated	9 – 150 kHz	±2.5 dB			
	0.15 – 30 MHz	±2.3 dB			
	30 – 1000 MHz	±2.6 dB			
Temperature		±0.8 °C			
Humidity		±5 %			
DC and low frequency voltages		±0.9%			
Time		±1.4 %			
Duty Cycle		±0.6 %			

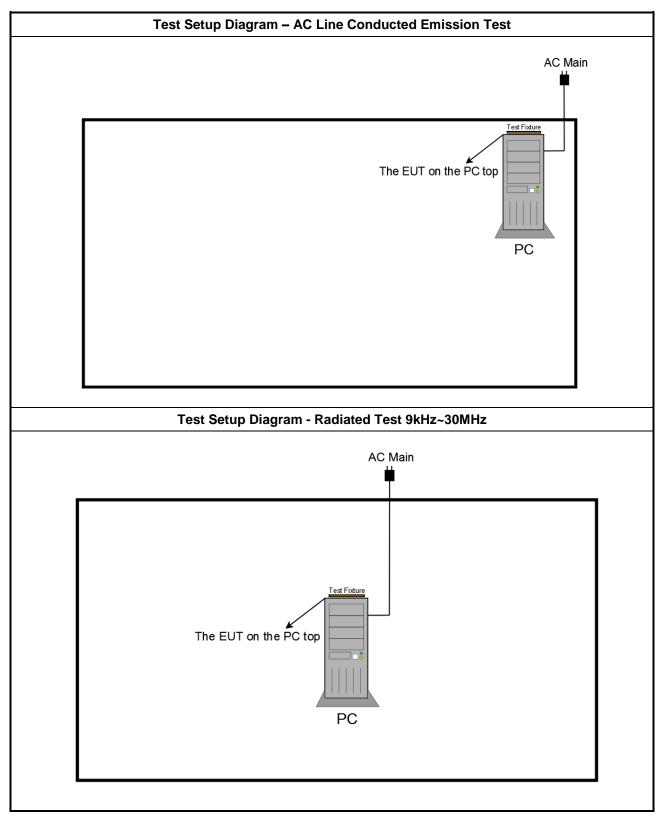
2 Test Configuration of EUT

2.1 The Worst Case Configuration

Modulation Mode	Field Strength (dBuV/m at 3m)
FSK	80.64
Wireless charger were performed all charging con operation, the worst mode is full charging loading.	ditions including variable loading and non-charging

2.2 The Worst Charger Frequencies Configuration

Modulation Mode	Charger Frequencies (kHz)
FSK	135 kHz
Wireless charger frequencies are variable frequency r The charging frequency is 135 kHz.	ange (110-205 kHz) and depend on charging loading.


2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item AC power-line conducted emissions					
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 110Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	EUT with Host 1 via wireless charger				
2	EUT with Host 2 via wireless charger				

The Worst Case Mode for Following Conformance Tests					
Tests Item	Transmitter Radiated Emissions, Emission Bandwidth				
Test Condition	Radiated measurement				
	EUT will be placed in fixed position.				
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes.				
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions.				
Operating Made + 1CHz	1. EUT with Host 1 via wireless charger				
Operating Mode < 1GHz	2. EUT with Host 2 via wireless charger				
Modulation Mode	FSK				
	X Plane				
Orthogonal Planes of EUT					

2.4 Test Setup Diagram

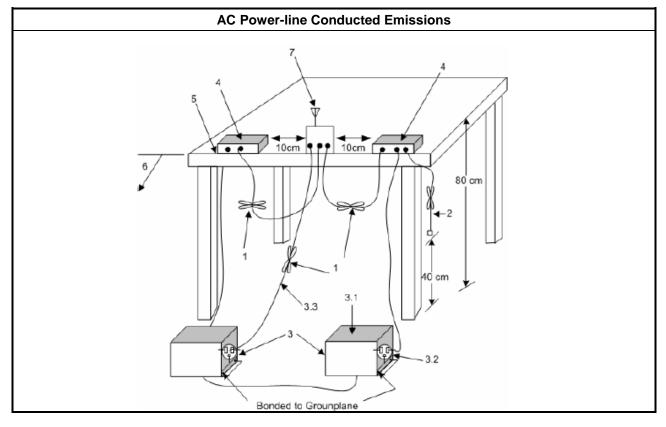
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm	of the frequency.				

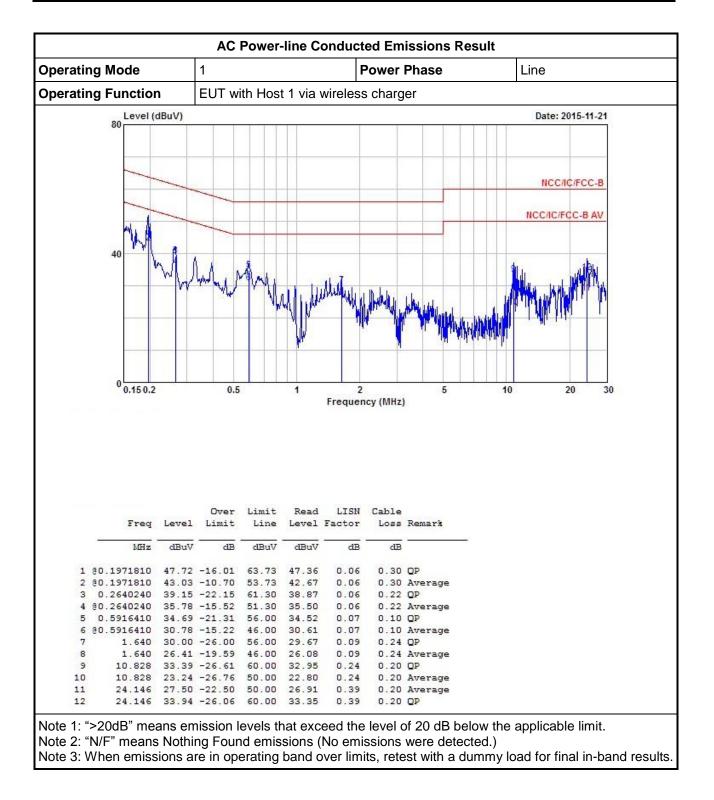
3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

