

Variant FCC RF Test Report

APPLICANT	: Acer Incorporated
EQUIPMENT	: Tablet Computer
BRAND NAME	Cateway.
MODEL NAME	: TP-A60W
FCC ID	: HLZTMDMA500
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: Digital Spread Spectrum (DSS)

This is a variant report which is only valid together with the original test report. The product was received on May 11, 2011 and completely tested on May 13, 2011. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : HLZTMDMA500 Page Number: 1 of 28Report Issued Date: May 30, 2011Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISION	N HISTORY
SU	MMAR	Y OF TEST RESULT4
1	GENE	ERAL DESCRIPTION
	1.1	Applicant5
	1.2	Manufacturer5
	1.3	Feature of Equipment Under Test6
	1.4	Testing Site
	1.5	Applied Standards7
	1.6	Ancillary Equipment List
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST8
	2.1	RF Output Power
	2.2	Test Mode9
	2.3	Connection Diagram of Test System10
	2.4	RF Utility
3	TEST	RESULT
	3.1	Band Edges Measurement
	3.2	AC Conducted Emission Measurement14
	3.3	Radiated Emission Measurement18
	3.4	Antenna Requirements
4	LIST	OF MEASURING EQUIPMENT26
5	UNCE	ERTAINTY OF EVALUATION27
AP	PENDI	X A. PHOTOGRAPHS OF EUT
AP	PENDI	X B. SETUP PHOTOGRAPHS

APPENDIX C. ORIGINAL REPORT

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR112908-02A	Rev. 01	 This is a variant report. All the test cases were performed in original report which can be referred to Sporton Report No. FR112908A as appendix C. Detail changes list as below : Changing appearance of EUT Add Docking Add memory cards for Samsung 32GB and Sandisk 16GB Change Bluetooth and WLAN Antenna (module, antenna gain and antenna type are same as the original) For changes, only the worst case of the Band Edge, Conducted Emission, Radiated Emission tests and Conducted power were verified. 	May 30, 2011

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(d)	A8.5	Frequency Band Edges	≤ 20dBc	Pass	-
3.2	15.207	Gen 7.2.2	AC Conducted Emission	15.207(a)	Pass	Under limit 9.5 dB at 0.19 MHz
3.3	15.247(d)	A8.5	Transmitter Radiated Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.34 dB at 30.54 MHz
3.4	15.203 & 15.247(b)	A8.4	Antenna Requirement	N/A	Pass	-

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

Acer Incorporated

8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)

1.2 Manufacturer

1. Compal Electronics, Inc.

No. 581, Ruiguang Rd., Neihu District, Taipei City 11492, Taiwan

- Compal Electronics Technology (Kunshan) Co., Ltd.
 No. 25, Third Avenue, A Zone, Kunshan Comprehensive Free Trade Zone, Kunshan, Jiangsu, China
- Compal Information (Kunshan) Co., Ltd.
 No. 15, Third Avenue, A Zone, Kunshan Comprehensive Free Trade Zone, Kunshan, Jiangsu, China
- 4. Compal Information Technology (Kunshan) Co., Ltd. No. 58, First Avenue, A Zone, Kunshan Comprehensive Free Trade Zone, Kunshan, Jiangsu, China
- Compalead Eletrônica Do Brasil Indústria E Comércio Ltda Rua Kanebo 175, Galpões C1, C2, C3, C4, C5 C6 E C12, Bairro Distrito Industrial Jundiaí Business Park, Cep 13213-090, Jundiaí - São Paulo, Brasil

Compal (Vietnam) Co., Ltd. Ba Thien Industrial Zone, Ba Hien Commune, Binh Xuyen County, Vinh Phuc Province, Vietnam

1.3 Feature of Equipment Under Test

Product F	Product Feature & Specification				
Equipment	Tablet Computer				
Brand Name	Cateway.				
Model Name	TP-A60W				
FCC ID	HLZTMDMA500				
Tx/Rx Frequency Range	2400 MHz ~ 2483.5 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
Channel Spacing	1 MHz				
Maximum Output Power to Antenna	Bluetooth (1Mbps) : 2.44 dBm (0.002 W) Bluetooth EDR (2Mbps) : 4.99 dBm (0.003 W) Bluetooth EDR (3Mbps) : 2.88 dBm (0.002 W)				
Antenna Type	PIFA Antenna with gain 1.75 dBi				
HW Version	Rev:3.0				
Type of Modulation	Bluetooth (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK				
EUT Stage	Identical Prototype				

