TEST REPORT

of.

FCC PART 15 SUBPART E AND CANADA RSS-210

\square	New Application;	Class I PC;	Class II PC
	- 10 11 - pp - 10 00 0 1 0 1 1 ,	,	

Product: Thin Client

Brand: acer

Model: Veriton N2010G

Model Difference: N/A

FCC ID: HLZFX1

IC: 1754F-FX1

FCC Rule Part: §15.407, NII

IC Rule Part: RSS-210 issue 8:2010, Annex 9

Applicant: Acer Incorporated

Address: 8F, 88, Sec 1, Hsin Tai Wu Rd, Hsichih, Taipei

Hsien, Taiwan

Test Performed by:

International Standards Laboratory

<Lung-Tan LAB>

*Site Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-13LR036FE

Issue Date: 2013/03/21

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

-2 of 108-

FCC ID: HLZFX1 IC: 1754F-FX1

VERIFICATION OF COMPLIANCE

Applicant: Acer Incorporated

Product Description: Thin Client

Brand Name: acer

Model No.: Veriton N2010G

Model Difference: N/A

FCC ID: HLZFX1 IC: 1754F-FX1

FCC Rule Part: §15.407

IC Rule Part RSS-210 issue 8:2010, Annex 9

Date of test: $2013/03/04 \sim 2013/03/21$

Date of EUT Received: 2013/03/04

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:

Dion Chang / Engineer

Prepared By:

Date: 2013/03/21

Eva Kao / Technical Supervisor

Approved By:

Date: 2013/03/21

Vincent Su / Technical Manager

Version

Version No.	Date	Description
00	2013/03/21	Initial creation of document

Table of Contents

I.	GEN	ERAL INFORMATION	6
	1.1.	Product Description	6
	1.2.	Related Submittal(s) / Grant (s)	8
	1.3.	Test Methodology	8
	1.4.	Test Facility	8
	1.5.	Special Accessories	8
	1.6.	Equipment Modifications	8
2.	SYS	TEM TEST CONFIGURATION	9
	2.1.	EUT Configuration	9
	2.2.	EUT Exercise	9
	2.3.	Test Procedure	g
	2.4.	Configuration of Tested System	10
3.	SUM	IMARY OF TEST RESULT	11
4.	DES	CRIPTION OF TEST MODES	12
5.	AC I	POWER LINE CONDUCTED EMISSION TEST	13
	5.1.	Standard Applicable	
	5.2.	Measurement Equipment Used:	13
	5.3.	EUT Setup:	14
	5.4.	Measurement Procedure:	14
	5.5.	Measurement Result:	14
6.	PEA	K OUTPUT POWER MEASUREMENT	19
	6.1	Standard Applicable	19
	6.2	Measurement Procedure	20
	6.3	Measurement Equipment Used:	20
	6.4	Measurement Equipment Used:	20
	6.5	Measurement Result	21
7.	26dB	B and 99% EMISSION BANDWIDTH MEASUREMENT	22
	7.1	Standard Applicable	22
	7.2	Measurement Procedure	22
	7.3	Measurement Equipment Used:	22
	7.4	Test Set-up:	22
	7.5	Measurement Result	23
8.	PEA	K POWER SPECTRAL DENSITY	30
	8.1	Standard Applicable	30
	8.2	Measurement Procedure	31
	8.3	Measurement Equipment Used:	31
	8.4	Test Set-up:	31
	8.5	Measurement Result	32

9.	PEA:	K EXCURSION MEASUREMENT	39
	9.1	Standard Applicable	39
	9.2	Measurement Procedure	39
	9.3	Measurement Equipment Used:	39
	9.4	Test Set-up:	39
	9.5	Test Results:	40
10.	UND	ESIRABLE EMISSION - CONDUCTED MEASUREMENT	47
	10.1	Standard Applicable	47
	10.2	Measurement Procedure	48
	10.3	Measurement Equipment Used:	48
11.	UND	ESIRABLE EMISSION - RADICTED MEASUREMENT	67
	11.1	Standard Applicable	67
	11.2	EUT Setup	70
	11.3	Measurement Procedure	70
	11.4	Test SET-UP (Block Diagram of Configuration)	71
	11.5	Measurement Equipment Used:	72
	11.6	Field Strength Calculation	73
	11.7	Measurement Result	73
12.	TRA	NSMISSION IN THE ABSENCE OF DATA	88
	12.1	Standard Applicable	88
	12.2	Result:	88
13.	FRE	QUENCY STABILITY	89
	13.1	Standard Applicable	89
	13.2	Result:	89
14.	ANT	ENNA REQUIREMENT	90
	14.1	Standard Applicable	90
	14.2	Antenna Connected Construction	90
15.	TPC	and DFS MEASUREMENT	91
	15.1	TPC: Standard Applicable	
	15.2	DFS: Standard Applicable	91
	15.3	Test Equipment Used:	97
	15.4	Test results	98
16.	Maxi	imum Permissible Exposure (MPE)	107
	16.1	Standard Applicable	
	16.2	Maximum Permissible Exposure (MPE) Evaluation	108

1. GENERAL INFORMATION

1.1. Product Description

General:

Thin Client		
acer		
Veriton N2010G		
N/A		
12Vdc from AC/DC adapter		
1. Adapter model: PA-1051-0, Supple: LITEON		
2. Adapter model: Au-799ln, Supple: Elementech International Co., Ltd.		
N/A		
N/A		
No		
Client(without radar detection)		
No		
Indoor		

