

0659

FCC Radio Test Report

FCC ID: HLZT7

Report No. : BTL-FCCP-3-2311H013

Equipment: Connect T7 Wi-Fi 7 Mesh Router

Model Name : T7
Brand Name : Predator

Applicant: Acer Incorporated

Address: 8F, 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City 221, Taiwan, R.O.C.

Radio Function : RLAN 5 GHz (U-NII 2A, U-NII 2C)

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart E (15.407)

(Only DFS)

Date of Receipt : 2023/11/9

Date of Test : 2023/12/4 ~ 2024/3/14

Issued Date : 2024/5/20

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Jerry Chuang, Supervisor

Approved by

Peter Chen, Vice Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2311H013 Page 1 of 75 Report Version: R03

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2311H013 Page 2 of 75 Report Version: R03

CONTENTS

REVISIO	ON HISTORY	4
1	SUMMARY OF TEST RESULTS	5
1.1	REFERENCE TEST GUIDANCE	5
1.2	TEST FACILITY	5
1.3	TEST ENVIRONMENT CONDITIONS	5
2	EUT INFORMATION	6
2.1	EUT SPECIFICATION TABLE	6
2.2	EIRP POWER	9
3	U-NII DFS RULE REQUIREMENTS	10
3.1	WORKING MODES AND REQUIRED TEST ITEMS	10
3.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS	11
4	DYNAMIC FREQUENCY SELECTION (DFS) TEST	15
4.1	DFS MEASUREMENT SYSTEM	15
4.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL	18
4.3	DEVIATION FROM TEST STANDARD	18
5	LIST OF MEASURING EQUIPMENTS	19
6	EUT TEST PHOTO	19
7	EUT PHOTOS	19
8	TEST RESULTS	20
8.1	SUMMARY OF TEST RESULT	20
8.2	DFS DETECTION THRESHOLD	21
8.3	CHANNEL AVAILABILITY CHECK TIME	29
8.4	CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	45
8.5	PROABILITY OF SUCCEED	55
8.6	NON-OCCUPANCY PERIOD	63
8.7	U-NII DETECTION BANDWIDTH	67

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2311H013	R00	Original Report.	2024/5/20	Valid

Project No.: 2311H013 Page 4 of 75 Report Version: R03

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	ndard(s) Section Description		Judgement	Remark
15.407(h)	Dynamic Frequency Selection (DFS)		Pass	

NOTE:

(1) The report format version is TP.1.1.1.

1.1 REFERENCE TEST GUIDANCE

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

1.2 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

☐ C05	☐ CB08	☐ CB11	⊠ SR10	□ 5R11

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
Dynamic Frequency Selection (DFS)	23.9 °C, 54 %	AC 120V	Cora Lin

Project No.: 2311H013 Page 5 of 75 Report Version: R03

2 EUT INFORMATION

2.1 EUT SPECIFICATION TABLE

Connect T7 Wi-Fi 7 Mesh Router		
T7		
Predator		
N/A		
DC voltage supplied from AC/DC Adapter.		
I/P: 100-240V~50/60Hz 1.2A		
O/P: 12.0V=== 3.0A		
1 * Adapter: TPQ-229C120300UW01		
☐ Slave with radar detection		
☐ Slave without radar detection		
UNII-2A: 5250 MHz to 5350 MHz		
UNII-2C: 5470 MHz to 5725 MHz		
UNII-2A: 5250 MHz to 5320 MHz		
UNII-2C: 5500 MHz to 5700 MHz		
OFDM, OFDMA		
T7		
Engineering Sample		
Sample Status Engineering Sample EUT Modification(s) N/A		

NOTE:

(1) The above EUT information is declare	d by manufacture	r and for more	detailed features	description,
please refers to the manufacturer's s	pecifications or us	er's manual.		