Remark:

- 1. For other wireless features of this EUT, test report will be issued separately.
- This test report recorded only product characteristics and test results of Digital Spread Spectrum (DSS).
- **3.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st R	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,				
Test Site Location	n Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.					
	TEL: +886-3-3273456 / FAX: +886-3-3284978					
Sporton Site No. FCC/IC Registration						
Test Site No.	CO05-HY 03CH07-HY 722060/4086B-1					

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003
- IC RSS-210 Issue 8

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B (DoC), recorded in a separate test report.

1.6 Ancillary Equipment List

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Nokia	BH-102	PYAHS-107W	N/A	N/A
3.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Vostro 1510	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	LCD Monitor	Dell	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
6.	iPod Earphone	Apple	N/A	FCC DoC	Unshielded, 1.0 m	N/A
7.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A

Page Number: 7 of 28Report Issued Date: May 30, 2011Report Version: Rev. 01

2 Test Configuration of Equipment Under Test

2.1 RF Output Power

Preliminary tests were performed in different data rate and recorded the RF output power in the following table:

Channel		Bluetooth RF Output Power Data Rate / Modulation				
	F					
	Frequency	GFSK	π /4-DQPSK	8-DPSK		
		1Mbps	2Mbps	3Mbps		
Ch00	2402MHz	1.02 dBm	3.45 dBm	1.25 dBm		
Ch39	2441MHz	1.99 dBm	4.49 dBm	2.33 dBm		
Ch78	2480MHz	2.44 dBm	<mark>4.99</mark> dBm	2.88 dBm		

Remark:

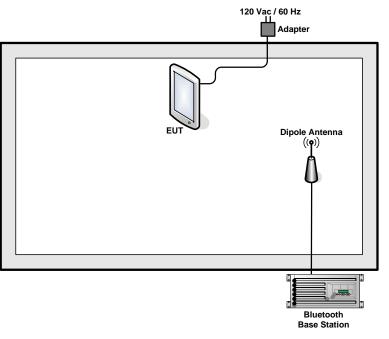
- 1. The data rate was set in 2Mbps for all the test items due to the highest RF output power.
- **2.** The EUT is programmed to transmit signals continuously for all testing.

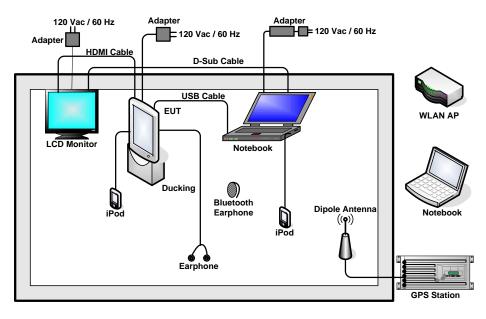
2.2 Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Pre-scanned tests, X, Y, Z in three orthogonal panels, were conducted to determine the final configuration from all possible combinations, laptop / tablet modes. The following tables are showing the test modes as the worst cases and recorded in this report.

Test Cases							
		Data Rate / Modulation					
Test Item	Bluetooth 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Radiated	NI/A	Mode 1: CH00_2402 MHz	N1/A				
TCs	N/A	Mode 2: CH00_2402 MHz + Dock	N/A				
AC Conducted Emission		x + Bluetooth Link + GPS Rx + Adapte + Docking + TC	r + USB Cable (Link with				
Remark:							
1. TC stands	1. TC stands for Test Configuration, and consists of iPod, camera, MP3, HDMI, earphone, notebook						
and monito	or.						
2. For radiate	. For radiated TCs, the data rate was set in 2Mbps due to the highest RF output power; only the						


data of these modes was reported.


30, 2011

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

2.4 RF Utility

For Bluetooth function, execute command in order to make the EUT into the engineering modes to contact with Bluetooth base station for transmitting and receiving signals continuously.