-7 of 108-

FCC ID: HLZFX1 IC: 1754F-FX1

WLAN: 1TX/1RX

Wi-Fi	Frequency Range (MHz)	Channels	Peak Rated Power	Modulation Technology		
802.11b	2412 – 2462(DTS)	11	20.4dBm	DSSS		
802.11g	2412 – 2462(DTS)	11	23.61dBm	DSSS/OFDM		
802.11n	HT20 2412 – 2462(DTS)	11	23.02dBm	OFDM		
	5180 – 5320(NII)	8	12.53dBm			
802.11a	5500 – 5700(NII)	8	12.16dBm	OFDM		
	5745 – 5825(DTS)	5	17.46dBm			
	HT20 5180 – 5320(NII)	8	12.43dBm			
802.11n	HT20 5500 – 5700(NII)	8	12.05dBm	OFDM		
	HT20 5745 – 5825(DTS)	5	17.53dBm			
Modulation type		CCK, DQPSK, DBPSK for DSSS 64QAM. 16QAM, QPSK, BPSK for OFDM				
Transition Rat	e:	Upto 65Mbps				
Antenna Designation:		PIFA Antenna 2412 – 2462MHz: -2.07dBi 5180 – 5320MHz: -0.03dBi 5500 – 5700MHz: 0.25dBi 5745 – 5825MHz: 0.7dBi				

The EUT is compliance with IEEE 802.11 a/b/g/n Standard. This report applies for frequency bands 5180~MHz - 5320~MHz and 5500~MHz - 5700~MHz.

類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for <u>FCC ID: HLZFX1</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules and <u>IC: 1754F-FX1</u> filing to comply with Industry Canada RSS-210 issue 8: 2010 Annex 9. The composite system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). and RSS-Gen: 2010. Radiated testing was performed at an antenna to EUT distance 3 meters. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory <Lung-Tan LAB> No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd., Lung-Tan Hsiang, Tao Yuan County 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC Registration Number is: TW1036, Canada Registration Number: 4067B-3.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

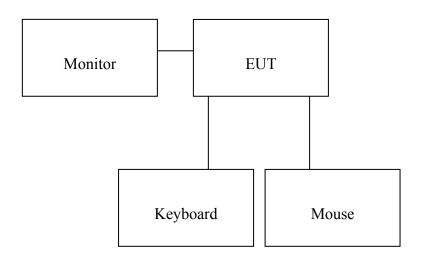
The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions


The EUT is a placed on as turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." Is still within the 3dB illumination BW of the measurement antenna. According to the requirements in Section 8 and 13 and Subclause 8.3.1.2 of ANSI C63.4-2003.

類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 1-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	Monitor	DELL	2408	N/A	Shielding	No- Shielding
2	Keyboard	DELL	SK-8115	N/A	Shielding	N/A
3	Mouse	DELL	MO56UC	N/A	Shielding	N/A

3. SUMMARY OF TEST RESULT

FCC Rules	Description Of Test	Result
§15.207	AC Power Line Conducted	Compliant
RSS-Gen §7.2.4	Emission	
§15.407(a)		Compliant
RSS 210 A9.2	26 dB Emission Bandwidth	
RSS-Gen §4.6.3		
§15.407(a)	D 10 4 AD M	Compliant
RSS 210 A9.2(1)(2)(3)	Peak Output Power Measurement	
§15.407(a)	Peak Power Spectral Density	Compliant
RSS 210 A9.2(1)(2)(3)	Measurement	
15.407(a)(6)	Peak Excursion Measurement	Compliant
§15.407(b)	Undesirable Emission – Con-	Compliant
RSS 210 A9.2(1)(2)(3)	ducted Measurement	
§15.407(b)	Undesirable Emission – Radiated	Compliant
RSS 210 A9.2(1)(2)(3)	Measurement	
§15.407©	Transmission in case of Absence	Compliant
RSS 210 A9.4(4)	of Information	
§15.407(g)	G. 137.	Compliant
RSS 210 A9.5(5)	Frequency Stability	
§15.407(a)		Compliant
RSS-GEN 7.1.2,	Antenna Requirement	
RSS-210 issue 8,§A8.4		
§15.407(d)	TDC 1DC M	Compliant
RSS 210 A9.3	TPC and DFS Measurement	
MPE	Maximum Permissible Exposure	Compliant

-12 of 108- FCC ID: HLZFX1

IC: 1754F-FX1

4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

5180MHz-5320MHz:

802.11 a mode: Channel lowest (5180MHz) · Mid (5260MHz) and Highest (5320MHz) with 6Mbps data rate are chosen for full testing.

802.11 n HT 20 mode: Channel lowest (5180MHz) · Mid (5260MHz) and Highest (5320MHz) with 6.5Mbps data rate are chosen for full testing

5500MHz-5700MHz:

802.11 a mode: Channel lowest (5500MHz) · Mid (5580MHz) and Highest (5700MHz) with 6Mbps data rate are chosen for full testing.

802.11 n HT 20 mode: Channel lowest (5500MHz) · Mid (5580MHz) and Highest (5700MHz) with 6.5Mbps data rate are chosen for full testing.