Project No.: 2311H013 Page 6 of 75 Report Version: R03

(2) Channel List:

, • · · · · · · · · · · · · · · · · · · 	STIGHT OF EIGH				
IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20) IEEE 802.11ax(HE20) IEEE 802.11be(EHT20)		IEEE 802.1 IEEE 802.	11n(HT40) 1ac(VHT40) 11ax(HE40) 1be(EHT40)	IEEE 802.11 IEEE 802.11 IEEE 802.11	11ax(HE80)
UNII-2A		UNII-2A		UNII-2A	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20) IEEE 802.11ax(HE20) IEEE 802.11be(EHT20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40) IEEE 802.11ax(HE40) IEEE 802.11be(EHT40)		IEEE 802.11ac(VHT80) IEEE 802.11ax(HE80) IEEE 802.11be(EHT80)	
UNII	-2C	UNI	I-2C	UNI	I-2C
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590		
112	5560	126	5630		
116	5580	134	5670		
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				

IEEE 802.11ac(VHT160) IEEE 802.11ax(HE160) IEEE 802.11be(EHT160)				
Channel	Frequency (MHz)			
50	5250			
114	5570			

(3) Table for Filed Antenna:

Ant.	Brand	Part number	Type	Connector	Gain (dBi)
1	SUNNYWAŶ	SH23227IB65-1	PIFA	I-PEX	5.38
2	SUNNYWAŶ	SH23227IB65-2	PIFA	I-PEX	4.06

Project No.: 2311H013 Page 7 of 75 Report Version: R03

Note:

- a) The EUT incorporates a CDD function. Physically, the EUT provides two completed transmitters and receivers (2T2R).
- b) For Output Power

For No Beamforming, $N_{ANT} = 2 < 5$; so Directional gain=5.38.

The Direction gain is less than 6 dBi, so output power limits will not be reduced.

For Beamforming, Beamforming Gain: 3 dBi, so Directional gain=5.38+3 = 8.38dBi.

To UNII-1, UNII-3, the reduced output power limits (dBm) = 30 - (8.38 - 6) =27.62.

To UNII-2A, UNII-2C, the reduced output power limits (dBm) = 24 - (8.38 - 6) = 21.62

c) For Power Spectral Density

Directional Gain = $10\log [(10^{G1/20} + 10^{G2/20} + ... + 10^{Gn/20})^2/N_{ANT}] = 7.76 dBi > 6dBi.$

To UNII-1, the reduced power spectral density limits (dBm/MHz) = 17 - (7.76 - 6) = 15.24.

To UNII-2A, UNII-2C, the reduced power spectral density limits (dBm/MHz) = 11 - (7.76 - 6) = 9.24.

To UNII-3, the reduced power spectral density limits (dBm/500 kHz) = 30 - (7.76 - 6) = 28.24.

- (4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- (5) Operating Mode and Antenna Configuration

For No Beamforming

Operating Mode	OTV
TX Mode	2TX
IEEE 802.11a	V (Ant. 1+Ant. 2)
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2)
IEEE 802.11ac (VHT80)	V (Ant. 1+Ant. 2)
IEEE 802.11ac (VHT160)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE20)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE40)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE80)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE160)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT20)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT40)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT80)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT160)	V (Ant. 1+Ant. 2)

For Beamforming

Operating Mode TX Mode	2TX
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2)
IEEE 802.11ac (VHT80)	V (Ant. 1+Ant. 2)
IEEE 802.11ac (VHT160)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE20)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE40)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE80)	V (Ant. 1+Ant. 2)
IEEE 802.11ax (HE160)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT20)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT40)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT80)	V (Ant. 1+Ant. 2)
IEEE 802.11be (EHT160)	V (Ant. 1+Ant. 2)

2.2 EIRP POWER

Operation Mode Non-Beamforming mode

Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP Power (dBm)	Maximum EIRP Power (mW)	Remark
5250 to 5350	22.09	5.38	27.47	558.47	NOTE (1)
5470 to 5725	22.19	5.38	27.57	571.48	NOTE (1)

Operation Mode Beamforming mode

Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP Power (dBm)	Maximum EIRP Power (mW)	Remark
5250 to 5350	21.36	8.38	29.74	941.89	NOTE (1)
5470 to 5725	21.22	8.38	29.60	912.01	NOTE (1)

NOTE:

(1) EIRP Power (dBm) = Conducted Power (dBm) + Antenna Gain (dBi). Power (mW) = 1 mW * $10^{(dBm/10)}$.

Project No.: 2311H013 Page 9 of 75 Report Version: R03

3 U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables below for the applicability of DFS requirements for each of the operational modes.

