

RF EXPOSURE EVALUATION REPORT

FCC ID	: HLZRXMG1
Equipment	: Notebook Computer
Brand Name	: ACER
Model Name	: N20C7
Applicant	: Acer Incorporated 8F,. No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City 22181, Taiwan (R.O.C)
Standard	: FCC 47 CFR Part 2 (2.1093)

We, SPORTON INTERNATIONAL INC have been evaluated in accordance with 47 CFR Part 2.1093 for the device and pass the limit.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Cona Change

Approved by: Cona Huang / Deputy Manager

Sporton International Inc. No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan

Table of Contents

1. Summary 2. Guidance Applied	4 4
3. Equipment Under Test (EUT) Information	5
3.1 General Information	5
4. RF Exposure Limits	6
4.1 Uncontrolled Environment	
4.2 Controlled Environment	
5. System Description and Setup	
5.1 Test Site Location	
5.2 EUmmWave Probe / E-Field 5G Probe	
5.3 Data Acquisition Electronics (DAE)	
5.4 Scan configuration	
6. Test Equipment List	
7. System Verification Source	
8. Power Density System Verification	
9. System Verification Results	
9.1 Computation of the Electric Field Polarization Ellipse	
9.2 Total Field and Power Flux Density Reconstruction	12
9.3 Test Positions	
10. RF Exposure Evaluation Results	
11. Simultaneous-Tx analysis	
11.1 Simultaneous transmission analysis for WiFi/BT + 5G NR	
11.2 5G NR + LTE + WLAN + BT Sim-Tx analysis	
12. Uncertainty Assessment	34
13. References	35

Appendix A. Plots of System Performance Check Appendix B. Plots of Power Density Measurement Appendix C. DASY Calibration Certificate Appendix D. Setup Photo

History of this test report

Report No.	Version	Description	Issued Date
FA070206B	01	Initial issue of report	Oct. 05, 2020
FA070206B	02	Update section 11	Nov. 06, 2020

1. <u>Summary</u>

The maximum measured average power density found during testing for Acer Incorporated, Notebook Computer, are as follows.

	Simultaneous transmission with other transmitters		
RF Transmitter	Measured PD (mW/cm ²)	Reported PD (mW/cm ²)	Summation of Exposure Ratio
n260	0.416	0.75	0.066
n261	0.591	0.75	0.966
Result		PASS	-

2. Guidance Applied

The Power Density testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2.1091
- FCC 47 CFR Part 2.1093
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- TCBC workshop notes
- IEC Draft TR 63170

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

3. Equipment Under Test (EUT) Information

3.1 General Information

	Product Feature & Specification
Equipment Name	Notebook Computer
Brand Name	ACER
FCC ID	HLZRXMG1
Wireless Technology and Frequency Range	WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 1: 2602.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 12: 699.7 MHz ~ 784.5 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 14: 790.5 MHz ~ 784.5 MHz LTE Band 14: 790.5 MHz ~ 1914.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 30: 2307.5 MHz ~ 2312.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 3652.5 MHz ~ 2617.5 MHz LTE Band 48: 3652.5 MHz ~ 2617.5 MHz SG NR n41: 2498.5 MHz ~ 2687.5 MHz SG NR n5 : 824 MHz ~ 849 MHz SG NR n66: 1710.7 MHz ~ 1779.3 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz LTE Band 71: 665.5 MHz ~ 3000 HHz SG NR n66: 1710 MHz ~ 1910 MHz SG NR n66: 1710 MHz ~ 1780 MHz SG NR n66: 1710 MHz ~ 1980 MHz SG NR n66: 1710 MHz ~ 1780 MHz SG NR n66: 1710 MHz ~ 1780 MHz SG NR n66: 1710 MHz ~ 698 MHz SG NR n66: 1710 MHz ~ 698 MHz SG NR n261: 27.5GHz-28.35GHz WLAN 2.4GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5500 MHz ~ 5720 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	RMC 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+(16QAM uplink) LTE: QPSK, 16QAM, 64QAM 5G NR: DFT-s-OFDM/CP-OFDM, Pi/2 BPSK/QPSK/16QAM/64QAM/256QAM WLAN: 802.11a/b/g/n/ac HT20 / HT40 / VHT20 / VHT40 / VHT80 Bluetooth BR/EDR/LE
FUT Stage	
EUT Stage	Production Unit

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Wan Liu</u>

4. <u>RF Exposure Limits</u>

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

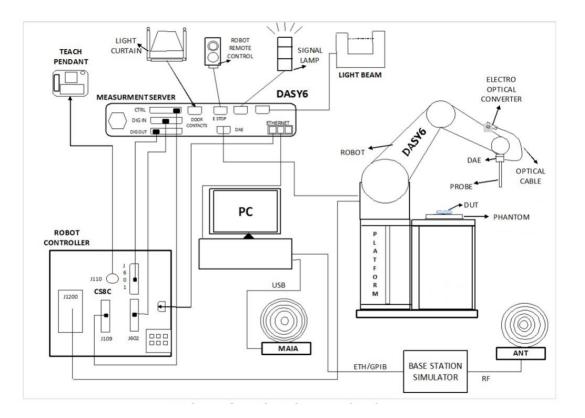
4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is 1.0 mW/cm² = 10 W/m^2

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expo	sures	Real Providence of the second se
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30


Table 1

5. System Description and Setup

The system to be used for the near field power density measurement

- SPEAG DASY6 system
- SPEAG cDASY6 5G module software
- EUmmWVx probe
- 5G Phantom cover

5.1 Test Site Location

Sporton Lab and below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory
Test Site Location	TW1190 No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, CHINESE TAIPEI
Test Site No.	SAR06-HY