The worst case 802.11a 5180MHz-5320MHz was reported for Radiated Spurious Emission.

5. AC POWER LINE CONDUCTED EMISSION TEST

5.1. Standard Applicable

According to §15.207 and RSS-Gen §7.2.4, frequency range within 150 KHz to 30 MHz shall not exceed the Limit table as below.

Frequency range	Limits dB(uV)			
MHz	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Note

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2. Measurement Equipment Used:

Conducted Emission Test Site							
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.		
TYPE		NUMBER	NUMBER	CAL.			
Conduction 03							
EMI Receiver 11	ROHDE & SCHWARZ	ESCI	100568	07/16/2012	07/16/2013		
ISNT2-02	FCC	FCC-TLISN-T2-02	20413	07/22/2012	07/22/2013		
ISNT4-02	FCC	FCC-TLISN-T4-02	20575	07/22/2012	07/22/2013		
ISNT8-04	FCC	FCC-TLISN-T8-09	101192	09/29/2012	09/29/2013		
LISN 07	FCC Inc.	FCC-LISN-50-100- 4-02	07040	07/23/2012	07/23/2013		
LISN 08	FCC	FCC-LISN50-25-2- 01	07039	07/23/2012	07/23/2013		
Conduction 03 -1 Cable	WOKEN	CFD 300-NL	Conduction 03 -1	06/28/2012	06/28/2013		

-14 of 108- FCC ID: HLZFX1

IC: 1754F-FX1

Report Number: ISL-13LR036FE

5.3. EUT Setup:

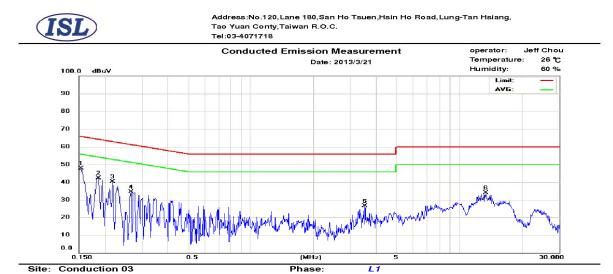
- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2003.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4. Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5. Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

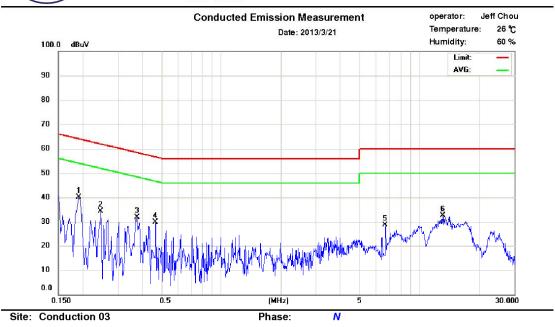

Note: Refer to next page for measurement data and plots.

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2013/03/21
Adapter model:	Au-799ln	Test By:	Dino

Limit:	CISPR22	Class	в	Conduction	n

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.1540	0.15	46.36	65.78	-19.42	31.98	55.78	-23.80	
2	0.1860	0.14	40.81	64.21	-23.40	26.76	54.21	-27.45	
3	0.2180	0.14	31.02	62.89	-31.87	11.30	52.89	-41.59	
4	0.2660	0.14	32.60	61.24	-28.64	19.91	51.24	-31.33	
5	3.5140	0.22	16.80	56.00	-39.20	6.62	46.00	-39.38	
6	13.3740	0.37	29.45	60.00	-30.55	22.35	50.00	-27.65	



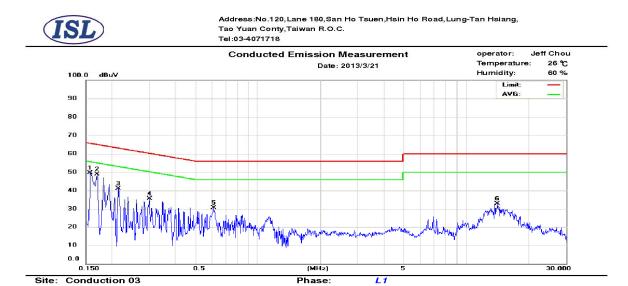
-16 of 108-

FCC ID: HLZFX1 IC: 1754F-FX1

Addrs

Address:No.120,Lane 180,San Ho Tsuen,Hsin Ho Road,Lung-Tan Hsiang, Tao Yuan Conty,Taiwan R.O.C. Tel:03-4071718

Limit: CISPR22 Class B Conduction

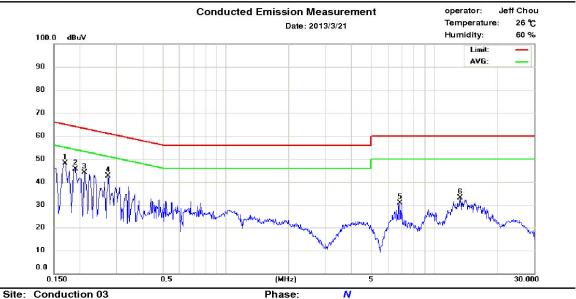

	Frequency	Correct Factor	QP.	QP	QP	AVG	AVG	AVG	
No.	(MHz)	(dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Emission (dBuV)	Limit (dBuV)	Margin (dB)	Note
1	0.1900	0.07	38.89	64.04	-25.15	26.69	54.04	-27.35	
2	0.2460	0.07	24.64	61.89	-37.25	4.17	51.89	-47.72	
3	0.3740	0.06	25.76	58.41	-32.65	20.40	48.41	-28.01	
4	0.4660	0.07	19.35	56.58	-37.23	4.68	46.58	-41.90	
5	6.7140	0.17	16.66	60.00	-43.34	8.52	50.00	-41.48	
6	13.0580	0.25	29.45	60.00	-30.55	22.34	50.00	-27.66	