Applicability of DFS requirements prior to use a channel

Requirement	Operational Mode			
requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	V	√	V	
DFS Detection Threshold	V	Not req□□red	$\sqrt{}$	
Channel Availability Check Time		Not required	Not required	
U-NII Detection Bandwidth	V	Not required	V	

Applicability of DFS requirements during normal operation

Deminement	Operational Mode			
Requirement	Master	Client without radar detection	Client with □□dar detection	
DFS Detection Threshold	$\sqrt{}$	Not required	V	
Channel Closing Transmission Time	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Channel Move Time	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
U-NII Detection Bandwidth	V	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Cli□□t with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test µsing widest BW mode available	Test µ□ing the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Project No.: 2311H013 Page 10 of 75 Report Version: R03

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection.

Maximum Transmit Power	Value (See Notes 1, 2 and 3)
e.i.r.p. ≥ 200 milliwatt	-64 dBm
e.i.r.p. < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
e.i.r.p. < 200 milliwatt□□hat do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

TEST LIMIT

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds. See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
Charmer Closing Transmission Time	remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII
O-MI Detection bandwidth	99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plµs any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be µsed. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Project No.: 2311H013 Page 11 of 75 Report Version: R03

PARAMETERS OF DFS TEST SIGNALS AND MINIMUM PERCENTAGE OF SUCCESSFUL DETECTIONS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Type	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}}\right)} \right\} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-	4)		80%	120
Note 1: Sh	ort Pulse Rada	or Type 0 should be u	ised for the detection ba	ndwidth test, ch	annel move

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are μ sed for Short Pulse Radar Types 2 through 4, then each additional waveform m μ st also be unique and not repeated from the previo μ s waveforms. If more than 30 waveforms are μ sed for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and m μ st also be unique and not repeated from the previo μ s waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses would be $\frac{\text{Roundup}\left\{\left(\frac{1}{360}\right)\cdot\left(\frac{19\cdot10^6}{3066}\right)\right\} = \text{Round up }\left\{17.2\right\} = 18. }{\text{Roundup}\left\{\left(\frac{1}{360}\right)\cdot\left(\frac{19\cdot10^6}{3066}\right)\right\}} = \frac{1}{1200} = \frac{1$

Project No.: 2311H013 Page 12 of 75 Report Version: R03

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Project No.: 2311H013 Page 13 of 75 Report Version: R03

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen (The center frequency for each of the 30 trials of the Bin 5 radar shall be randomly selected within 80% of the Occupied Bandwidth.) Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

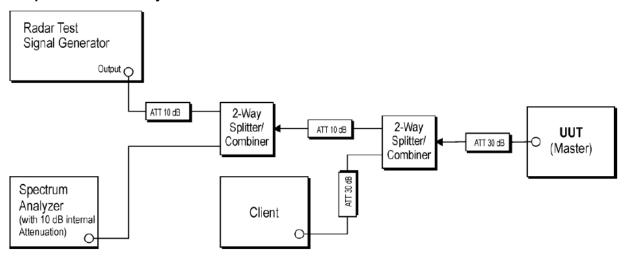
Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are µsed for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: If a segment does not contain at least 1 frequency within the U-NII Detection Bandwidth of the UUT, then that segment is not µsed.

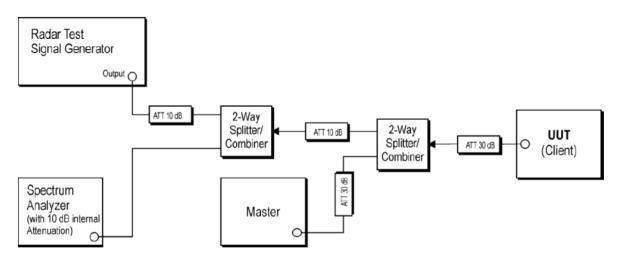
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 - 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Project No.: 2311H013 Page 14 of 75 Report Version: R03


4 DYNAMIC FREQUENCY SELECTION (DFS) TEST

4.1 DFS MEASUREMENT SYSTEM

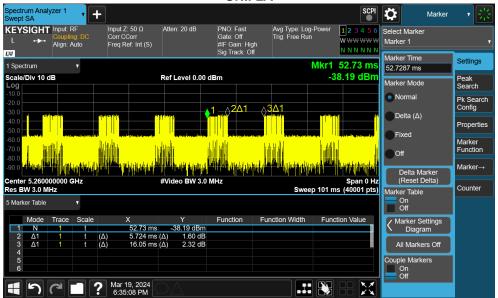
Test Precedure


- 1. Master device and client device are set up by conduction method as the following configuration.
- 2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "Lan test" to reach 17% channel loading as below

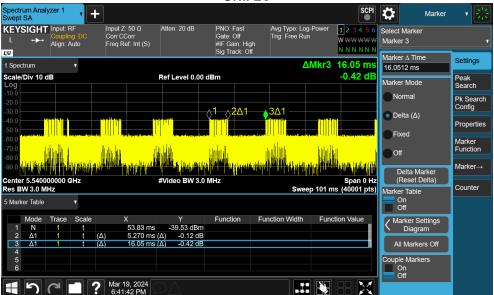
Setup for Master with injection at the Master

Radar Test Waveforms are injected into the Master.