5.2 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz			
Probe Overall Length	320 mm			
Probe Body Diameter	8.0 mm			
Tip Length	23.0 mm			
Tip Diameter	8.0 mm			
Probe's two dipoles length	0.9 mm – Diode loaded			
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)			
Position Precision	< 0.2 mm			
Distance between diode sensors and probe's tip	1.5 mm			
Minimum Mechanical separation between probe tip and a Surface	0.5 mm			
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.			
Compatibility	cDASY6 + 5G-Module SW1.0 and higher			
	sensor 1.5mm calibrated device			

5.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

5.4 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

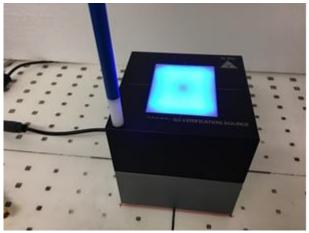
6. <u>Test Equipment List</u>

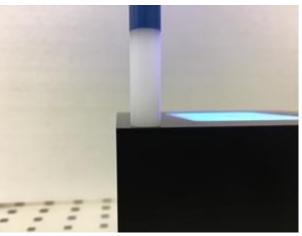
Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
Manufacturer	Name of Equipment	i ype/wodei	Serial Nulliper	Last Cal.	Due Date
SPEAG	5G Verification Source	30 GHz	1007	Nov. 19, 2019	Nov. 18, 2020
SPEAG	E-Field mmWave Probe	EUmmWV4	9461	Nov. 05, 2019	Nov. 04, 2020
SPEAG	Data Acquisition Electronics	DAE4	1424	Jan. 24, 2020	Jan. 23, 2021
Testo	Hygro meter	608-H1	45196600	Nov. 18, 2019	Nov. 17, 2020
Agilent	Spectrum Analyzer	N9010A	MY54200486	Oct. 28, 2019	Oct. 27, 2020
Custom Microwave	Standard Horn antenna	M15RH	V91113-A	NCR	NCR

7. System Verification Source

The System Verification sources at 30 GHz and above comprise horn-antennas and very stable signal generators.

Model	Ka-band horn antenna
Calibrated frequency:	30 GHz at 10mm from the case surface
Frequency accuracy	± 100 MHz
E-field polarization	linear
Harmonics	-20 dBc
Total radiated power	14 dBm
Power stability	0.05 dB
Power consumption	5 W
Size	00 x 100 x 100 mm
Weight	1 kg


8. Power Density System Verification


The system performance check verifies that the system operates within its specifications.

The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 0.66dB of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.25 \left(\frac{\lambda}{4}\right)$	120/120	16×16
30	$0.25 \ (\frac{\tilde{\lambda}}{4})$	60/60	24×24
60	$0.25 \ (\frac{\hat{\lambda}}{4})$	32.5/32.5	26×26
90	$0.25 \ (\frac{\lambda}{4})$	30/30	36 imes 36

Settings for measurement of verification sources

Verification Setup photo

9. System Verification Results

Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Measured 4 cm^2 (W/m^2)	Targeted 4 cm ² (W/m ²)	Deviation (dB)
30	30GHz_1007	9461	1424	5.5mm	32.7	34.1	-0.17
30	30GHz_1007	9461	1424	5.5mm	32.6	34.1	-0.19
30	30GHz_1007	9461	1424	5.5mm	31.5	34.1	-0.32

9.1 <u>Computation of the Electric Field Polarization Ellipse</u>

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (\emptyset , θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, \emptyset and θ) are sufficient for the description of the incident field.

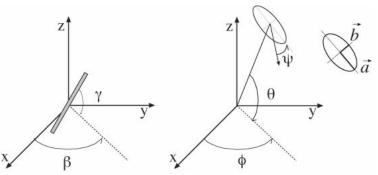


Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (\emptyset , θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r_1 and r_2 toward the probe axis and to perform measurements at three angular positions of the probe, i.e., at β_1 , β_2 and β_3 , results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, more rotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree ($r_2 = r_1 + 90$ degree), and to simplify, the first rotation angle of the probe (β_1) can be set to 0 degree.

9.2 Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe.

The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re\{S\}|$ is the total Poynting vector
- $\mathbf{n} \cdot Re\{S\}$ is the normal Poything vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

9.3 <u>Test Positions</u>

Band	Antenna	Measurement Plane								
	Module	Front 2mm	Back 2mm	Left Side 2mm	Right Side 2mm	Top Side 2mm	Bottom Side 2mm			
	L	No	No	Yes	No	No	No			
5G NR n260	J	No	No	No	Yes	No	No			
	К	No	No	No	No	No	Yes			
	L	No	No	Yes	No	No	No			
5G NR n261	J	No	No	No	Yes	No	No			
	К	No	No	No	No	No	Yes			

From the Part 0 report, beam IDs with highest PD and corresponding input.power.limit were selected to be tested for each antenna module and for each frequency band

10. <u>RF Exposure Evaluation Results</u>

- 1. The PD test was performed of a 2mm separation between sensor and EUT surface (the probe tip is 0.5mm to the EUT surface).
- 2. According to TCBC Workshop in October 2018, 4 cm^2 averaging area are used.
- 3. This device is enabled with Qualcomm® Smart Transmit feature, smart transmit will manage and ensure LTE and 5G simultaneous transmission is compliant. The validation of the time-averaging algorithm and compliance under the Tx varying transmission scenario for WWAN technologies are reported in Part 2 report.
- 4. The device was configured to transmit CW wave signal for testing, due to Qualcomm® Smart Transmit feature, additional testing was not required for different modulations (CP-OFDM QPSK, CP-OFDM 16QAM, CP-OFDM 64QAM), RB configurations, component carriers, channel configurations (low channel, mid channel, high channel).
- 5. It's illustrated in Part 0 report that , for 5G mmW NR since there is total design-related uncertainty arising from TxAGC and device-to-device variation, the worst-case RF exposure should be determined by accounting for this device uncertainty of 2.1 dB, as well as PD design target of 0.6165 mW/cm². Smart Transmit algorithm limits PD exposure to 75% of maximum to provide at least 25% margin allocated for 4G LTE anchor. Therefore, 5G mmW NR RF exposure for this DUT is evaluated by reported PD calculated as:

Reported PD=75% x PD design target +2.1 dB =0.75 mW/cm²

Report No. : FA070206B

Plot number	antenna module	antenna module	Beam ID 1	Beam ID 2	Band	Frequency (GHz)	Exposure Surface	Input Power limit	Power Setting	Test separation	modulation	Measured results Savg inc 4cm^2 (W/m2)	Measured results Savg tot 4cm^2 (W/m2)
	0	L	25	-	n261	27.925	S3 (Left Side)	2.59	26	2mm	CW	3.06	3.96
	0	L	-	153	n261	27.925	S3 (Left Side)	2.72	27	2mm	CW	4.7	5.8
	0	L	39	167	n261	28.3	S3 (Left Side)	-0.46	-5	2mm	CW	2.69	3.18
	1	J	20	-	n261	27.925	S4 (Right Side)	2.21	22	2mm	CW	2.87	3.67
	1	J	-	163	n261	27.925	S4 (Right Side)	2.44	24	2mm	CW	2.47	3.12
	1	J	20	148	n261	27.925	S4 (Right Side)	-0.7	-7	2mm	CW	3.18	3.71
01	2	К	43	-	n261	27.55	S2 (Bottom Side)	2.36	24	2mm	CW	4.68	5.91
	2	К	-	157	n261	27.55	S2 (Bottom Side)	2.49	25	2mm	CW	3.47	4.56
	2	К	42	170	n261	27.55	S2 (Bottom Side)	-0.29	-3	2mm	CW	3.91	4.77
	2	К	2	-	n261	27.925	S2 (Bottom Side)	8	80	2mm	CW	3.75	5.18
	0	L	23	-	n260	39.95	S3 (Left Side)	1.7	17	2mm	CW	1.43	1.97
	0	L	-	165	n260	39.95	S3 (Left Side)	2.13	21	2mm	CW	1.78	2.21
	0	L	27	155	n260	38.5	S3 (Left Side)	-1.17	-12	2mm	CW	2.21	3.24
	1	J	34	-	n260	39.95	S4 (Right Side)	1.97	20	2mm	CW	1.83	2.65
	1	J	-	164	n260	39.95	S4 (Right Side)	2.17	22	2mm	CW	2.6	3.87
	1	J	22	150	n260	38.5	S4 (Right Side)	-1.16	-12	2mm	CW	1.33	1.93
	2	К	43	-	n260	38.5	S2 (Bottom Side)	1.93	19	2mm	CW	2.26	2.78
	2	К	-	171	n260	38.5	S2 (Bottom Side)	2.39	24	2mm	CW	2.61	3.04
	2	К	43	171	n260	38.5	S2 (Bottom Side)	-1.19	-12	2mm	CW	2.34	2.97
02	2	К	2	-	n260	38.5	S2 (Bottom Side)	8.2	82	2mm	CW	3.11	4.16

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

11. <u>Simultaneous-Tx analysis</u>

NO.	Simultaneous Transmission Configurations	Body
1.	WWAN + WLAN2.4GHz Ant 1 + WLAN 2.4GHz Ant 2 + FR 2	Yes
2.	WWAN + WLAN2.4GHz Ant 1 + Bluetooth Ant 2 + FR 2	Yes
3.	WWAN + WLAN5GHz Ant 1 + WLAN 5GHz Ant 2 + FR 2	Yes
4.	WWAN + WLAN5GHz Ant 1 + Bluetooth Ant 2 + FR 2	Yes
5.	WWAN + WLAN2.4GHz Ant 1 + WLAN 5GHz Ant 2 + FR 2	Yes
6.	WWAN + WLAN2.4GHz Ant 2 + WLAN 5GHz Ant 1 + FR 2	Yes

General Note:

- 1. The WLAN and Bluetooth SAR test results were referring the report of FCC ID: HLZRXMG1 (Sporton SAR Report No. FA070206A).
- 2. Considering n260/n261 transmitter with WLAN and Bluetooth can transmit simultaneously, the basic restrictions are on SAR and power density, and summation of these quantities should follow below formula and the simultaneous transmission analysis was following below step.
 - i) Step 1, Use the standalone SAR according original report to collocate with n260/n261 transmitter power density at each exposure positions, if the result < 1, additional analysis is not necessary.
 - ii) Step 2, if the ration is larger than 1, but WWAN and WLAN/BT meet SPLSR criteria, then it means WWAN and WLAN/ are decoupled, therefore mmWave design target + uncertainty * 75% will be used for simultaneous transmission analysis. (it's justified in Part 1 SAR report (Sporton report number FA070206A, rev.01))
 - iii) Step 3, If the ratio still is larger than 1, Demonstrate exclusion by showing no overlap in -10dB contours (relative to hotspot value) for both simulated PD distributions for supported beams by this mmW module and measured SAR distributions of WLAN/BT, assuming PD exposure ratio is less than 0.9 and TER of WLAN+BT is less than 0.9.
 - iv) Step 4, if step 3 which the demonstrate exclusion by showing no overlap in -10dB contours (relative to hotspot value) of mmWave and WiFi/BT, the maximum ratio = mmWave design target + uncertainty * 75%, so the maximum summation ratio is 0.75 in this report.