SPORTON INTERNATIONAL INC.	Page Number	: 10 of 28
TEL : 886-3-327-3456	Report Issued Date	: May 30, 2
FAX : 886-3-328-4978	Report Version	: Rev. 01
FCC ID : HLZTMDMA500		

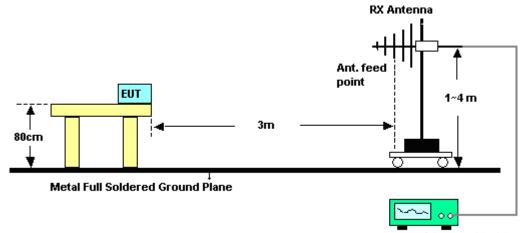
3 Test Result

3.1 Band Edges Measurement

3.1.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The testing follows the guidelines in ANSI C63.4-2003 and FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. RF antenna conducted test: Set RBW = 300kHz, Video bandwidth (VBW) ≥ RBW. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 300k Hz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB.
- 3. Radiated emission test: Applies to band edge emissions that fall in the restricted bands listed in FCC Section 15.205. The maximum permitted average field strength is listed in FCC Section 15.209. A pre-amp is necessary for this measurement. For measurements above 1 GHz, set RBW = 1MHz, VBW = 1MHz, Sweep: Auto for Peak; set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto for Average. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See FCC Section 15.35(b) and (c).
- In case the emission is fail due to the used RBW / VBW is too wide, marker-delta method of FCC Public Notice DA 00-705 will be followed.

3.1.4 Test Setup

Spectrum Analyzer / Receiver

3.1.5 Test Result of Radiated Band Edges

Test Mode :			23~26°C
Test Channel :	00	Relative Humidity :	54~60%
		Test Engineer :	Wii Chang

	ANTENNA POLARITY : HORIZONTAL									
								Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2389.61	50.09	-23.91	74	45.73	32.18	6.03	33.85	131	248	Peak
2389.61	36.51	-17.49	54	32.15	32.18	6.03	33.85	131	248	Average

	ANTENNA POLARITY : VERTICAL													
Frequency	Level	evel Over Limit Read Antenna Cable Preamp Ant Table												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2385.62	48.07	-25.93	74	43.71	32.18	6.03	33.85	103	284	Peak				
2385.62	35.33	-18.67	54	30.97	32.18	6.03	33.85	103	284	Average				

Test Mode :	Mode 2 with Dock	Temperature :	23~26°C
Test Channel :	00	Relative Humidity :	54~60%
		Test Engineer :	Wii Chang

	ANTENNA POLARITY : HORIZONTAL													
Frequency	Level													
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2340.97	45.97	-28.03	74	41.74	32.11	5.95	33.83	145	61	Peak				
2340.97	33.4	-20.6	54	29.17	32.11	5.95	33.83	145	61	Average				

	ANTENNA POLARITY : VERTICAL													
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark				
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2388.66	47.76	-26.24	74	43.4	32.18	6.03	33.85	100	163	Peak				
2388.66	35.62	-18.38	54	31.26	32.18	6.03	33.85	100	163	Average				

3.2 AC Conducted Emission Measurement

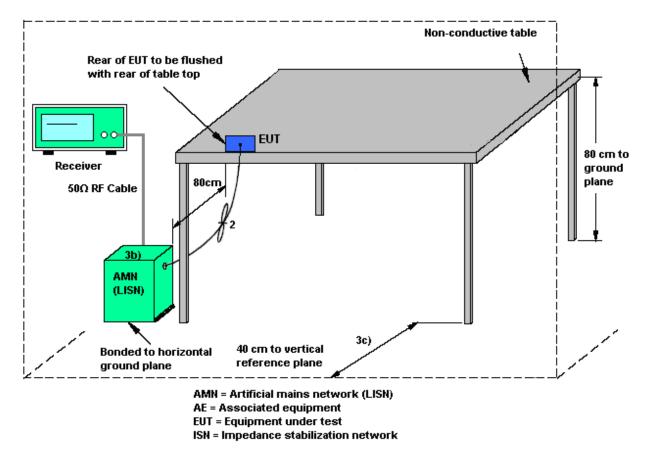
3.2.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBuV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.2.2 Measuring Instruments