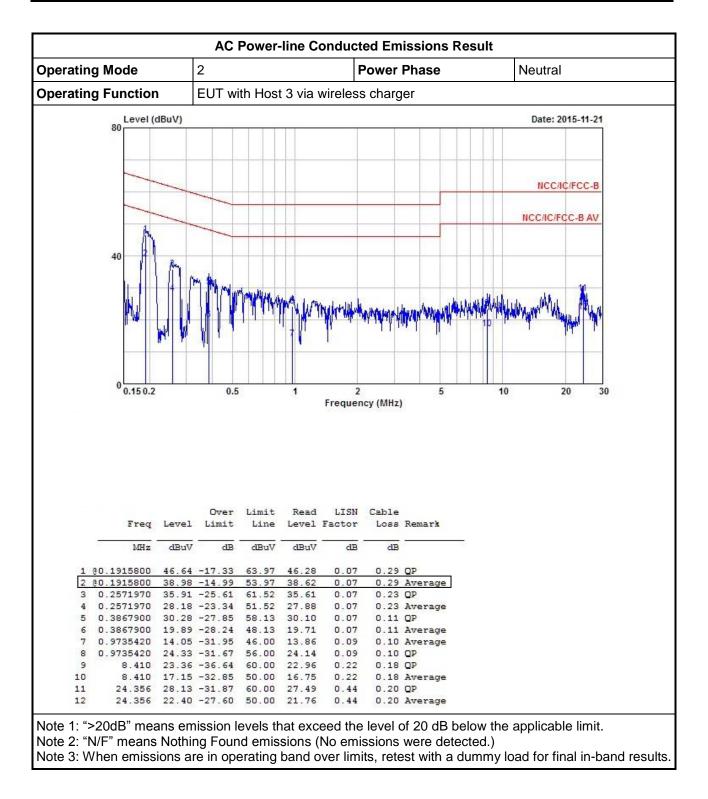
	Test Method
\boxtimes	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band.
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band;