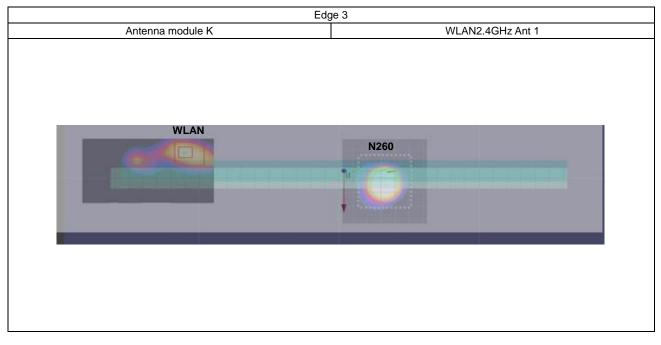
The [∑ of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [∑ of MPE ratios] is ≤ 1.0.

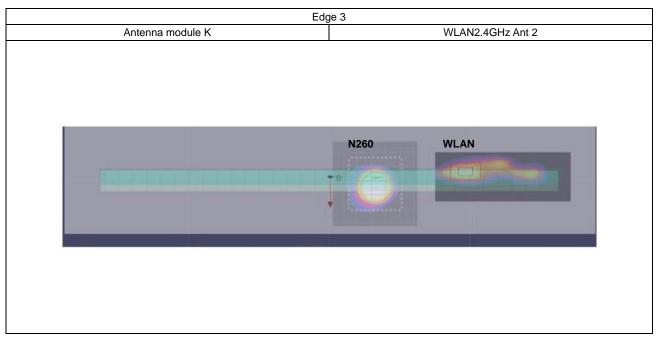
11.1 Simultaneous transmission analysis for WiFi/BT + 5G NR

Step 2

			2	3	4	5	6	8	Reported SAR/1.6 + PD/10 Summation				on
FR2 Band		Exposure Position	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 2	PD	2+3+8 Summed			4+5+8 4+6+8 Summed Summed	
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	4cm^2 (W/m^2)	Ratio	Ratio	Ratio	Ratio	Ratio
		Bottom of Laptop at 0mm	1.065	0.532	0.892	1.141	0.034	7.500	1.748	1.437	2.021	1.329	1.484
	n26 0/	Bottom Face at 0mm	0.101	0.151	0.222	0.111	0.013	7.500	0.908	0.821	0.958	0.897	0.828
FR2	n261	Edge 1 at 0mm	0.000	0.000	0.000	0.000	0.000	7.500	0.750	0.750	0.750	0.750	0.750
Band	Module L	Edge 2 at 0mm	0.000	0.000	0.000	0.000	0.000	7.500	0.750	0.750	0.750	0.750	0.750
	/J/K	Edge 3 at 0mm	0.204	0.271	0.337	0.266	0.001	7.500	1.047	0.878	1.127	0.961	0.917
		Edge 4 at 0mm	0.000	0.000	0.000	0.000	0.000	7.500	0.750	0.750	0.750	0.750	0.750

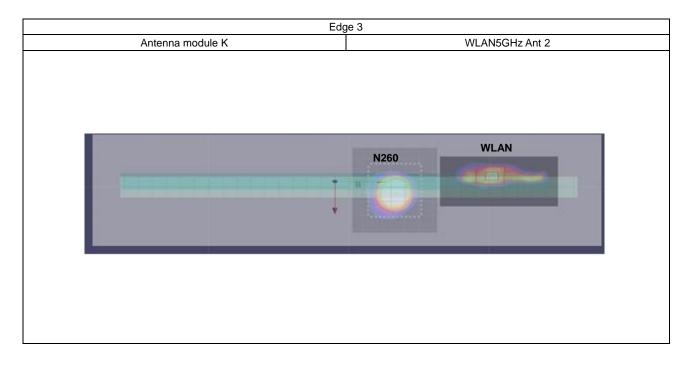
General Note: Since WLAN+BT is meet SPLSR requirement, therefore the TER of WLAN+BT is standalone maximum SAR value between WLAN and BT, and PD exposure ration is 0.75, therefore it's compliance with step 3 requirement.

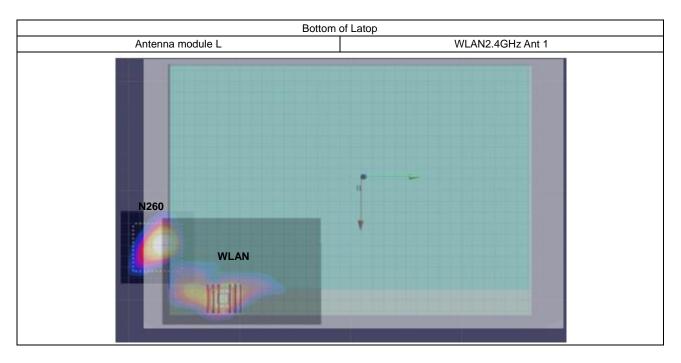


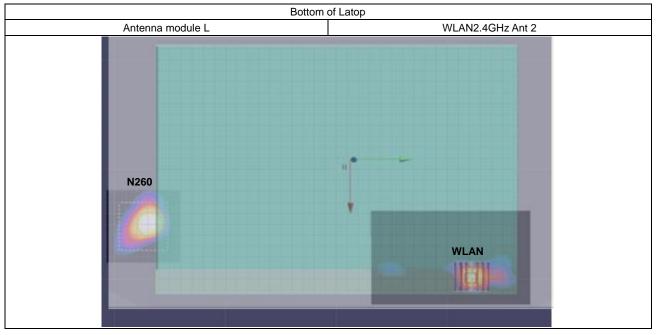

Step 3

General Note:

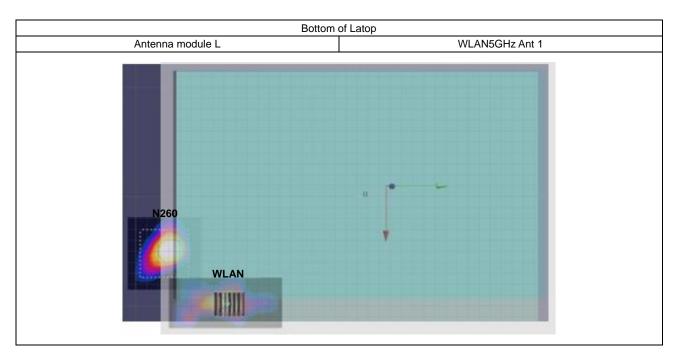
1. below simulated PD distributions for all supported beams by this mmW module and measured SAR distributions of WLAN/BT are demonstrate exclusion by showing no overlap in -10dB contours(relative to hotspot value).