See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. Please follow the guidelines in ANSI C63.4-2003.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 1. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 2. All the support units are connecting to the other LISN.
- 3. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 4. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- 7. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.2.4 Test Setup

3.2.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Tem	peratur	e :	20~22 ℃
Test Engineer :	Novic Chiang	J		Rela	ative Hu	midity :	40~42%
Test Voltage :	120Vac / 60H	lz		Pha	se :		Line
Function Type :	WLAN Link Notebook) +				F GPS I	Rx + Ada	apter + USB Cable (Link with
Remark :	All emissions	not re	ported	here a	are more	than 10 d	dB below the prescribed limit.
100 90- 80- 70- 20- 10- 150 Final Resu		500	2001M		2M 3M Jency in H	CISP	PR22-QP Limit at Main Ports R22-Ave Limit at Main Ports 8 10M 20M 30M
Frequency		Filter	Line	Corr.	Margin	Limit	
(MHz) 0.150000	(dBµV) 47.9	Off	L1	(dB) 19.4	(dB) 18.1	(dBµV) 66.0	
0.190000	54.5	Off	L1	19.4	9.5	64.0	
0.254000	47.6	Off	L1	19.4	14.0	61.6	
0.302000	45.5	Off	L1	19.4	14.7	60.2	
0.430000	40.1	Off	L1	19.5	17.2	57.3	
3.486000	39.1	Off	L1	19.5	16.9	56.0	
E '	1 0						
Final Resu				C a m	Manalia	Lingit	
Frequency	-	Filter	Line	Corr. (dB)	Margin	Limit (dBuV)	
(MHz) 0.150000	(dBµV) 28.2	Off	L1	(ав) 19.4	(dB) 27.8	(dBµV) 56.0	
0.190000	41.8	Off	L1	19.4	12.2	54.0	
0.254000	34.8	Off	L1	19.4	16.8	54.0 51.6	
0.302000	34.8	Off	L1	19.4	19.5	50.2	
0.430000	25.3	Off	L1	19.5	22.0	47.3	
3.486000	30.8	Off	L1	19.5	15.2	46.0	
0.100000			·				