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2013/03/11
Adapter model:	PA-1051-0	Test By:	Dino

Limit:	CISPR22	Class E	3 Conduction

No.	Frequency	Correct Factor	QP Emission	QP Limit	QP Margin	AVG Emission	AVG Limit	AVG Margin	Note
140.	(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Note
1	0.1580	0.15	48.40	65.57	-17.17	28.99	55.57	-26.58	
2	0.1700	0.15	46.92	64.96	-18.04	28.06	54.96	-26.90	
3	0.2140	0.14	40.43	63.05	-22.62	21.87	53.05	-31.18	
4	0.3020	0.13	29.88	60.19	-30.31	12.44	50.19	-37.75	
5	0.6140	0.15	27.76	56.00	-28.24	20.91	46.00	-25.09	
6	14 1340	0.39	29 63	60.00	-30 37	24.82	50 00	-25 18	


-18 of 108-

FCC ID: HLZFX1 IC: 1754F-FX1

.

Address:No.120,Lane 180,San Ho Tsuen,Hsin Ho Road,Lung-Tan Hsiang, Tao Yuan Conty,Taiwan R.O.C. Tel:03-4071718

Limit: CISPR22 Class B Conduction

No.	Frequency	Correct Factor	QP Emission	QP Limit	QP Margin	AVG Emission	AVG Limit	AVG Margin	Note
	(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1700	0.08	46.27	64.96	-18.69	27.53	54.96	-27.43	
2	0.1900	0.07	41.53	64.04	-22.51	23.85	54.04	-30.19	
3	0.2100	0.07	40.00	63.21	-23.21	23.12	53.21	-30.09	
4	0.2740	0.07	33.80	61.00	-27.20	21.66	51.00	-29.34	
5	6.8700	0.17	21.36	60.00	-38.64	15.50	50.00	-34.50	
6	13 2820	0.25	31 26	ഒറ ററ	-28 74	25.76	50.00	-24 24	

6. PEAK OUTPUT POWER MEASUREMENT

6.1 Standard Applicable

According to §15.407(a)

- 1. For the band 5.15-5.25 GHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B.
- 2. For the band 5.25-5.35 GHz and 5.47-5.725GMHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B.
- 3. For the band 5.725-5.825 GHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 1W (30dBm) or 17 dBm + 10log B.

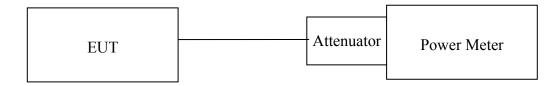
According to RSS-210 A9.2

- 1. For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10dBm in any 1.0 MHz band.
- 2. For the bands 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. In addition, devices with maximum e.i.r.p. greater than 500mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. In addition to the above requirements, devices operating in the band 5250-5350 MHz with maximum e.i.r.p. greater than 200mW shall comply with the following e.i.r.p. elevation mask where θ is the angle above the local horizontal plane (of the earth) as shown below:
 - (i) -13 dB(W/MHz) for $0o \le \theta \le 8o$
 - (ii) -13 0.716 (θ -8) dB(W/MHz) for $80 \le \theta < 400$
 - (iii) -35.9 1.22 (θ -40) dB(W/MHz) for $40o \le \theta \le 45o$
 - (iv) -42 dB(W/MHz) for $\theta > 45^{\circ}$
- 3. For the band 5725-5825 MHz, the maximum conducted output power shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 17dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Fixed point-to-point systems for this band are permitted to have an e.i.r.p. greater than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain antennas, but not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4W e.i.r.p. However, remote stations of point-to-multipoint systems shall be permitted to operate at greater than 4W e.i.r.p, under the same conditions as for point-to-point systems where B is the 26dB emission bandwidth in MHz.

-20 of 108- FCC ID: HLZFX1

IC: 1754F-FX1

6.2 Measurement Procedure


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

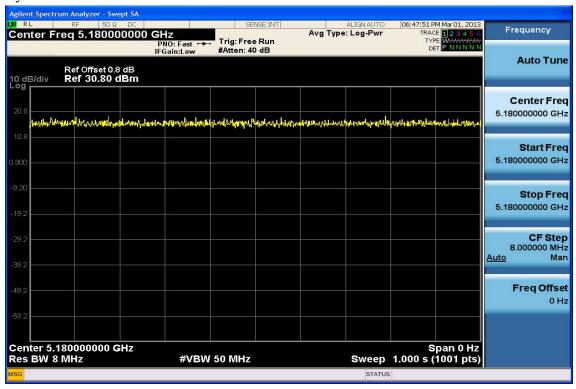
Refer to section C4 of KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