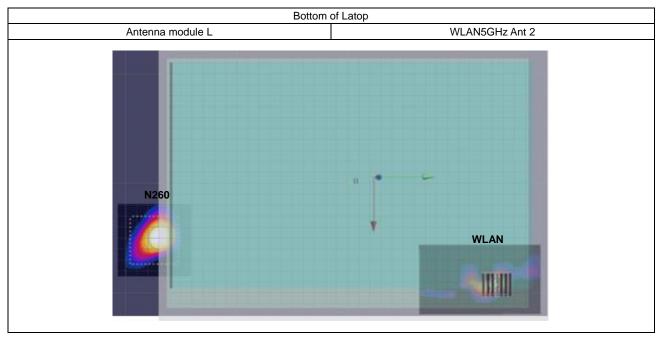

N260 collocated WiFi/BT

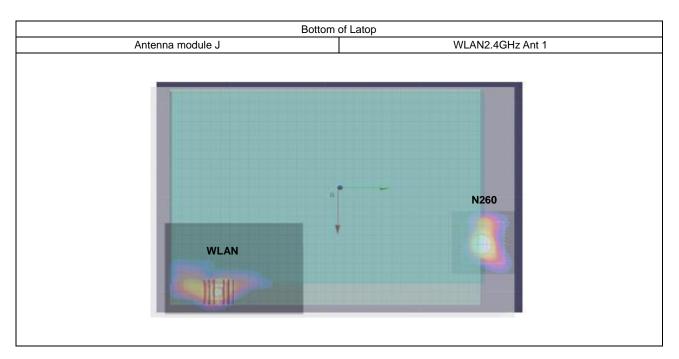


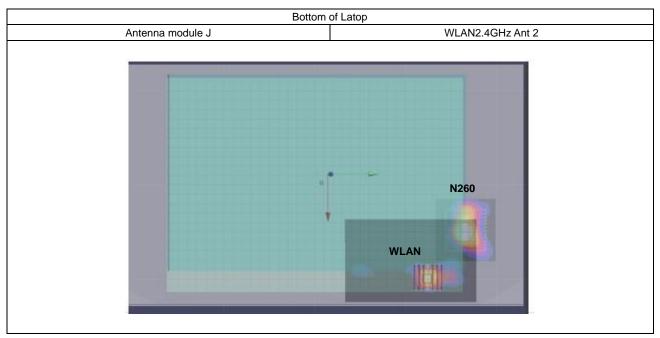


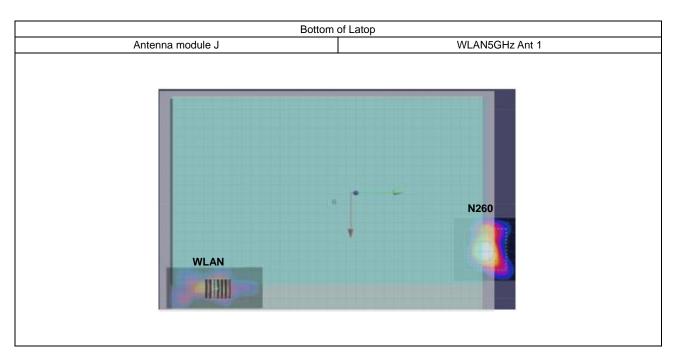
	Edge 3
Antenna module K	WLAN5GHz Ant 1
	ł
WLAN	N260
and the second se	