Setup for Client with injection at the Client


Radar Test Waveforms are injected into the Client

Project No.: 2311H013 Page 15 of 75 Report Version: R03



Channel Loading

UNII-2A

UNII-2C

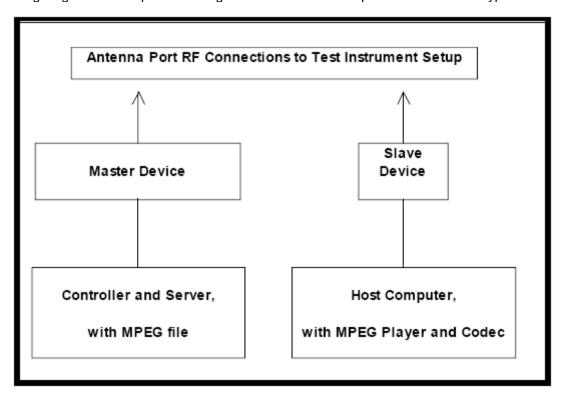
Test Band	ON	Numbers	On Time	Period	Channel Loading	Required
	(ms)	(ON)	(ms)	(ON+OFF) (ms)	Ratio (%)	Ratio (%)
5.250 GHz to 5.350 GHz	5.7200	1	5.7200	16.05	35.64%	≥ 17%
5.470 GHz to 5.725 GHz	5.2700	1	5.2700	16.05	32.83%	≥ 17%

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

Project No.: 2311H013 Page 17 of 75 Report Version: R03


4.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2311H013 Page 18 of 75 Report Version: R03

5 LIST OF MEASURING EQUIPMENTS

Dynamic Frequency Selection (DFS)								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	MXG Vector Signal Generator	Agilent	N5182B	MY51350711	2024/2/21	2025/2/20		
2	Frequency Extender	Keysight	N5182BX07	MY59360246	2024/2/21	2025/2/20		
3	10dB Attenuators	Mini-Cicuits	VAT-10+	N/A	2023/5/12	2024/5/11		
4	POWER SPLITTER	Mini-Cicuits	ZFRSC-123-S+	N/A	2023/5/12	2024/5/11		

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

6 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2311H013-1 (APPENDIX-TEST PHOTOS).

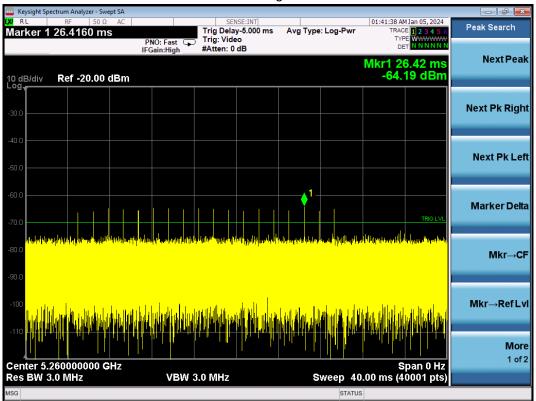
7 EUT PHOTOS

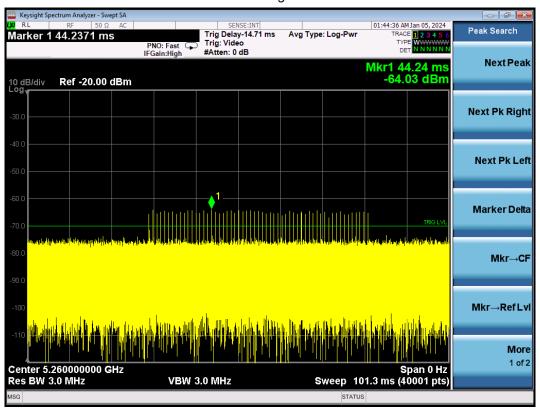
Please refer to document Appendix No.: EP-2311H013-1 (APPENDIX-EUT PHOTOS).