6.3 Measurement Equipment Used:

old Wiedlichie Equipment eseut								
	Conducted Emission Test Site							
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.			
TYPE		NUMBER	NUMBER	CAL.				
Power Meter 05	Anritsu	ML2495A	1116010	04/17/2012	04/16/2013			
Power Sensor 05	Anritsu	MA2411B	34NKF50	04/16/2012	04/15/2013			
Temperature Chamber	KSON	THS-B4H100	2287	03/15/2013	03/14/2014			
DC Power supply	ABM	51850	N/A	06/17/2012	06/16/2013			
AC Power supply	EXTECH	CFC105W	NA	12/19/2012	12/18/2013			
Splitter	MCLI	PS4-199	12465	07/18/2012	07/17/2013			
Spectrum analyzer	Agilent	N9030A	MY51360021	03/11/2013	03/10/2014			

6.4 Measurement Equipment Used:

6.5 Measurement Result


802.11a

Mode	Freq(MHz)	channel	Peak power (dBm)	limit(dBm)	result
	5180	36	12.53	16.98	pass
	5260	52	12.49	23.97	pass
802.11a	5320	64	12.25	23.97	pass
002.11a	5500	100	12.07	23.97	pass
	5580	116	11.90	23.97	pass
	5700	140	12.16	23.97	pass

802.11n HT20

Mode	Freq(MHz)	channel	Peak power (dBm)	limit(dBm)	result
	5180	36	12.43	16.98	pass
	5260	52	12.22	23.97	pass
802.11n HT20	5320	64	12.09	23.97	pass
802.11n H120	5500	100	11.98	23.97	pass
	5580	116	11.81	23.97	pass
	5700	140	12.05	23.97	pass

-22 of 108- FCC ID: HLZFX1

IC: 1754F-FX1

7. 26dB and 99% EMISSION BANDWIDTH MEASUREMENT

7.1 Standard Applicable

According to §15.407(a). No Limit required.

According to RSS 210 A9.2(1), No Limit required

RSS-Gen §4.4.1, the transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual.

The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.

7.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=300KHz, VBW =1MHz, Span= 50MHz, Sweep=auto
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to section D of KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

7.3 Measurement Equipment Used:

Refer to section 6.3 for details.

7.4 Test Set-up:

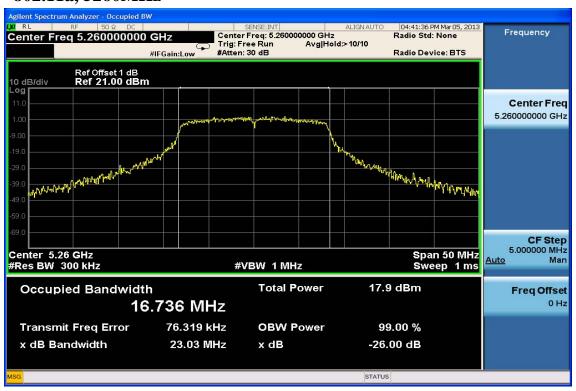
Refer to section 6.4 for details.

7.5 Measurement Result

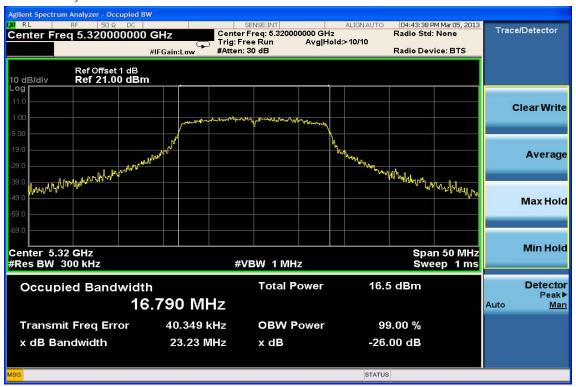
802.11a Mode

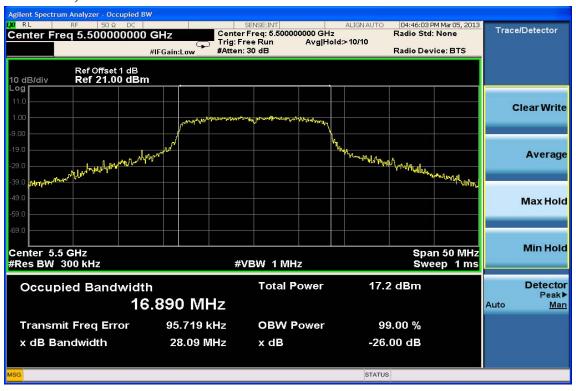

Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	10 Log (B) with 26dB Bandwidth (dB)	10 Log (B) with 99% Bandwidth (dB)
5180	23.520	16.808	13.71	12.26
5260	23.030	16.736	13.62	12.24
5320	23.230	16.790	13.66	12.25
5500	28.090	16.890	14.49	12.28
5580	23.250	16.832	13.66	12.26
5700	24.980	16.957	13.98	12.29

802.11n HT20 Mode


Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	10 Log (B) with 26dB Bandwidth (dB)	10 Log (B) with 26dB Bandwidth (dB)
5180	24.200	17.855	13.84	12.52
5260	23.640	17.810	13.74	12.51
5320	24.300	17.808	13.86	12.51
5500	28.500	18.100	14.55	12.58
5580	24.340	17.997	13.86	12.55
5700	29.700	18.152	14.73	12.59