Test Mode :	Mode 1			Tem	peratur	e :	20~22 ℃
Test Engineer :	Novic Chian	g		Rela	ative Hu	midity :	40~42%
Test Voltage :	120Vac / 60H	Ηz		Pha	se :		Neutral
Function Type :	WLAN Link Notebook) +				- GPS I	apter + USB Cable (Link wit	
Remark :	All emissions	s not rep	orted	here a	ire more	than 10	dB below the prescribed limit.
100	• • • • • • • • • • • • • • • • • • • •						
90-							
80-							
70-			·				
_						CISE	PR22-QP Limit at Main Ports
도 60- 87	\land		·				
AL 60- 190 - 190 - 190 - 190 - 40-						CISP	<u>R22-Ave Limit at Main</u> Ports
		Mint	mpun	the trans			
-	•	• • • '					MAR Baldas
30-						••••••	
20-							
10-							
-							
0 1 15			1 1		1 1		
	0k 300 400	J200 8	00 1 M	2	2M 3M	4M 5M 6	8 10M 20M 30M
	UK 300 400	1200 8	001M	_	2M 3M Jencvin⊦		8 10M 20M 30M
Final Resu		500 8	001M	_			8 10M 20M 30M
Final Resu	ılt 1			_	iency in H		8 10M 20M 30M
Final Resu Frequenc (MHz)	ılt 1	Filter	Line	Frequ		lz	8 10M 20M 30M
Frequenc	Ilt 1 y QuasiPeak (dBµV) 54.8			Frequ Corr. (dB) 19.4	Margin (dB) 9.6	Limit (dBµV) 64.4	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4	Filter Off Off	Line N N	Frequ Corr. (dB) 19.4 19.4	Margin (dB) 9.6 13.5	Limit (dBµV) 64.4 61.9	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9	Filter Off Off Off	Line N N N	Frequ Corr. (dB) 19.4 19.4	Margin (dB) 9.6 13.5 16.5	Limit (dBµV) 64.4 61.9 60.4	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1	Filter Off Off	Line N N	Frequ Corr. (dB) 19.4 19.4	Margin (dB) 9.6 13.5	Limit (dBµV) 64.4 61.9	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2	Filter Off Off Off Off	Line N N N N	Frequ Corr. (dB) 19.4 19.4 19.4	Margin (dB) 9.6 13.5 16.5 20.7	Limit (dBµV) 64.4 61.9 60.4 58.8	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4	Filter Off Off Off Off Off	Line N N N N N	Frequ Corr. (dB) 19.4 19.4 19.4 19.4 19.4	Margin (dB) 9.6 13.5 16.5 20.7 20.8	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4 Ilt 2	Filter Off Off Off Off Off	Line N N N N N	Frequ Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.5	Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4 Ilt 2 y Average	Filter Off Off Off Off Off	Line N N N N N	Frequ (dB) 19.4 19.4 19.4 19.4 19.4 19.5 Corr.	Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6 Margin	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0 Limit	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu	It 1 y QuasiPeak (dBμV) 54.8 48.4 43.9 38.1 35.2 38.4 It 2 y Average (dBμV)	Filter Off Off Off Off Off Off	Line N N N N N	Frequ Corr. (dB) 19.4 19.4 19.4 19.4 19.4 19.5	Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu Frequenc (MHz) 0.182000 0.246000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4 Ilt 2 y Average (dBµV) 41.8 34.6	Filter Off Off Off Off Off Off Filter	Line N N N N N Line N N	Frequencies (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6 Margin (dB) 12.6 17.3	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0 56.0 Limit (dBµV) 54.4 51.9	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu Frequenc (MHz) 0.182000 0.246000 0.294000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4 Ilt 2 y Average (dBµV) 41.8 34.6 30.7	Filter Off Off Off Off Off Off Filter Off Off Off	Line N N N N N Line N N N N	Frequencies (dB) (dB) (19.4) (19.4) (19.4) (19.5) (19.4) (Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6 Margin (dB) 12.6 17.3 19.7	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0 56.0 Limit (dBµV) 54.4 51.9 50.4	8 10M 20M 30M
Frequenc (MHz) 0.182000 0.246000 0.294000 0.358000 0.590000 3.486000 Final Resu Frequenc (MHz) 0.182000 0.246000	Ilt 1 y QuasiPeak (dBµV) 54.8 48.4 43.9 38.1 35.2 38.4 Ilt 2 y Average (dBµV) 41.8 34.6 30.7 24.0	Filter Off Off Off Off Off Off Filter	Line N N N N N Line N N	Frequencies (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	Margin (dB) 9.6 13.5 16.5 20.7 20.8 17.6 Margin (dB) 12.6 17.3	Limit (dBµV) 64.4 61.9 60.4 58.8 56.0 56.0 56.0 Limit (dBµV) 54.4 51.9	8 10M 20M 30M

3.3 Radiated Emission Measurement

3.3.1 Limit of Radiated Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

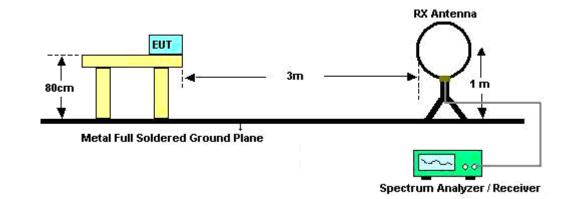
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.3.2 Measuring Instruments

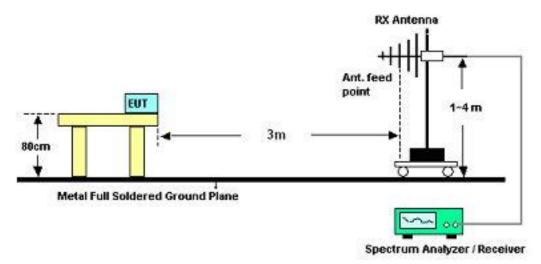
See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The testing follows the guidelines in FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. Use the following spectrum analyzer settings:
 - (1) Span = wide enough to fully capture the emission being measured; RBW = 1 MHz for f ≥ 1 GHz, 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.</p>
 - (2) Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