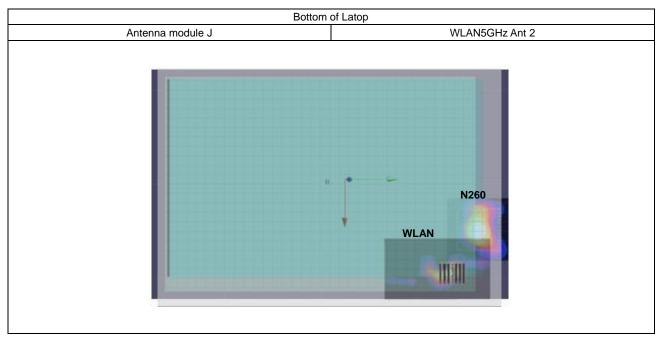




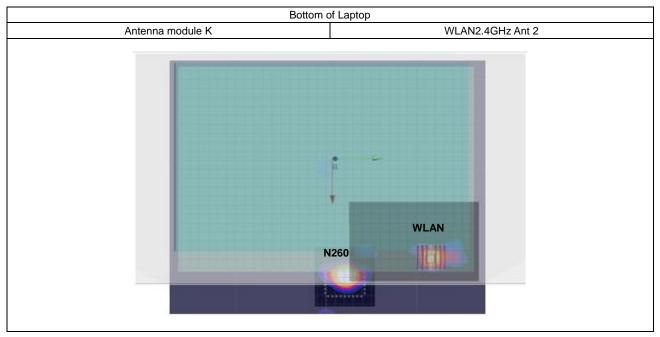


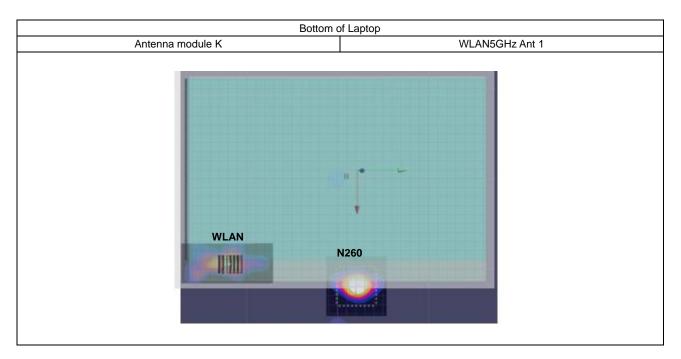


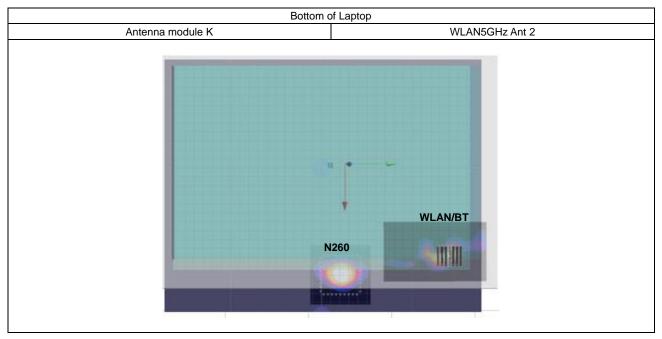






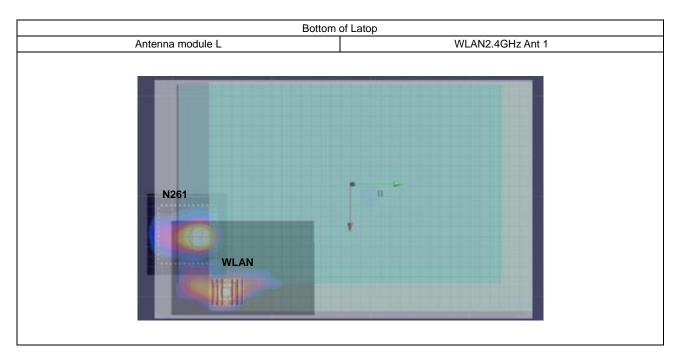


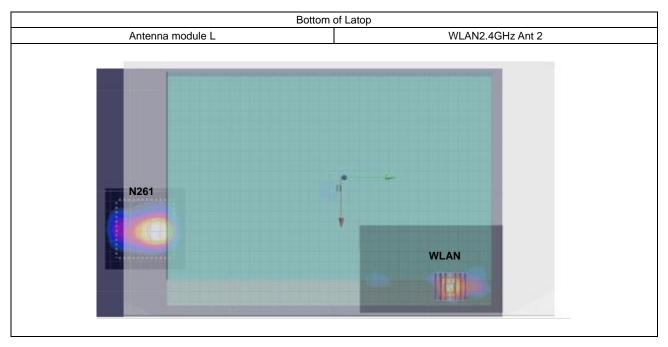




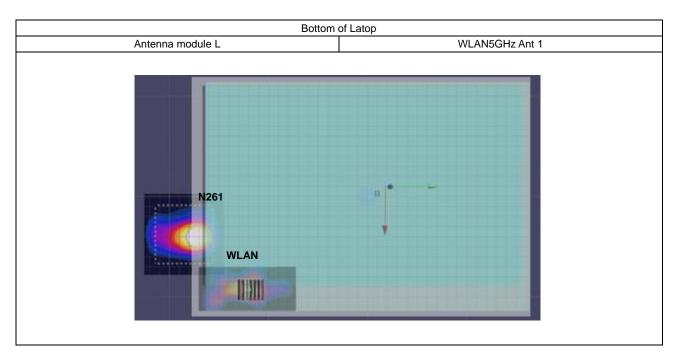
N261 collocated WiFi/BT

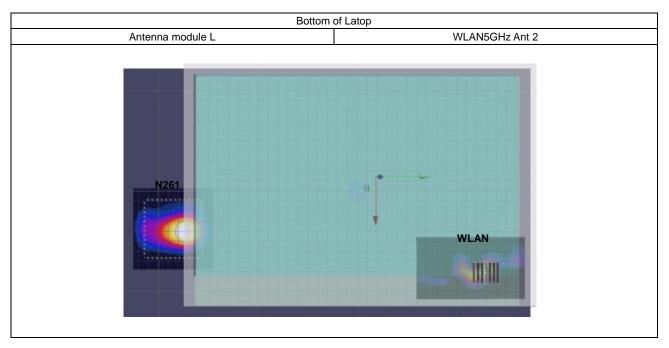
	Edge 3
Antenna module K	WLAN2.4GHz Ant 1
WLAN	
	N261
Contraction of the	
The second se	

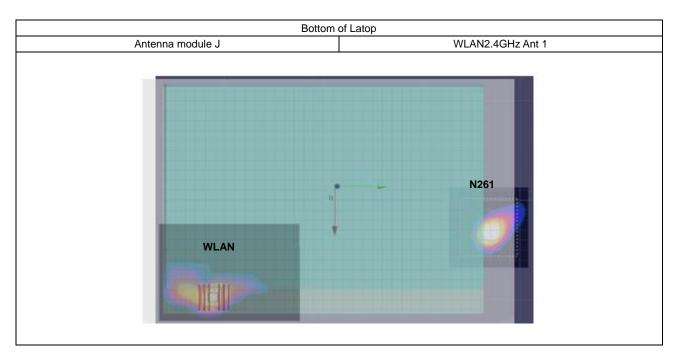

	Edge 3	
Antenna module K		VLAN2.4GHz Ant 2
	N261	WLAN
		TI DAIL
		The second se
	• • • • • • • • • • • • • • • • • • •	