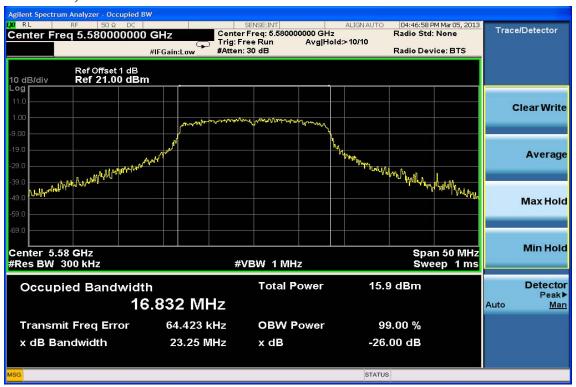
26dB and 99% Band Width Test Data 802.11a, 5180MHz

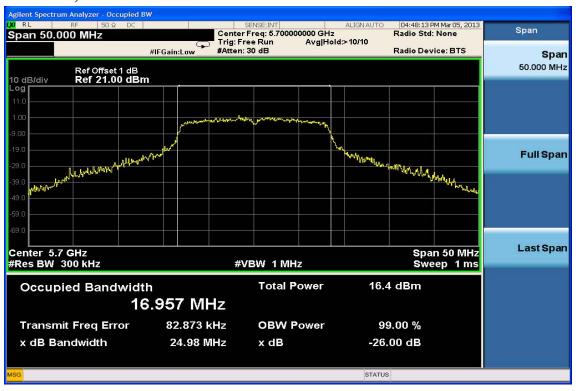

802.11a, 5260MHz


類智科技股份有限公司 International Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

802.11a, 5320MHz

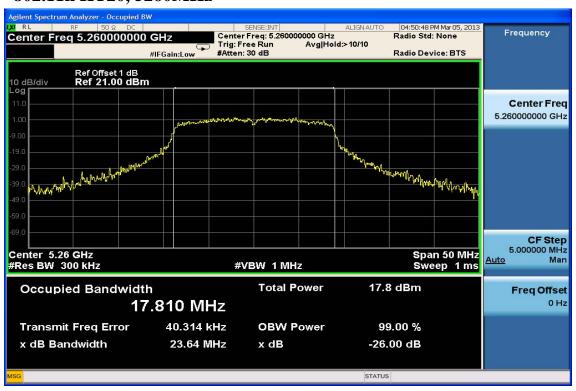

802.11a, 5500MHz


類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

802.11a, 5580MHz

802.11a, 5700MHz


類智科技股份有限公司 International Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

26dB and 99% Band Width Test Data 802.11n HT20, 5180MHz

802.11n HT20, 5260MHz

類智科技股份有限公司 international Standards Laboratory


FCC ID: HLZFX1

IC: 1754F-FX1

802.11n HT20, 5320MHz


802.11n HT20, 5500MHz


類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

802.11n HT20, 5580MHz

802.11n HT20, 5700MHz

8. PEAK POWER SPECTRAL DENSITY

8.1 Standard Applicable

According to §15.407(a)

- 1. For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band.
- 2. For the band 5.25-5.35 GHz and 5.47-5.725GMHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band.
- 3. For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 17 dBm in any 1-MHz band.

According to RSS-210 A9.2

- 1. For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.
- 2. For the bands 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. In addition, devices with maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. In addition to the above requirements, devices operating in the band 5250-5350 MHz with maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. elevation mask where θ is the angle above the local horizontal plane (of the earth) as shown below:
 - (i) -13 dB(W/MHz) for $0o \le \theta < 8o$
 - (ii) -13 0.716 (θ -8) dB(W/MHz) for $80 \le \theta < 400$
 - (iii) -35.9 1.22 (θ -40) dB(W/MHz) for $40o \le \theta \le 45o$
 - (iv) -42dB (W/MHz) for $\theta > 45^{\circ}$
- 3. For the band 5725-5825 MHz, the maximum conducted output power shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 17 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. Fixed point-to-point systems for this band are permitted to have an e.i.r.p. greater than 4 W, provided that the higher e.i.r.p. is achieved by employing higher gain antennas, but not higher transmitter output powers. Point-to-multipoint systems, omni-directional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding 4 W e.i.r.p. However, remote stations of point-to-multipoint systems shall be permitted to operate at greater than 4 W e.i.r.p, under the same conditions as for point-to-point systems. B is the 99% emission bandwidth in MHz.

8.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 3. Set RBW=1MHz,VBW=3MHz, Span=50MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of vedio averaging.
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

Refer to section E of KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

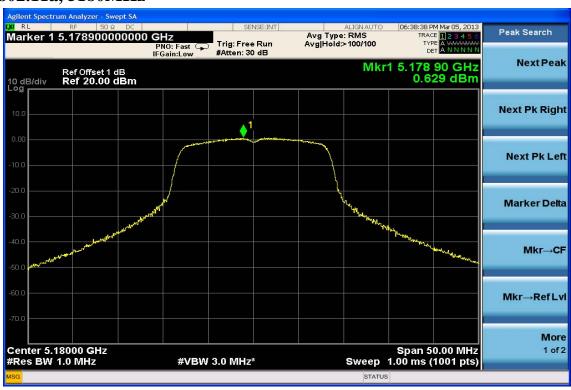
8.3 Measurement Equipment Used:

Refer to section 6.3 for details.

8.4 Test Set-up:

Refer to section 6.4 for details.