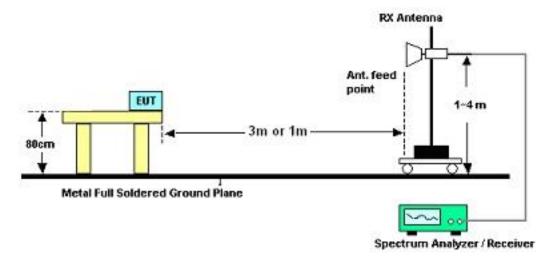

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB)

- 3. Follow the guidelines in ANSI C63.4-2003 with respect to maximizing the emission by rotating the EUT, measuring the emission for three EUT orthogonal planes, and adjusting the measurement antenna height and polarization. A pre-amp and a high pass filter are used for this test in order to get the good signal level.
- 4. Measured average value for the peak value is greater than 54 dBuv/m



3.3.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.3.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

Test Engineer :	Wii Chang	Temperature	e: 23~26°C	23~26°C			
		Relative Hu	midity : 54~60%	54~60%			
Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark			
-	-	-	-	See Note			

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

3.3.6 Test Result of Radiated Emission (30 MHz ~ 10th Harmonic)

Test Mode	:	Mod	le 1			Ter	nperature	:	23~26°C)				
Test Chan	nel :	00				Re	lative Hun	nidity :	54~60%					
Test Engir	neer :	Wii	Chang			Pol	larization	:	Horizontal					
Remark :		240	2 MHz i	s Fundame	ntal S	ign	als which o	can be ig	nored.					
Frequency (MHz)	Leve (dBuV		Over Limit (dB)	Limit Line (dBuV/m)	Rea Lev (dBu	el	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark		
30.54	34.6	6	-5.34	40	49.3	1	16.27	0.54	31.46	100	111	Peak		
68.34	24.4	6	-15.54	40	48.9	5	6.23	0.83	31.55	-	-	Peak		
167.97	22.7	9	-20.71	43.5	43.1	9	9.89	1.23	31.52	-	-	Peak		
326.6	20.0	5	-25.95	46	35.2	2	14.3	1.84	31.31	-	-	Peak		
369.3	34.4	2	-11.58	46	47.9	7	15.63	2.08	31.26	-	-	Peak		
430.9	25.2	4	-20.76	46	37.0	5	17.07	2.25	31.13	-	-	Peak		
2389.61	36.5	1	-17.49	54	32.1	5	32.18	6.03	33.85	131	248	Average		
2389.61	50.0	9	-23.91	74	45.7	3	32.18	6.03	33.85	131	248	Peak		
2402	104.0	08	-	-	99.7	2	32.18	6.03	33.85	131	248	Peak		
2402	85.9	8	-	-	81.6	2	32.18	6.03	33.85	131	248	Average		
2486	32.1	3	-21.87	54	27.5	7	32.28	6.18	33.9	131	248	Average		
2486	44.1	7	-29.83	74	39.6	1	32.28	6.18	33.9	131	248	Peak		

h

Test Mode	:	Mode 1					nperature	:	23~26°C					
Test Chan	nel :	00				Re	lative Hun	nidity :	54~60%					
Test Engir	neer :	Wii	Chang			Po	larization	:	Vertical					
Remark :		240	2 MHz i	s Fundame	ntal S	ign	als which o	can be ig	gnored.					
Frequency (MHz)	Limit Line Lev				Rea Leve (dBu	el	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark		
48.9	31.1	1	-8.89	40	52.8	8	9.08	0.68	31.53	100	135	Peak		
85.62	25.6	64	-14.36	40	48.3	2	7.95	0.91	31.54	-	-	Peak		
253.29	21.3	81	-24.69	46	38.4	5	12.72	1.55	31.41	-	-	Peak		
323.8	17.4	6	-28.54	46	32.7	'4	14.21	1.83	31.32	-	-	Peak		
369.3	25.3	88	-20.62	46	38.9	3	15.63	2.08	31.26	-	-	Peak		
430.9	22.6	67	-23.33	46	34.4	8	17.07	2.25	31.13	-	-	Peak		
2385.62	35.3	33	-18.67	54	30.9	7	32.18	6.03	33.85	103	284	Average		
2385.62	48.0)7	-25.93	74	43.7	'1	32.18	6.03	33.85	103	284	Peak		
2402	101.:	28	-	-	96.9	2	32.18	6.03	33.85	103	284	Peak		
2402	83.6	6	-	-	79.	3	32.18	6.03	33.85	103	284	Average		
2494	32.2	24	-21.76	54	27.6	6	32.3	6.18	33.9	103	284	Average		
2494	43.7	'9	-30.21	74	39.2	1	32.3	6.18	33.9	103	284	Peak		