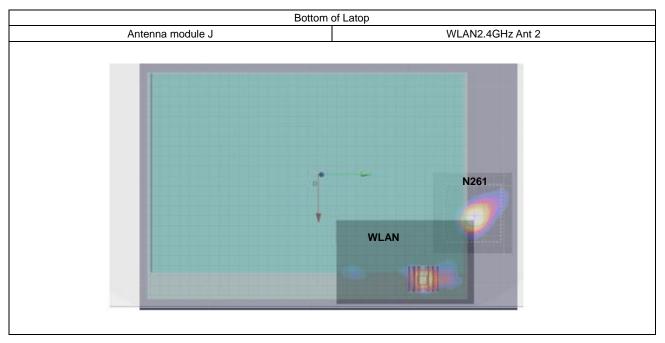


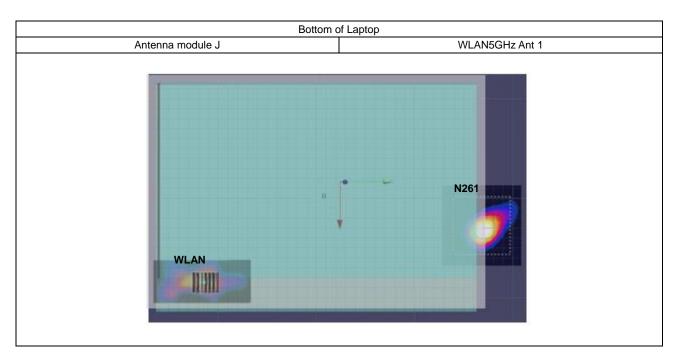
	Edge 3
Antenna module K	WLAN5GHz Ant 1
WLAN	N261
	المتعاملية والمتعاملية التزاري أأته بمتعاد

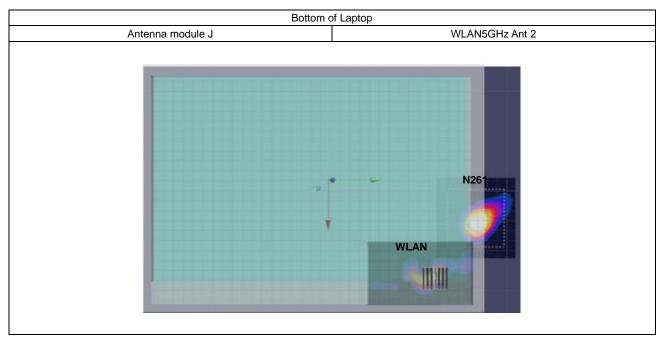

	Edge 3	
Antenna module K	W	_AN5GHz Ant 2
	· · · ·	
	NI264	WLAN
	N261	and the second se
	• • •	
م اد اد ها ها در به ها د به ها ۲۳۱		Conception of the local division of the loca
	The second secon	

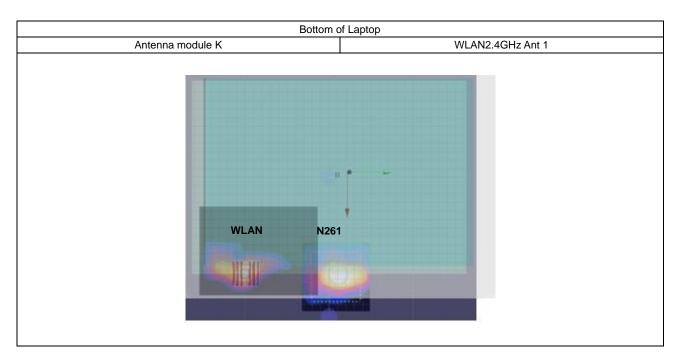


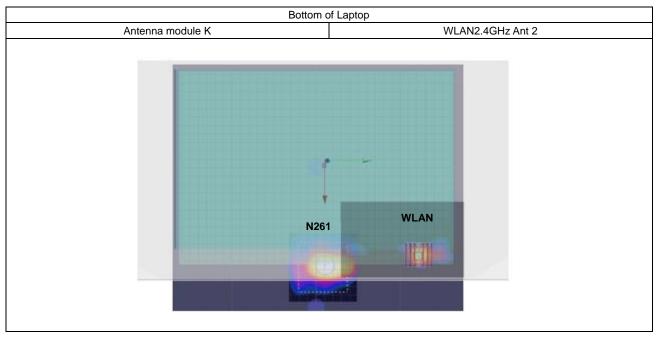


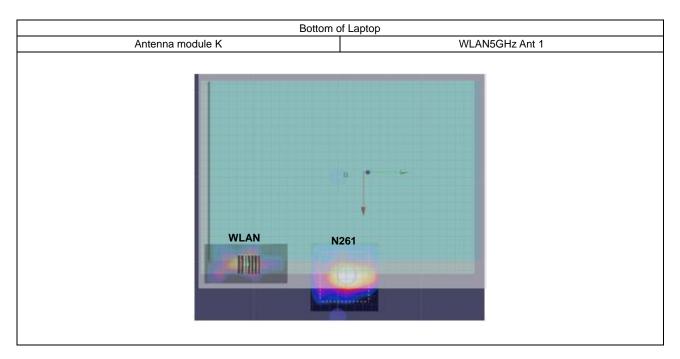


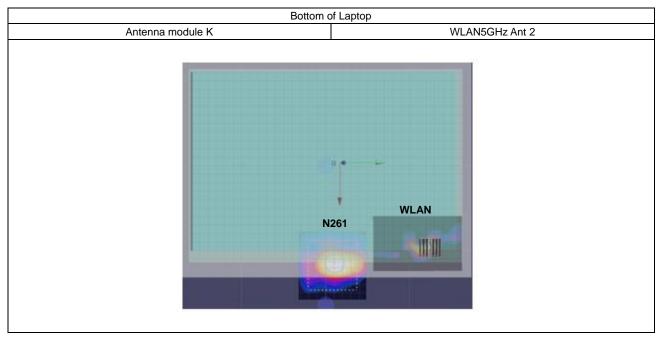












11.2 <u>5G NR + LTE + WLAN + BT Sim-Tx analysis</u>

In 5G NR + LTE + WLAN + BT simultaneous transmission, 5G NR and LTE transmission are managed and controlled by Qualcomm® Smart Transmit, while the RF exposure from WLAN and BT radios is managed using legacy approach, i.e., through a fixed power back-off if needed.