8.5 Measurement Result

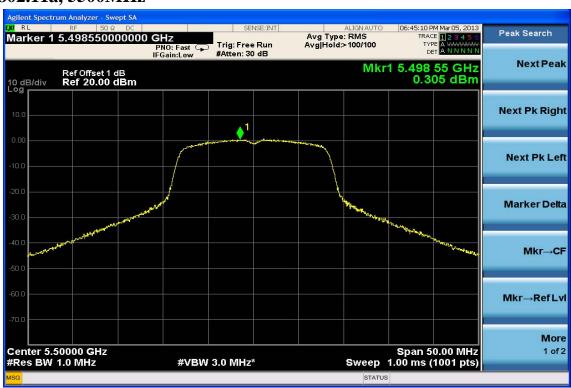

802.11a Mode

Frequency	RF Power Density	Cable loss	Maximum Limit
MHz	Reading (dBm)	(dB)	(dBm)
5180	0.629	0.00	4
5260	0.891	0.00	11
5320	-0.496	0.00	11
5500	0.305	0.00	11
5580	-1.085	0.00	11
5700	-0.642	0.00	11
802.11n HT20			
Frequency	RF Power Density	Cable loss	Maximum Limit
MHz	Reading (dBm)	(dB)	(dBm)
5180	0.372	0.00	4
5260	0.548	0.00	11
5320	-0.656	0.00	11
5500	0.043	0.00	11
5580 -1.305		0.00	11

Remark: offset 1dB for cable loss.

Peak Power Spectral Density Data Plot 802.11a, 5180MHz

802.11a, 5260MHz

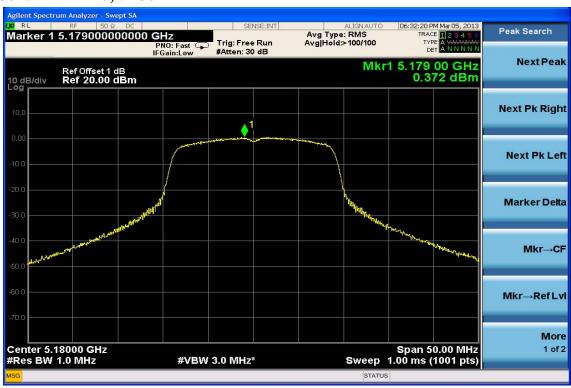

類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

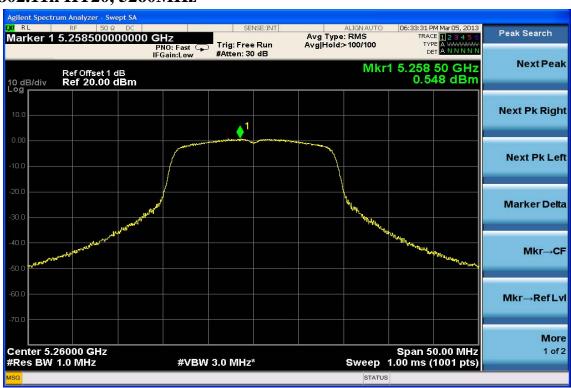
802.11a, 5320MHz

802.11a, 5500MHz

802.11a, 5580MHz



802.11a, 5700MHz



Peak Power Spectral Density Data Plot 802.11n HT20, 5180MHz

802.11n HT20, 5260MHz

類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1

IC: 1754F-FX1

802.11n HT20, 5320MHz

802.11n HT20, 5500MHz

802.11n HT20, 5580MHz

802.11n HT20, 5700MHz

9. PEAK EXCURSION MEASUREMENT

9.1 Standard Applicable

15.407(a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

9.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum.
- 3. Trace A, Set RBW=1MHz, VBW = 3MHz, Span = 26dBc, Max. hold.
- 4. Trace B, Set RBW=1MHz, VBW = 3MHz, Span = 26dBc, traces 100 sweeps of RMS averaging. Max. hold..
- 5. Delta Mark trace A center frequency and trace B center frequency.
- 6. Repeat above procedures until all frequency measured were complete.

Refer to section F of KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

9.3 Measurement Equipment Used:

Refer to section 6.3 for details.

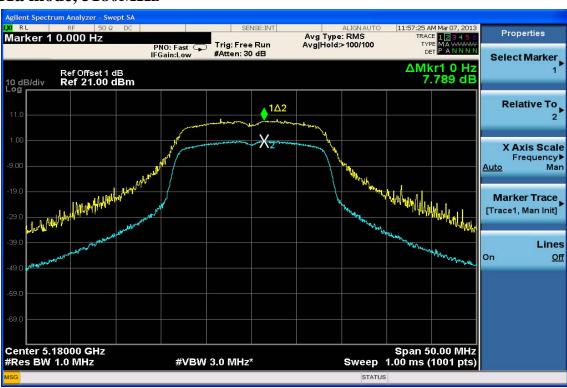
9.4 Test Set-up:

Refer to section 6.4 for details.