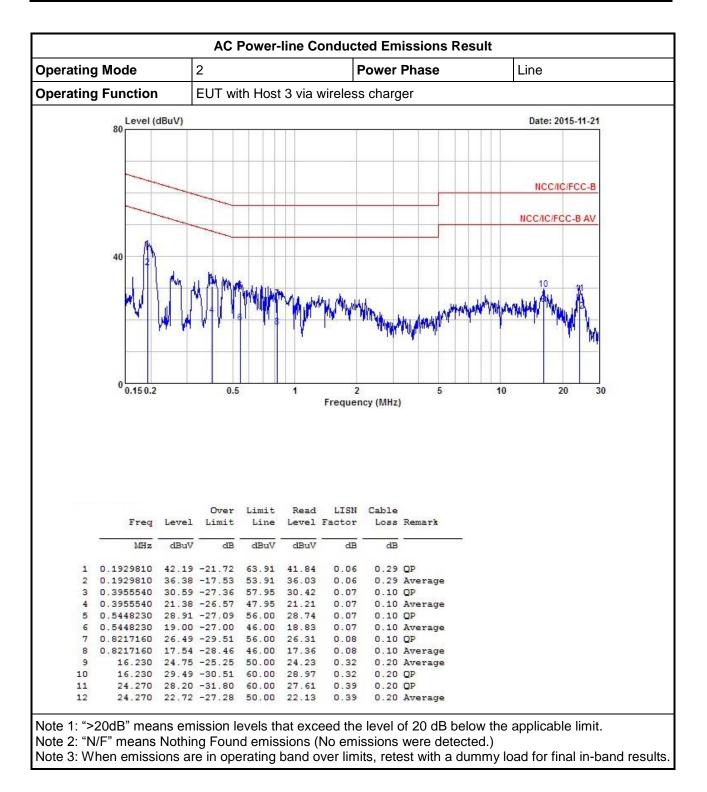
3.1.4 Test Setup



erating Mode		1			F	ower	Phase			Neutral
erating Function	1	EUT wi	th Host	t 1 via	wireless	charg	ger			
Level (dBuV)									Date: 2015-11-21
00										
~										
			s. 15 17							NCC/IC/FCC-B
	14									
										NCC/IC/FCC-B AV
ML. A										
IN I										
40	NI	2.6 6								(
	"frw	What A	and		7. 11	12:12				u nilla
		w.	1 N	1. 4	pulliphil 11	h.h.h.	the of the	ul		WALLAND I'' W
			40	WI UM		ALMAN I	PHU PHULL			TUNT TIM 1
								I. MIL		n
						- T			1.0	
				1.5	-					
0.150.2		0.5		1	2		5		10	20 3
0.10 0.2		0.0			Frequen	cv (MHz)			10	20
		Over	Limit	Read	LISN	Cable				
Freq	Level	Over Limit	Limit Line		LISN Factor		Remark			
Freq		Over Limit	Line	Level	Factor	Loss	3			
Freq MHz	Level dBuV	Over Limit dB	1993 B. S. S.				3			
1 @0.1973370	dBuV	-14.83	Line dBuV 63.72	Level dBuV 48.52	Factor dB 0.07	Loss dB 0.30	QP	_		
1 @0.1973370 2 @0.1973370	dBuV 48.89 44.30	-14.83	Line dBuV 63.72 53.72	Level dBuV 48.52 43.93	Factor dB 0.07 0.07	Loss dB 0.30 0.30	QP Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270	dBuV 48.89 44.30 38.18	-14.83 -9.42 -23.12	Line dBuV 63.72 53.72 61.30	Level dBuV 48.52 43.93 37.89	Factor dB 0.07 0.07 0.07	Loss dB 0.30 0.30 0.22	OP Average OP	_		
1 @0.1973370 2 @0.1973370	dBuV 48.89 44.30 38.18 32.33	-14.83 -9.42 -23.12 -18.97	Line dBuV 63.72 53.72 61.30 51.30	Level dBuV 48.52 43.93	Factor dB 0.07 0.07	Loss dB 0.30 0.30 0.22	OP Average OP Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270	dBuV 48.89 44.30 38.18 32.33 32.97	-14.83 -9.42 -23.12 -18.97 -23.03	Line dBuV 63.72 53.72 61.30 51.30 56.00	Level dBuV 48.52 43.93 37.89 32.04 32.79	Factor dB 0.07 0.07 0.07 0.07	Loss dB 0.30 0.22 0.22 0.10	OP Average OP Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19	OP Average OP Average OP Average OP	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00 46.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.19	OP Average OP Average OP Average OP Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377 9 11.543	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00 46.00 60.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.27	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.19 0.20	OP Average OP Average OP Average OP Average OP	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377 9 11.543 10 11.543	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03 29.17	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97 -20.83	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00 46.00 60.00 50.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56 28.70	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.27 0.27	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.19 0.20 0.20	OP Average OP Average OP Average OP Average OP Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377 9 11.543 10 11.543 11 25.751	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03 29.17 22.86	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00 46.00 60.00 50.00 50.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56 28.70 22.19	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.27 0.27 0.27 0.46	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.19 0.20 0.20	OP Average OP Average OP Average OP Average QP Average Average	_		
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377 9 11.543 10 11.543 11 25.751	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03 29.17 22.86	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97 -20.83 -27.14	Line dBuV 63.72 53.72 61.30 51.30 56.00 46.00 56.00 46.00 60.00 50.00 50.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56 28.70 22.19	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.27 0.27 0.27	Loss dB 0.30 0.22 0.22 0.10 0.19 0.19 0.20 0.20 0.20	OP Average OP Average OP Average OP Average QP Average Average	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03 29.17 22.86 31.70	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97 -20.83 -27.14 -28.30	Line dBuV <u>63.72</u> <u>53.72</u> 61.30 51.30 56.00 46.00 56.00 46.00 50.00 50.00 50.00 60.00	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56 28.70 22.19 31.03	Factor dB 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.27 0.27 0.27 0.46 0.46	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.20 0.20 0.20 0.21 0.21	OP Average OP Average OP Average OP Average OP Average OP		the	
1 @0.1973370 2 @0.1973370 3 0.2642270 4 0.2642270 5 0.5916410 6 @0.5916410 7 1.377 8 1.377 9 11.543 10 11.543 11 25.751	dBuV 48.89 44.30 38.18 32.33 32.97 29.44 30.25 26.80 37.03 29.17 22.86 31.70	-14.83 -9.42 -23.12 -18.97 -23.03 -16.56 -25.75 -19.20 -22.97 -20.83 -27.14 -28.30	Line dBuV <u>63.72</u> 51.30 51.30 56.00 46.00 56.00 46.00 50.00 50.00 50.00 50.00 evels th	Level dBuV 48.52 43.93 37.89 32.04 32.79 29.26 29.97 26.52 36.56 28.70 22.19 31.03 mat exc	Factor dB 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.27 0.27 0.27 0.46 0.46	Loss dB 0.30 0.22 0.22 0.10 0.10 0.19 0.20 0.20 0.20 0.21 0.21	OP Average OP Average OP Average OP Average Average OP			pplicable limit

3.1.5 Test Result of AC Power-line Conducted Emissions





3.2 Transmitter Radiated Emissions

3.2.1 Transmitter Radiated Emissions Limit

Transmitter Radiated Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

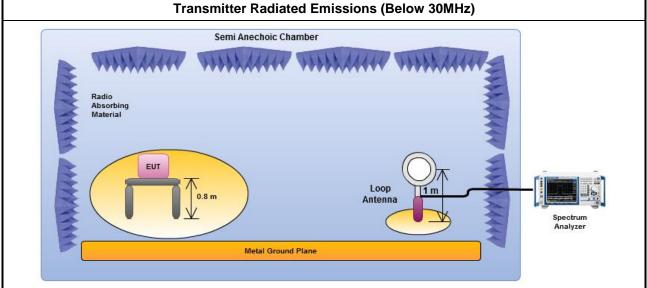
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

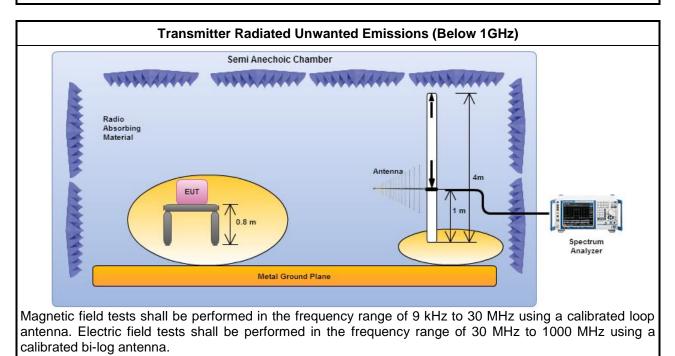
Note 3: the frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 1GHz measurements employing a CISPR quasi-peak detector.

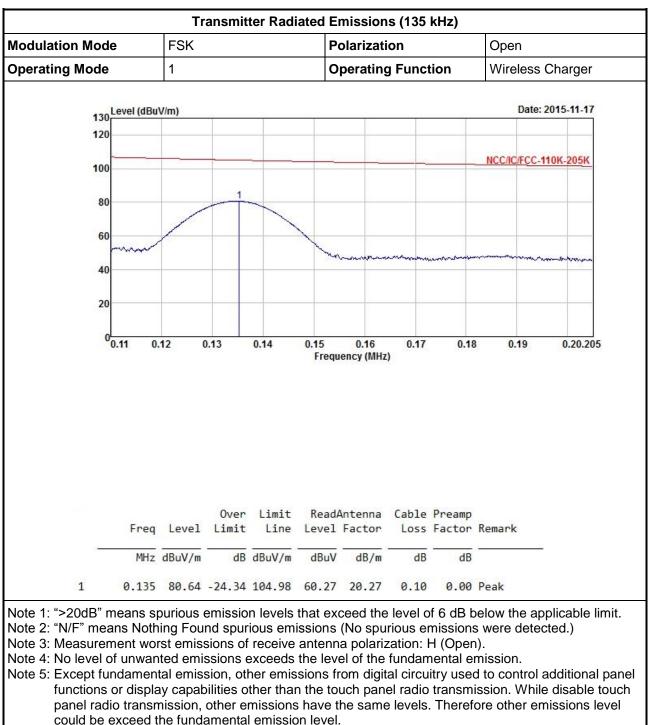
3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

