

Appendix H - Analysis of Effective Frequency Interval of Probe

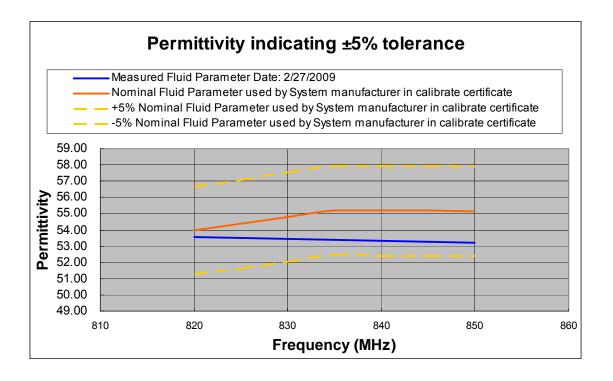
The test frequencies are properly matched as this is a cellular band. The probe calibration for permittivity and conductivity is within $\pm 5\%$, were the probe calibrated centre frequency at 900 MHz has permittivity and conductivity of 55.0 and 1.05 respectively. At the probe extreme frequencies the following are true: at 800 MHz the permittivity and conductivity are 52.3 and 0.92 respectively. At 1000 MHz the permittivity and conductivity are 57.8 and 1.1 respectively. The probe was calibrated at these parameters in order to cover the frequency range 800 MHz to 1000 MHz.

Conversion			
Name: 900 (Body)			ОК
X: Conversion factor: 5.91	Y:	Z:	Cancel
Alpha: 0.31	0.31	0.31	
Delta: 2.98	2.98	2.98	
Frequency range: 800	to 1000	MHz C	alibrated for: 900 MHz
Permittivity range: 52.3	to 57.8	_ с	alibrated for: 55
Conductivity range: 0.92	to 1.1	S/m C	alibrated for: 1.05 S/m

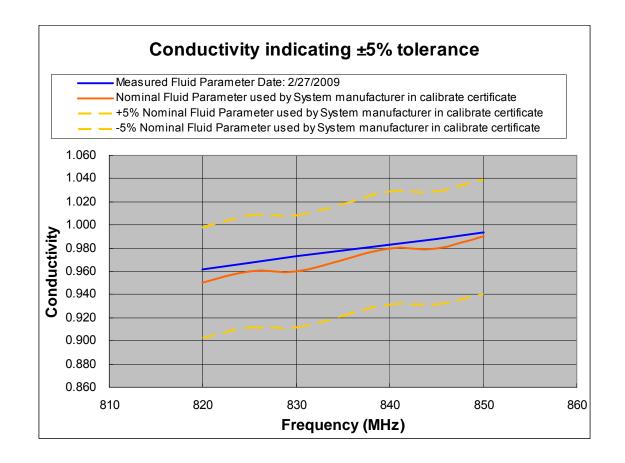
The target permittivity and conductivity at 835 MHz is 55.2 and 0.97 respectively which is within the calibrated range of the probe parameter.

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5±5%	0.97 ± 5%	0.30	2.80	6.06	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.53	2.11	5.36	± 11,0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.59	1.96	5.01	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1,80 ± 5%	0.77	1.57	4.49	± 11.0% (k=2)
				ас С				
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.31	2.98	5.91	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49\pm5\%$	0.60	2.20	4.73	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.68	1.95	4.49	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.90	1.51	3.79	± 11.0% (k=2)
					1			
	idity of ± 100 MHz on nvF uncertainty at ca							
vtificate No	: ET3-1787 Aug08		P	age 8 of 9				

The following parameters are declared in the probe calibration certificate on pare 8:


The system manufacturer has carried out addition steps as detailed on page 4 of KDB 450824. This is detailed in the calibration certificates. The measured SAR values in the report are all below 10% of the SAR limit.

The measured fluid dielectric parameters for 835 MHz, performed during test values were all within \pm 5% of the 835 MHz target value.


At 900 MHz, the probe was calibrated and validation performed, the tissue dielectric parameter measured for routine measurements at 900 MHz was less than the target parameter for 835 MHz ϵ_r and higher than the target parameter for 835 MHz σ .

	Measur Parame 2/27/	ter Date:	System ma	al Fluid er used by mufacturer e certificate
Frequency (MHz)	εr	σ	εr	σ
820	53.57	0.962	53.96	0.95
825	53.51	0.967	54.37	0.96
830	53.46	0.973	54.79	0.96
835	53.39	0.978	55.20	0.97
840	53.32	0.983	55.18	0.98
845	53.27	0.988	55.17	0.98
850	53.22	0.994	55.15	0.99
900	52.68	1.051	55.00	1.05

The probe conversion factor and its frequency response, with respect to the tissue dielectric media used during the probe calibration and routine measurements was examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements. The frequency range at which the probe was calibrated for 900 MHz covered 800 MHz to 1000 MHz and the dielectric parameters required for 824 to 840 MHz were all within the calibrated range of the probe dielectric parameters.

Conversion			
Name: 900 (Body)			ОК
X: Conversion factor: 5.91	Y: 5.91	Z:	Cancel
Alpha: 0.31	0.31	0.31	
Delta: 2.98	2.98	2.98	
Frequency range: 800	to 1000	MHz	Calibrated for: 900 MHz
Permittivity range: 52.3	to 57.8		Calibrated for: 55
Conductivity range: 0.92	to 1.1	S/m	Calibrated for: 1.05 S/m

The measurement within the required frequency interval satisfy an expanded probe calibration uncertainty $(k=2) \le 15\%$ for all measurement conditions. Please refer to SAR report for probe and dipole calibration certificates produce by the system manufacturer.

ensor Cente AR _{be} [%] AR _{be} [%]	00 MHz r to Phante Withou	Typical SAR gradient: 5 om Surface Distance It Correction Algorithm orrection Algorithm	140 M 2007 I	4.7 mm		
ensor Cente AR _{be} [%] AR _{be} [%]	r to Phanto Withou	om Surface Distance t Correction Algorithm	3.7 mm	4.7 mm		
AR _{be} [%] AR _{be} [%]	Withou	t Correction Algorithm		4.7 mm		
AR _{be} [%]			11.3			
	With C	orrection Algorithm		7.5		
17			0.8	0.5		
	50 MHz	Typical SAR gradient: 1	0 % per mm			
iensor Cente	r to Phante	om Surface Distance	3.7 mm	4.7 mm		
AR _{be} [%]	Withou	t Correction Algorithm	10.1	6.5		
AR _{be} [%]	With C	orrection Algorithm	0.8	0.6		
Offset		÷				
Probe Tip to Sensor Center		2.7 mm				
				mal distribut	ion	
			TSL (see Page 6).			
linearization par	ameter: unce	rtainty not required.				
	AR _{be} [%] Offset Probe Tip to S orted uncer ement mult onds to a c	AR _{be} [%] With C Offset Probe Tip to Sensor Cer orted uncertainty of ement multiplied by onds to a coverage ainties of NormX,Y,2 do not a linearization parameter: unce	AR _{be} [%] With Correction Algorithm OffSet Probe Tip to Sensor Center orted uncertainty of measurement is stated ement multiplied by the coverage factor k=2 onds to a coverage probability of approxima	AR _{be} [%] With Correction Algorithm 0.8 Offset	AR _{be} [%] With Correction Algorithm 0.8 0.6 Offset Probe Tip to Sensor Center 2.7 mm orted uncertainty of measurement is stated as the standard uncertainty of ement multiplied by the coverage factor k=2, which for a normal distribution on a coverage probability of approximately 95%.	