Project No.: 2311H013 Page 19 of 75 Report Version: R03

8 TEST RESULTS

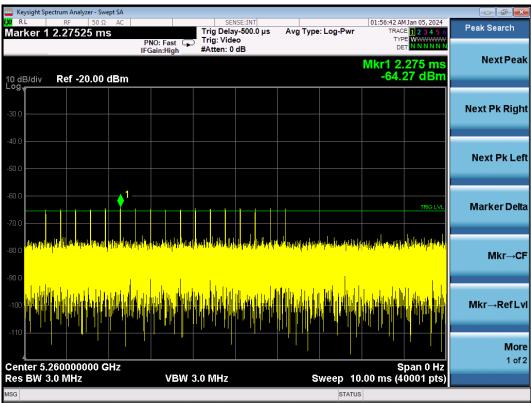
8.1 SUMMARY OF TEST RESULT

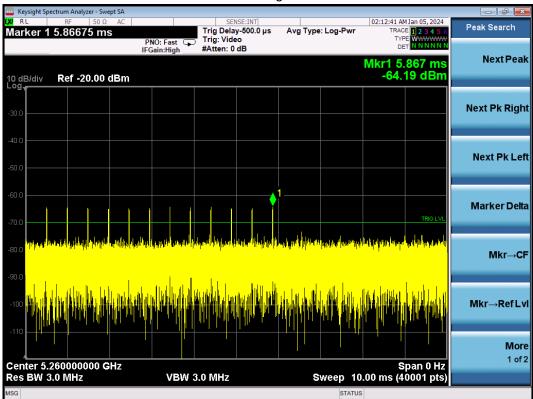

Clause	Test Parameter	Test Bandwidth / Channel	Remarks	Pass/Fail
15.407	DFS Detection Threshold	5260 MHz	Applicable	Pass
		5540 MHz		
15.407	Channal Availability Charle	20MHz / 5260, 5540 MHz 40MHz / 5270, 5550 MHz		Pass
	Channel Availability Check Time	80MHz / 5290, 5530 MHz	Applicable	
	Time	160MHz / 5250, 5570 MHz		
		20MHz / 5260, 5540 MHz		Pass
15.407		40MHz / 5270, 5550 MHz		
	Channel Move Time	80MHz / 5290, 5530 MHz	Applicable	
		160MHz / 5250, 5570 MHz		
	Channel Closing Transmission Time	20MHz / 5260, 5540 MHz	- Applicable	Pass
15.407		40MHz / 5270, 5550 MHz		
		80MHz / 5290, 5530 MHz		
		160MHz / 5250, 5570 MHz		
	Drahahilih Of Cuasad	20MHz / 5260, 5540 MHz		Pass
15.407		40MHz / 5270, 5550 MHz	Applicable	
	Probability Of Succeed	80MHz / 5290, 5530 MHz		
		160MHz / 5250, 5570 MHz		
15.407	Non- Occupancy Period	20MHz / 5260, 5540 MHz		Pass
		40MHz / 5270, 5550 MHz	Applicable	
10.407	14011 Codapancy I chica	80MHz / 5290, 5530 MHz	тррпоавіс	
		160MHz / 5250, 5570 MHz		
15.407	Uniform Spreading	-	Not Applicable	N/A
		20MHz / 5260, 5540 MHz		
15.407	U-NII Detection Bandwidth	40MHz / 5270, 5550 MHz	Applicable	Pass
13.407	2 Till Bottodion Bandwidth	80MHz / 5290, 5530 MHz	Αρμιοαρίο	
		160MHz / 5250, 5570 MHz		