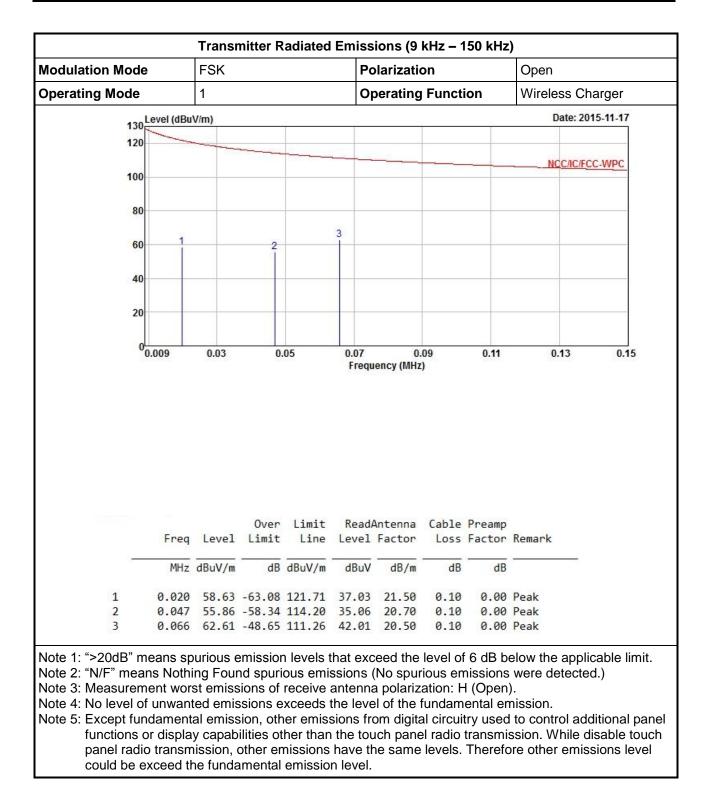


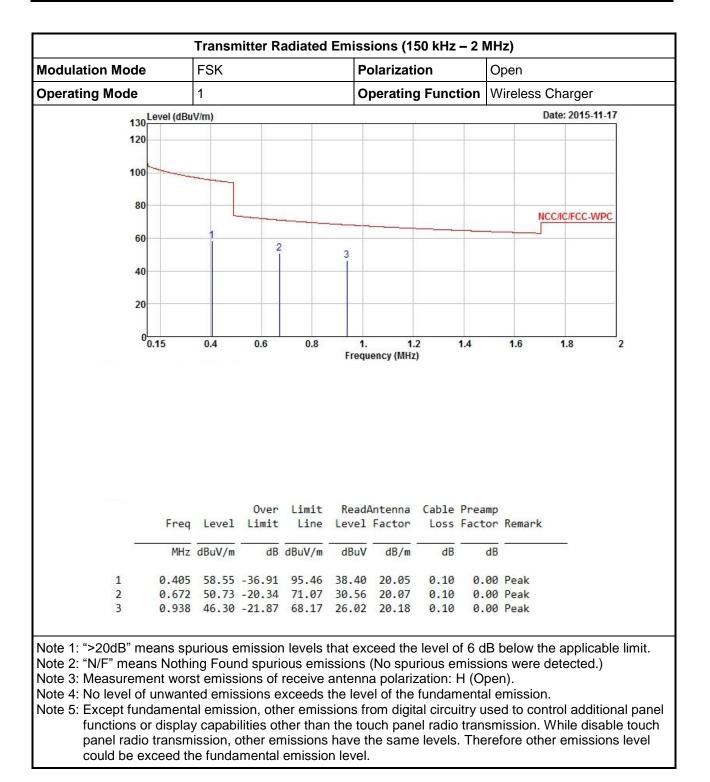
3.2.3 Test Procedures


	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz the frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 30MHz measurements employing a CISPR quasi-peak detector. Test distance is 3m.
	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\boxtimes	The any unwanted emissions level shall not exceed the fundamental emission level.
\square	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