Since WLAN and BT do not employ time-averaging, 1gSAR and 10gSAR measurement for WLAN and BT need to be conducted at their corresponding rated power following current FCC test procedures to determine reported SAR values.

Smart Transmit current implementation assumes hotspots from 5G NR and LTE are collocated. Therefore, for a total of 100% exposure margin, if LTE uses x%, then the exposure margin left for 5G NR is capped to (100-x)%. Thus, the compliance equation for LTE + 5G NR is

 $x\% *A + (100-x)\% *B \le 1.0,$

Where, A is normalized reported time-averaged SAR exposure ratio from LTE, and A \leq 1.0; B is normalized reported time-averaged exposure ratio from 5G NR (i.e., PD exposure for mmW NR or SAR exposure for sub6 NR), and B \leq 1.0.

Let C = normalized reported SAR exposure ratio from WLAN+BT, then for compliance, $x\% * A + (100-x)\% * B + C \le 1.0$ (1)

 $x\% * A + (100-x)\% * B \le x\% * max(A, B) + (100-x)\% * max(A, B) \le max(A, B)$

 $x\% *A + (100-x)\% *B + C \le max(A, B) + C \le 1.0$ (2)

if A + C \leq 1.0 and B + C \leq 1.0 can be proven, then "x% * A + (100-x)% * B + C \leq 1.0". Therefore simultaneous transmission analysis for 5G NR + LTE + WLAN + BT can be performed in two steps

Step 1: Prove total exposure ratio (TER) of LTE + WLAN + BT < 1 Step 2: Prove total exposure ratio (TER) of 5G NR + WLAN + BT < 1

Else, if A + C > 1.0 and/or B + C > 1.0, then the followings need to hold true for compliance:

i. A and C meet SPLSR criteria, i.e., A and C are decoupled, and ii. $(100-x)\% * B + C \le 1.0$, and iii. $x\% * A + (100-x)\% * B \le 1.0$

Note iii. is covered in Part 2 report; i. and ii. should be addressed in Part 1 report.

Step 1(i): it's justified in Part 1 SAR report (Sporton report number FA070206A, rev.01) Step 2(ii): it's justified in section 11.1

Furthermore, for LTE + WLAN + BT and 5G sub6 NR + WLAN + BT, the reported SAR from each radio should be used in total SAR exposure analysis, where reported SAR from WLAN and BT is determined using corresponding rated power (denoted as SARWLAN and SARBT, respectively), and the reported time-averaged SAR for LTE and 5G sub6 NR should be scaled to their corresponding power level that is equal to "minimum {[Plimit (dBm) + design related total uncertainty], Pmax}". Here, the design related total uncertainty is the device design uncertainty for all radios operating at frequency below 6GHz.

Similarly, for 5G mmW NR + WLAN + BT, the normalized reported exposure ratio from each radio should be used in total exposure ratio (TER) analysis, where,

Reported SAR exposure ratio from WLAN or BT = $\frac{SAR_{WLAN} \text{ or } SAR_{BT}}{regulatory \ limit}$

Reported time average PD exposure ratio from 5G mmWave NR = (PD_design_targer) + mmWave device design related total uncertainty

The TER analysis for the simultaneous transmission containing WLAN and BT is similar to legacy approach. It is worth to note that in the case of 5G mmW NR + WLAN + BT, perform TER for only mmW modules that are close to WLAN/BT antennas. Some of mmW modules can be excluded from TER analysis if they meet below criteria:

Demonstrate exclusion by showing no overlap in -10dB contours (relative to hotspot value) for both simulated PD distributions for all supported beams by this mmW module and measured SAR distributions of WLAN/BT, assuming PD exposure ratio is less than 0.9 (note that PD is capped to 75% for 3dB in reserve_power_margin setting) and TER of WLAN+BT is less than 0.9. Note that PD distributions be included in Section 11 of Part 1 report to support this analysis.

Test Engineer : Steven Chang and Tom Jiang

12. Uncertainty Assessment

The budget is valid for evaluation distances > $\lambda/2\pi$. For specific tests and configurations, the Uncertainty could be considerably smaller.

Preliminary Module mmWave Uncertainty Budget Evaluation Distances to the Antennas > λ / 2π								
Error Description	Uncertainty Value (± dB)	Probability	Divisor	(Ci)	Standard Uncertainty (±dB)	(Vi) Veff		
Measurement System								
Probe Calibration	0.49	N	1	1	0.49	∞		
Hemispherical Isotropy	0.50	R	1.732	1	0.29	∞		
Linearity	0.20	R	1.732	0	0.12	∞		
System Detection Limits	0.04	R	1.732	1	0.02	∞		
Modulation Response	0.40	R	1.732	1	0.23	∞		
Readout Electronics	0.03	N	1	1	0.03	∞		
Response Time	0.00	R	1.732	1	0.00	∞		
Integration Time	0.00	R	1.732	1	0.00	∞		
RF Ambient Noise	0.2	R	1.732	1	0.12	∞		
RF Ambient Reflections	0.21	R	1.732	1	0.12	∞		
Probe Positioner	0.04	R	1.732	1	0.02	∞		
Probe Positioning	0.30	R	1.732	1	0.17	∞		
Savg Reconstruction	0.60	R	1.732	1	0.35	∞		
Test Sample Related								
Power Drift	0.2	R	1.732	1	0.12	∞		
Input Power	0	N	1	0	0.00	∞		
	Combined Std. Un	certainty			0.76 dB	∞		
	K=2							
	1.52 dB							

13. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [3] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [4] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.