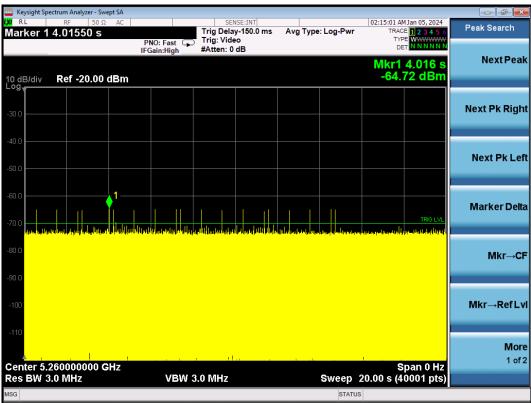


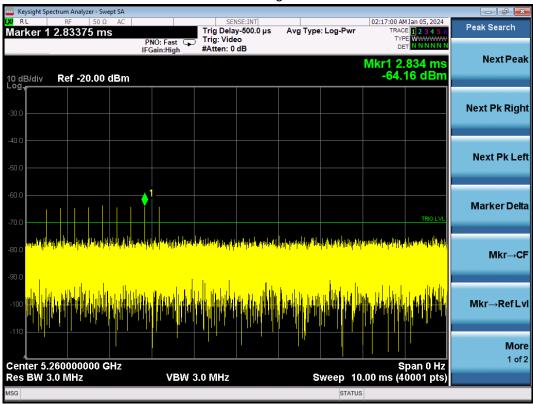
8.2 DFS DETECTION THRESHOLD

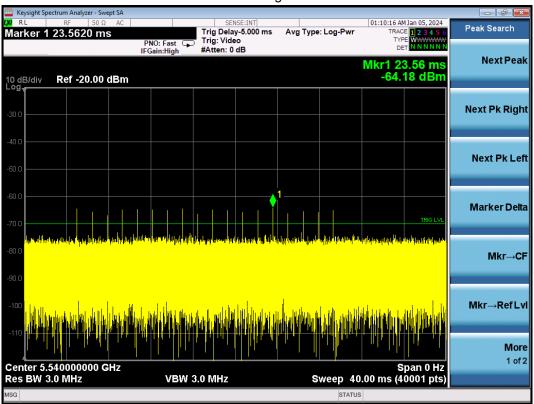
Test Mode UNII-2A, Channel: 5260 MHz

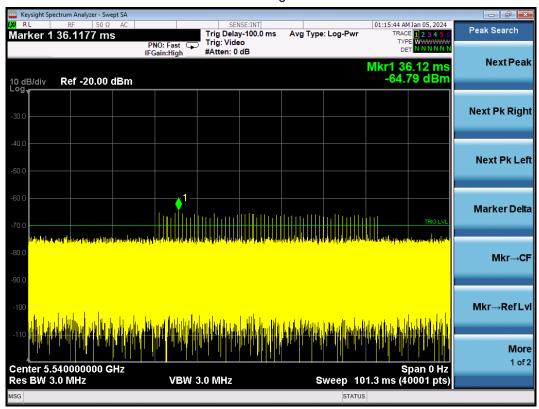

Radar Signal 0

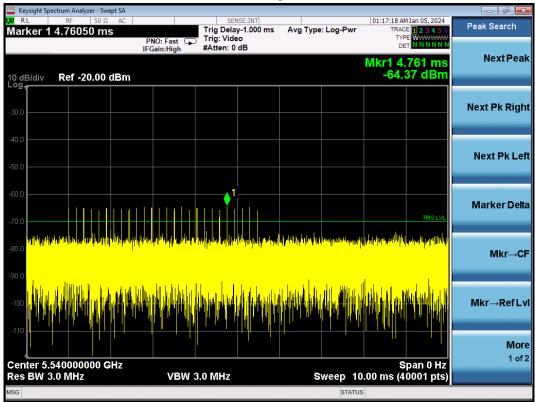


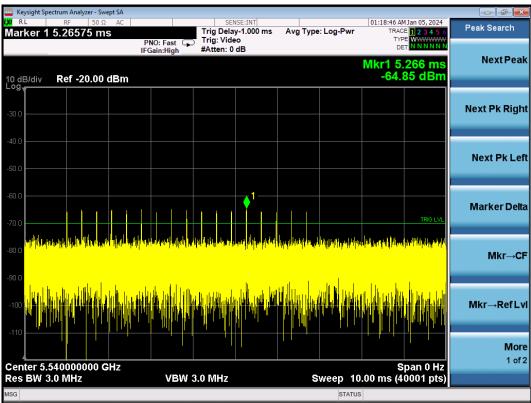


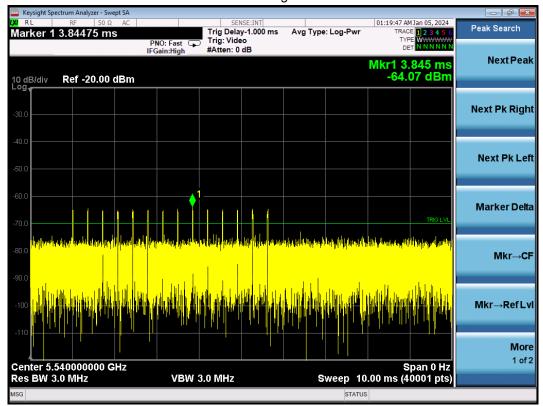


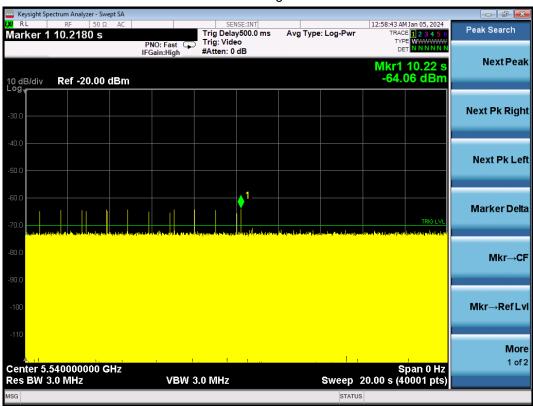


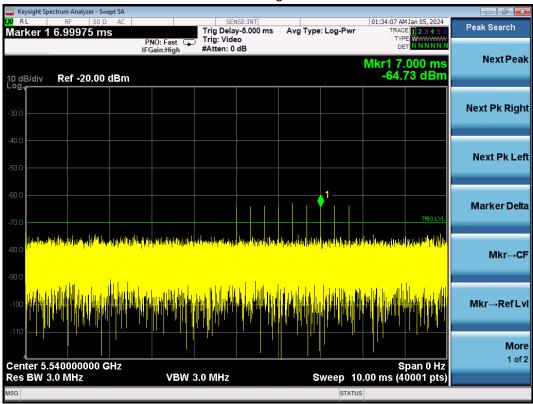



Test Mode UNII-2C, Channel: 5540 MHz


Radar Signal 0







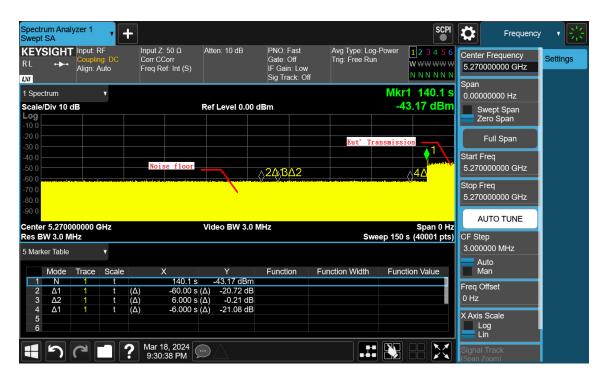
8.3 CHANNEL AVAILABILITY CHECK TIME

If the UUT successfully detected the radar burst, it should be observed as the UUT has no transmissions occurred until the UUT starts transmitting on another channel.