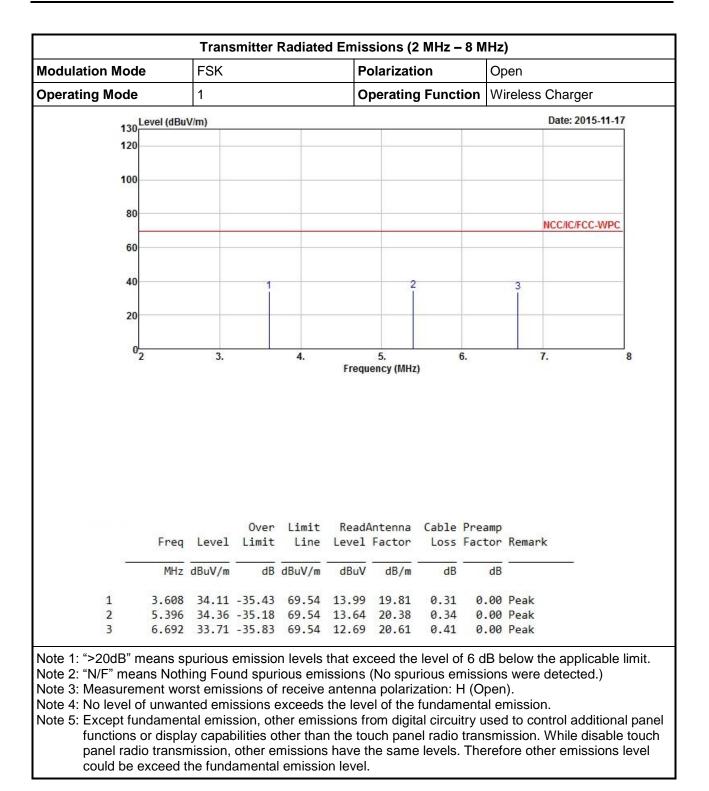

3.2.4 Test Setup

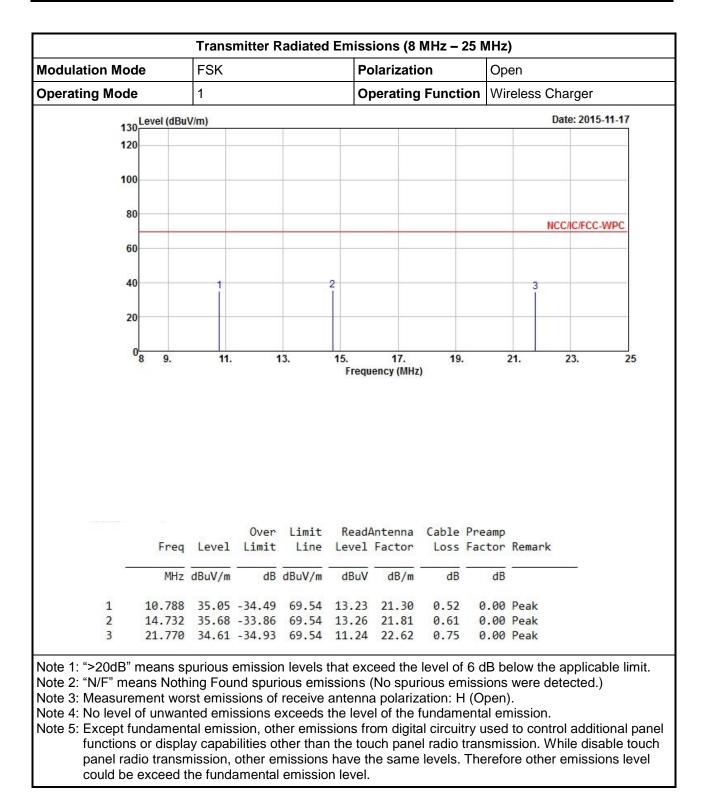
Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. The center of the loop shall be 1 m above the ground. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna. the antenna height shall be varied from 1 m to 4 m.

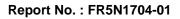


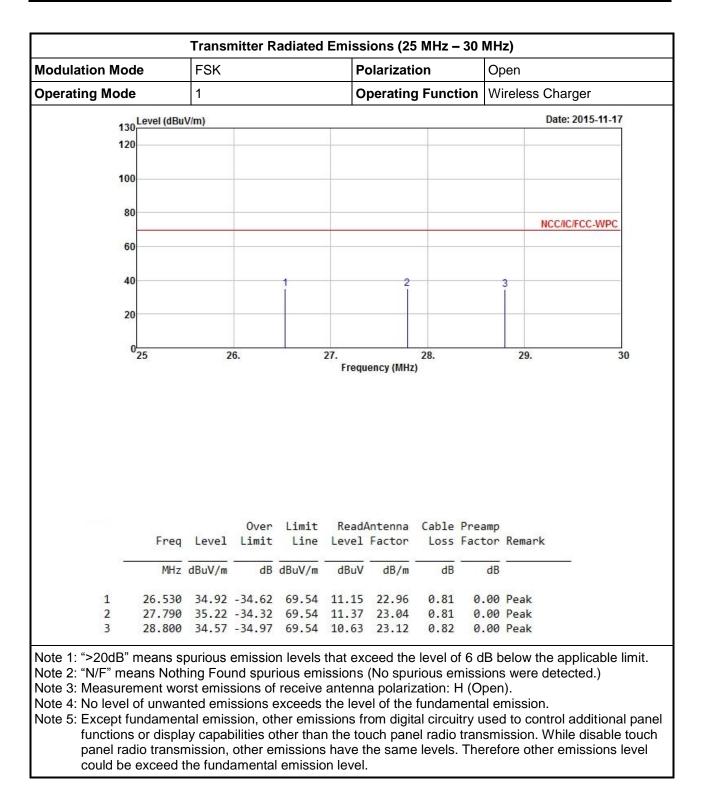


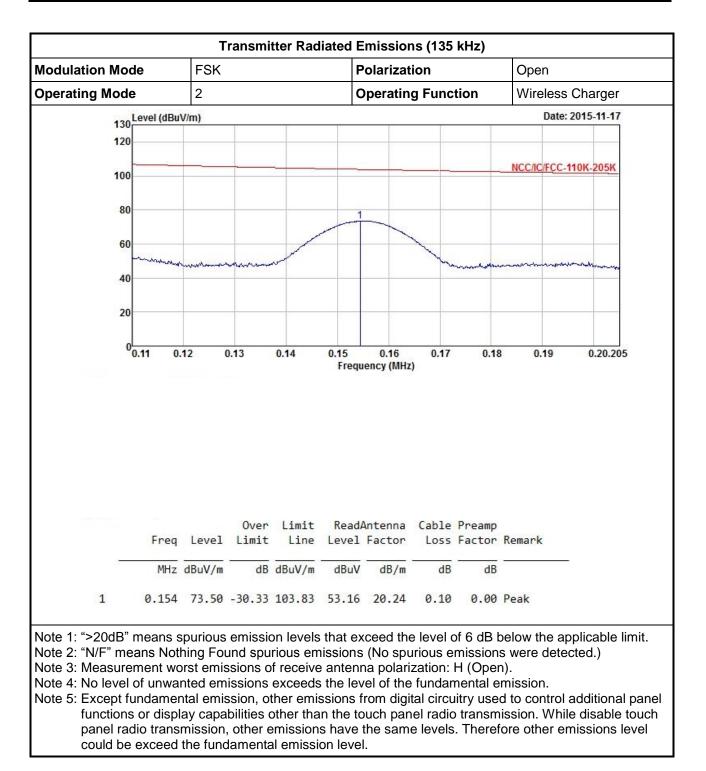
3.2.5 Transmitter Radiated Emissions (Below 30MHz)