Test Mode	:	Mod	e 2 with	n Dock		Ter	nperature	:	23~26°C					23~26°C				
Test Chan	nel :	00				Re	lative Hun	nidity :	54~60%									
Test Engir	neer :	Wii C	Chang			Po	larization	:	Horizontal									
Remark :		2402	2 MHz i	s Fundame	ntal S	ign	als which o	can be ig	nored.									
Frequency (MHz)	Limit Line Lev						Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark						
50.25	28.5	3	-11.47	40	51.0)9	8.28	0.7	31.54	-	-	Peak						
73.74	31.1	2	-8.88	40	55.1	8	6.63	0.85	31.54	100	111	Peak						
196.86	22.3	7	-21.13	43.5	43.4	16	9.09	1.31	31.49	-	-	Peak						
327.3	21.0	7	-24.93	46	36.2	24	14.3	1.84	31.31	-	-	Peak						
383.3	20.8	3	-25.17	46	33.	9	16.05	2.11	31.23	-	-	Peak						
458.9	21.2	4	-24.76	46	32.4	16	17.54	2.32	31.08	-	-	Peak						
2340.97	33.4	4	-20.6	54	29.1	7	32.11	5.95	33.83	145	61	Average						
2340.97	45.9	7	-28.03	74	41.7	' 4	32.11	5.95	33.83	145	61	Peak						
2402	97.8	1	-	-	93.4	15	32.18	6.03	33.85	145	61	Peak						
2402	81.2	6	-	-	76.	9	32.18	6.03	33.85	145	61	Average						
2492	32.1	8	-21.82	54	27.	6	32.3	6.18	33.9	145	61	Average						
2492	43.8	4	-30.16	74	39.2	26	32.3	6.18	33.9	145	61	Peak						

Test Mode :		Mode 2 with Dock			Temperature :		23~26°C					
Test Channel :		00			Relative Humidity :		54~60%					
Test Engineer :		Wii Chang			Polarization :		Vertical					
Remark :	2402 MHz is Fundamental Signals which can be ignored.											
Frequency (MHz)	Lev (dBuV		Over Limit (dB)	Limit Line (dBuV/m)	Rea Leve (dBu	el	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
49.17	30.8	8	-9.12	40	53.0	4	8.68	0.69	31.53	100	136	Peak
91.02	23.2	2	-20.28	43.5	45		8.79	0.95	31.52	-	-	Peak
215.22	26.9	6	-16.54	43.5	46.8	4	10.2	1.39	31.47			Peak
383.3	17.9	8	-28.02	46	31.0	5	16.05	2.11	31.23			Peak
447.7	19.2	9	-26.71	46	30.7	3	17.36	2.3	31.1			Peak
542.9	20.3	9	-25.61	46	29.9	5	18.89	2.54	30.99			Peak
2388.66	35.6	2	-18.38	54	31.2	6	32.18	6.03	33.85	100	163	Average
2388.66	47.7	6	-26.24	74	43.4	4	32.18	6.03	33.85	100	163	Peak
2402	102.	83	-	-	98.4	7	32.18	6.03	33.85	100	163	Peak
2402	85.7	'1	-	-	81.3	5	32.18	6.03	33.85	100	163	Average
2494	32.2	7	-21.73	54	27.6	9	32.3	6.18	33.9	100	163	Average
2494	44.3	3	-29.67	74	39.7	5	32.3	6.18	33.9	100	163	Peak

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.4.2 Antenna Connected Construction