Test Mode UNII-2A, Nominal Bandwidth / Channel: 20 MHz / 5260 MHz

Initial Channel Availability Check Time

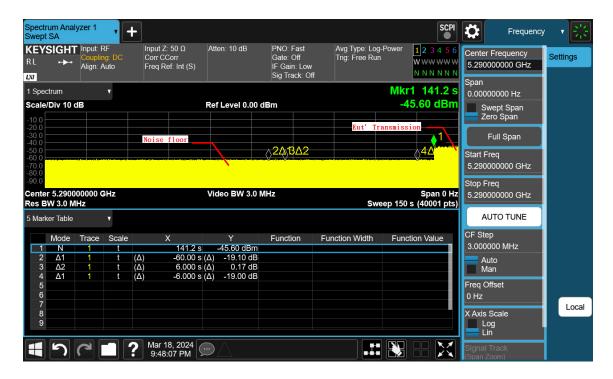
Radar Burst at the Beginning of the Channel Availability Check Time


Radar Burst at the End of the Channel Availability Check Time

Test Mode UNII-2A, Nominal Bandwidth / Channel: 40 MHz / 5270 MHz

Initial Channel Availability Check Time

Radar Burst at the Beginning of the Channel Availability Check Time


Radar Burst at the End of the Channel Availability Check Time

Test Mode UNII-2A, Nominal Bandwidth / Channel: 80 MHz / 5290 MHz

Initial Channel Availability Check Time



Radar Burst at the Beginning of the Channel Availability Check Time

Radar Burst at the End of the Channel Availability Check Time