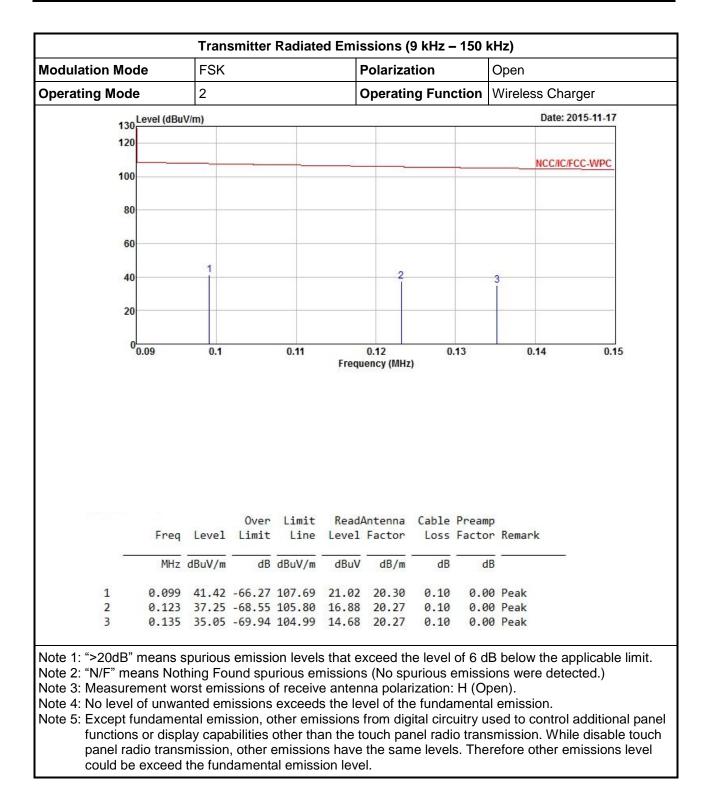


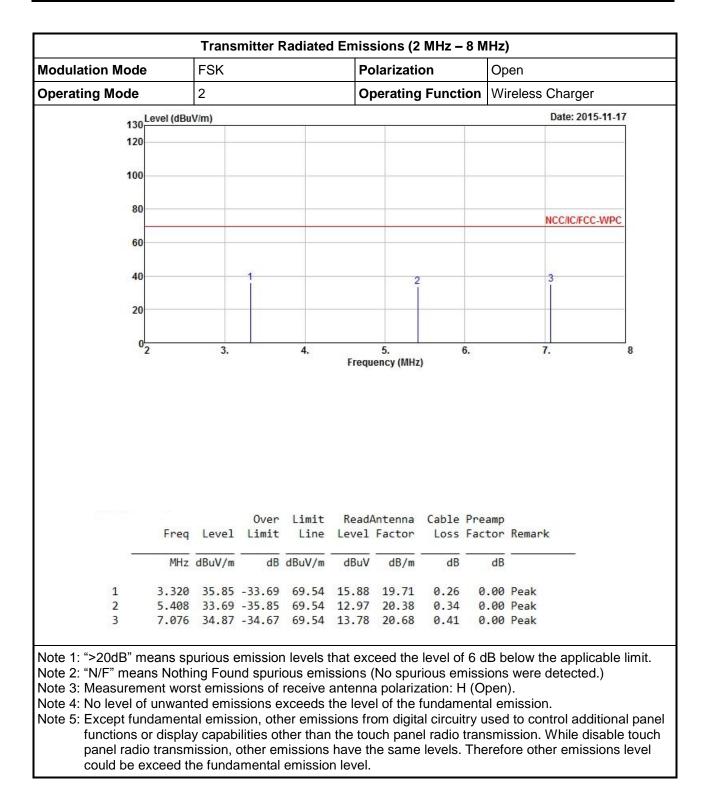


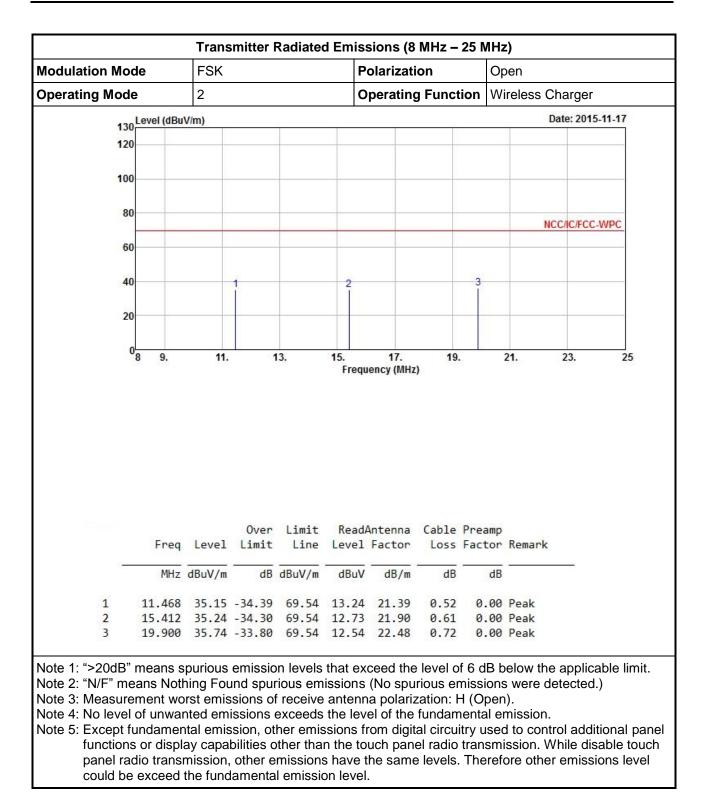


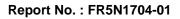


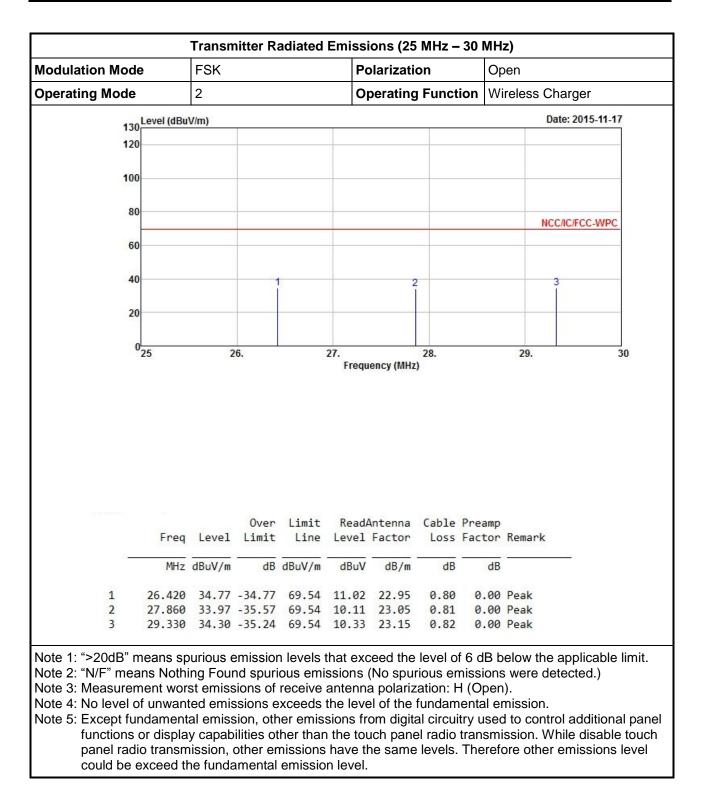


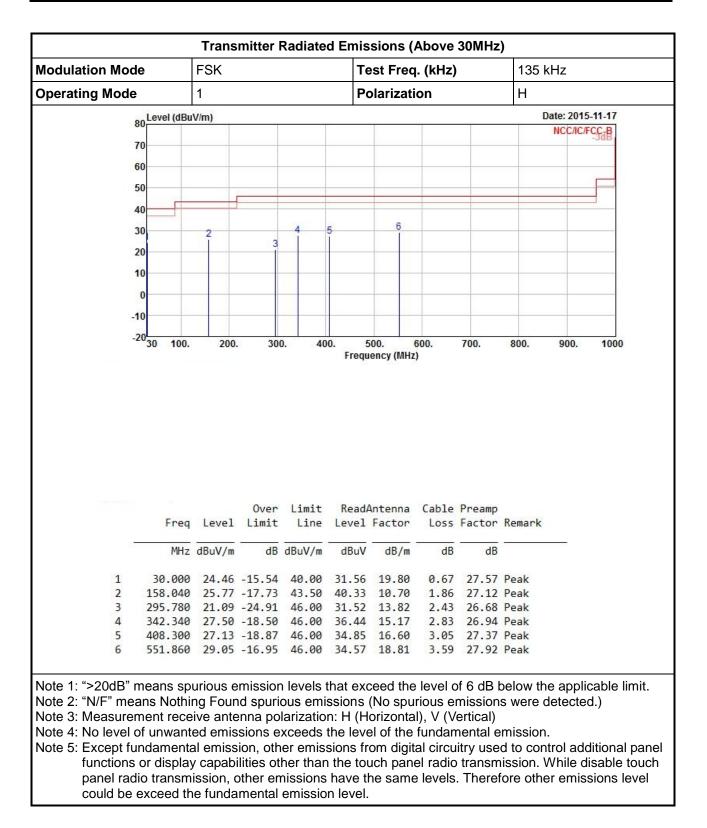


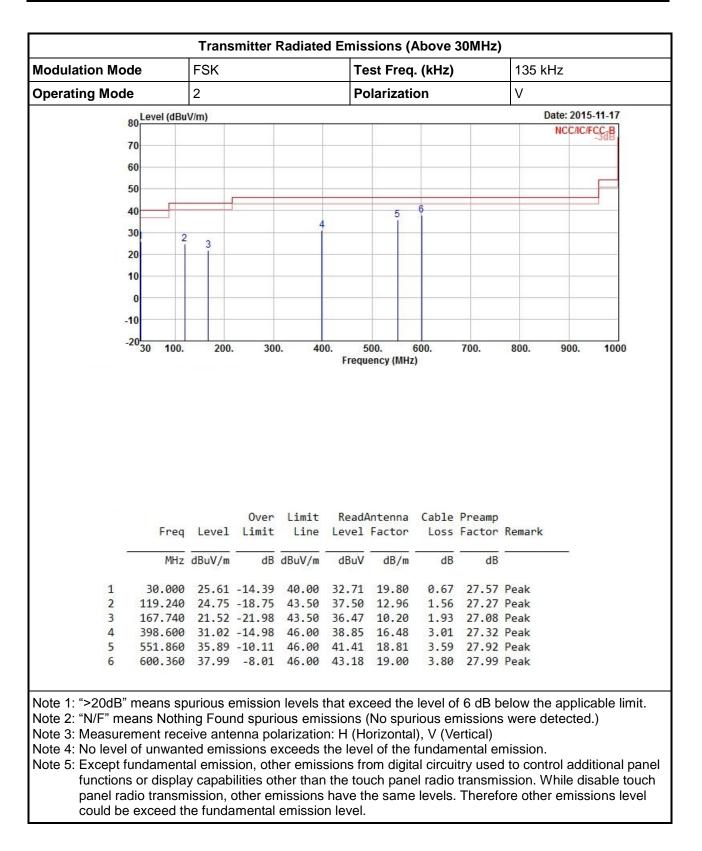




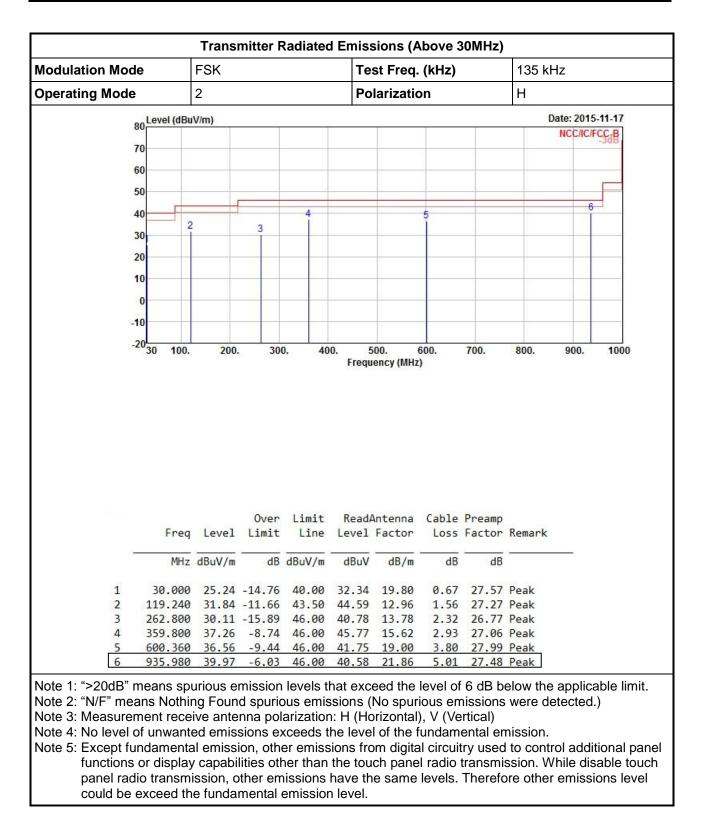







/lodulation M	0d0	FSK				Test Freq. (kHz)				125 127	
Operating Mode		1				Polarization			135 kHz V		
										Dete: 204	
	80 Level (dBu	V/m)				1				Date: 201 NCC/IC/	
	70									HCC/IC/	-3dB
	8.05										
	60										
	50		-								
	40			4	5						6
					Ĩ						
	30	3							1		-
	20 2			-			-				
	10										
	10										
	0			1					-		
	-10	2.0				0					
	-10							700			
	-10 -2030 100.	200.	. 30	0. 40		00. ency (MHz	600. .)	700.	800.	900.	1000
		200.			Frequ	ency (MHz)		800.	900.	1000
	-2030 100.	200.	Over	Limit	Frequ Read/) Cable			900.	1000
	-2030 100.		Over Limit	Limit	Frequ Read/	ency (MHz Antenna) Cable	Preamp		900.	1000
1	-2030 100.	Level dBuV/m	Over Limit 	Limit Line	Frequ Read/ Level	ency (MHz Antenna Factor) Cable Loss	Preamp Factor	Remark	900.	1000
	-20 30 100. Freq MHz 30.000	Level dBuV/m 25.19	Over Limit 	Limit Line dBuV/m	Read/ Level dBuV 32.29	ency (MHz Antenna Factor dB/m	Cable Loss dB 0.67	Preamp Factor dB	Remark Peak	900.	1000