The antennas type used in this product is PIFA Antenna without connector and it is considered to meet antenna requirement.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100055	9kHz~40GHz	Jun. 11, 2010	Jun. 10, 2011	Conducted (TH02-HY)
EMI Test Receive	R&S	ESCS 30	100356	9KHz – 2.75GHz	Aug. 16, 2010	Aug. 15, 2011	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100081	9KHz – 30MHz	Dec. 03, 2010	Dec. 02, 2011	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100080	9KHz – 30MHz	Dec. 01, 2010	Nov. 30, 2011	Conduction (CO05-HY)
AC Power Source	APC	APC-1000W	N/A	N/A	N/A	N/A	Conduction (CO05-HY)
GPS Station	T&E	GS-50	N/A	N/A	N/A	N/A	Conduction (CO05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2726	30MHz ~ 1GHz	Oct. 31, 2010	Oct. 30, 2011	Radiation (03CH07-HY)
Spectrum Analyzer	R&S	FSP	101067	9KHz ~ 30GHz	Dec. 03, 2010	Dec. 02, 2011	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 19, 2010	Aug. 18, 2011	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 251	15GHz- 40GHz	Oct. 18, 2010	Oct. 17, 2011	Radiation (03CH07-HY)
Pre Amplifier	Agilent	8449B	3008A023 62	1GHz~ 26.5GHz	Dec. 06, 2010	Dec. 05, 2011	Radiation (03CH07-HY)
Pre Amplifier	COM-POWER	PA-103A	161241	10-1000MHz.32 dB.GAIN	Mar. 29, 2011	Mar. 28, 2012	Radiation (03CH07-HY)
Loop Antenna	R&S	HFH2-Z2	860004/00 1	9 kHz~30 MHz	Jul. 29, 2010	Jul. 28, 2011	Radiation (03CH07-HY)
Bluetooth Base Station	R&S	CBT32	100522	N/A	Jan.13, 2011	Jan.13, 2013	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

	Uncerta				
Contribution	dB	Probability Distribution	u(X _i)		
Receiver Reading	0.10	Normal (k=2)	0.05		
Cable Loss	0.10	Normal (k=2)	0.05		
AMN Insertion Loss	2.50	Rectangular	0.63		
Receiver Specification	1.50	Rectangular	0.43		
Site Imperfection	1.39	Rectangular	0.80		
Mismatch	+0.34 / -0.35	U-Shape	0.24		
Combined Standard Uncertainty Uc(y)	1.13				
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.26				

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	Uncerta			
Contribution	dB	Probability Distribution	u(X _i)	
Receiver Reading	0.41	Normal (k=2)	0.21	
Antenna Factor Calibration	0.83	Normal (k=2)	0.42	
Cable Loss Calibration	0.25	Normal (k=2)	0.13	
Pre-Amplifier Gain Calibration	0.27	Normal (k=2)	0.14	
RCV/SPA Specification	2.50	Rectangular	0.72	
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29	
Site Imperfection	1.43	Rectangular	0.83	
Mismatch	+0.39 / -0.41	U-Shape	0.28	
Combined Standard Uncertainty Uc(y)	1.27			
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.54			

Uncertainty of Naulated Emission Measurement (1 GH2 ~ 40 GH2)							
	Uncertai						
Contribution	dB	dB Probability Distribution		C _i	C _i * u(X _i)		
Receiver Reading	±0.10	Normal (k=2)	0.10	1	0.10		
Antenna Factor Calibration	±1.70	Normal (k=2)	0.85	1	0.85		
Cable Loss Calibration	±0.50	Normal (k=2)	0.25	1	0.25		
Receiver Correction	±2.00	Rectangular	1.15	1	1.15		
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87		
Site Imperfection	±2.80	Triangular	1.14	1	1.14		
Mismatch Receiver VSWR $\Gamma 1 = 0.197$ Antenna VSWR $\Gamma 2 = 0.194$ Uncertainty = 20Log(1- $\Gamma 1^*\Gamma 2$)	+0.34 / -0.35	U-Shape	0.244	1	0.244		
Combined Standard Uncertainty Uc(y)	2.36						
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.72						

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Appendix A. Photographs of EUT

Please refer to Sporton report number EP112908-02 as below.

Appendix C. Original Report

Please refer to Sporton report number FR112908A as below.