1 2 3	-20 30 100. Freq MHz 30.000	Level dBuV/m 25.19 15.74	Over Limit 	Limit Line dBuV/m 40.00	Read/ Level dBuV 32.29	Antenna Factor dB/m 19.80 6.73 10.50	Cable Loss dB 0.67 1.05 1.89	Preamp Factor 	Remark Peak Peak Peak	900.	1000
1 2 3 4	-20 30 100. Freq MHz 30.000 66.860 161.920 309.360	Level dBuV/m 25.19 15.74 22.30 42.89	Over Limit 	Limit Line dBuV/m 40.00 40.00 43.50 46.00	Frequ Read/ Level dBuV 32.29 35.42 37.02 52.90	Antenna Factor dB/m 19.80 6.73 10.50 14.19	Cable Loss dB 0.67 1.05 1.89 2.52	Preamp Factor 	Remark Peak Peak Peak QP	900.	1000
1 2 3	-20 30 100. Freq MHz 30.000 66.860 161.920	Level dBuV/m 25.19 15.74 22.30 42.89 37.63	Over Limit 	Limit Line dBuV/m 40.00 40.00 43.50 46.00 46.00	Frequ Read/ Level 32.29 35.42 37.02 52.90 45.04	Antenna Factor 	Cable Loss dB 0.67 1.05 1.89 2.52 3.19	Preamp Factor 	Remark Peak Peak Peak QP Peak	900.	1000

3.2.6 Transmitter Radiated Emissions (Above 30MHz)

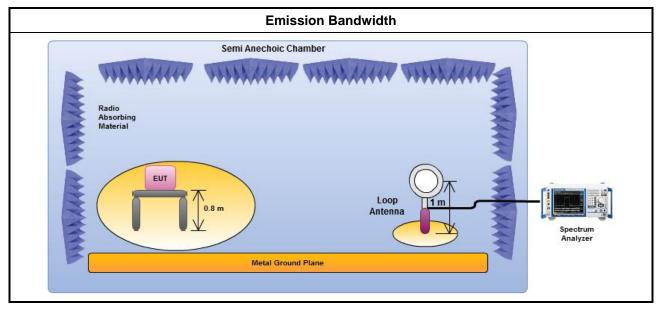


3.3 Emission Bandwidth

3.3.1 Emission Bandwidth Limit

Emission Bandwidth Limit

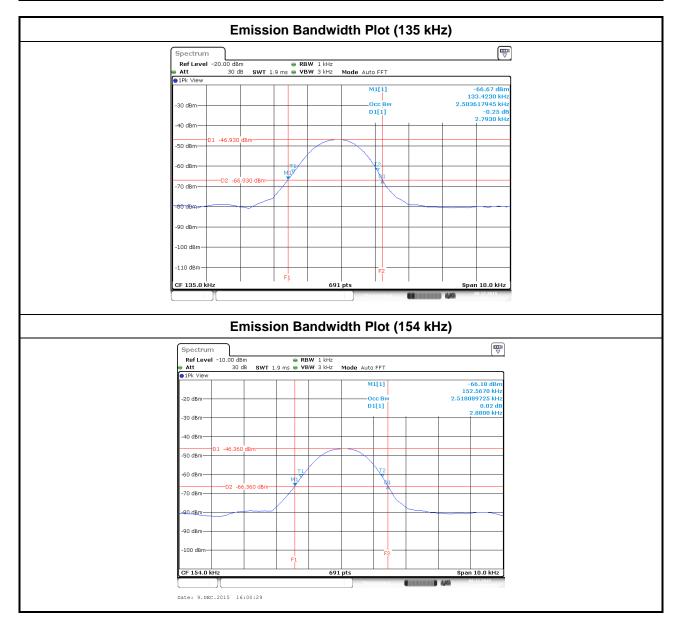
N/A


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
\triangleright	For the emission bandwidth refer ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\triangleright	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.


3.3.4 Test Setup

3.3.5 Test Result of Emission Bandwidth

	Occupied Channel Bandwidth Result								
Modulation Mode	Frequency (kHz)	20dB Bandwidth (kHz)	F _L at 20dB BW (kHz)	F _H at 20dB BW (kHz)	99% Bandwidth (kHz)				
FSK	100-205	2.79	133.4230	135	2.50				
FSK	100-205	2.88	152.5670	154	2.51				
Lir	nit	N/A 110 205 N/A							
Res	sult		Com	plied					

4 Test Equipment and Calibration Data

< AC Conduction >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 15. 2015	Apr. 14. 2016
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	Jan. 21, 2016
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	NA	NA

< RF Conducted >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 06, 2015	May 05, 2016

< Radiated Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Apr. 24, 2015	Apr. 23, 2016
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May 11, 2015	May 10, 2016
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Apr. 02, 2015	Apr. 01, 2016
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 18, 2015	Sep. 17, 2016
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Oct. 28, 2015	Oct. 27, 2016
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	N/A
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	N/A

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Loop Antenna	TESEQ	HLA6120	24155	9 kHz~30 MHz	Mar.12, 2015	Mar.11, 2017

Note: Calibration Interval of instruments listed above is two year.