9.5 Test Results:

802.11a Mode

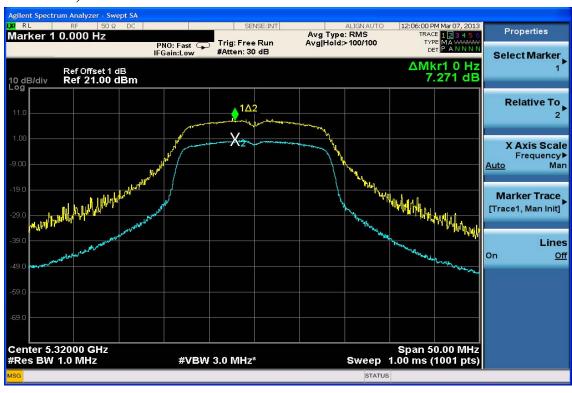
Frequency (MHz)	peak excursion	Limit	Margin
	(dB)	(dB)	(dB)
5180	7.789	13.00	-5.211
5260	7.456	13.00	-5.544
5320	7.271	13.00	-5.729
5500	7.588	13.00	-5.412
5580	6.719	13.00	-6.281
5700	6.639	13.00	-6.361

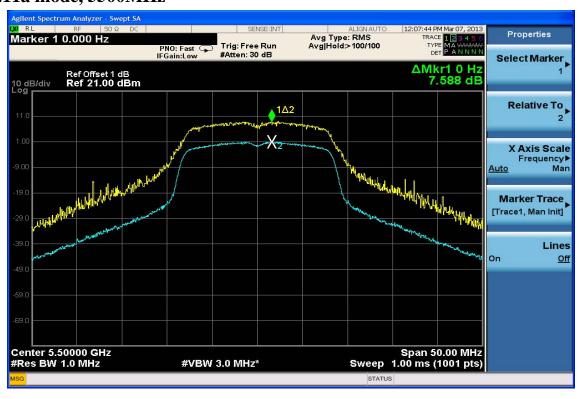

802.11n HT20 Mode

Frequency (MHz)	peak excursion	Limit	Margin
	(dB)	(dB)	(dB)
5180	7.744	13.00	-5.256
5260	7.453	13.00	-5.547
5320	7.613	13.00	-5.387
5500	7.381	13.00	-5.619
5580	7.087	13.00	-5.913
5700	7.649	13.00	-5.351

Remark: offset 1dB for cable loss.

Peak Excursion Data Plot 802.11a mode, 5180MHz

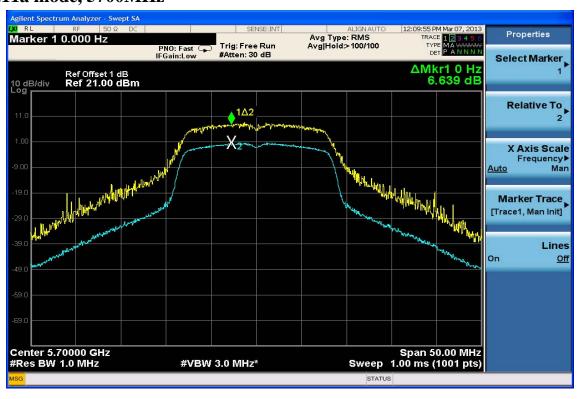

802.11a mode, 5260MHz


類智科技股份有限公司 International Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

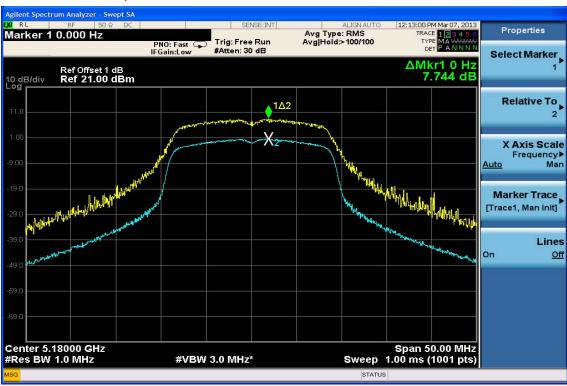
802.11a mode, 5320MHz

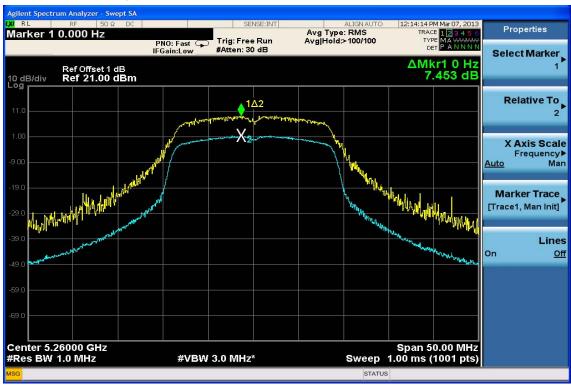
802.11a mode, 5500MHz


類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

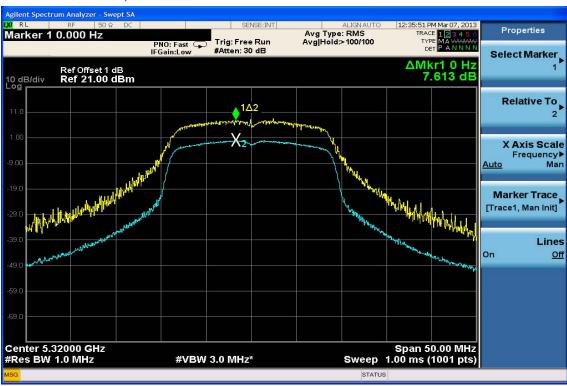
802.11a mode, 5580MHz


802.11a mode, 5700MHz


類智科技股份有限公司 international Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

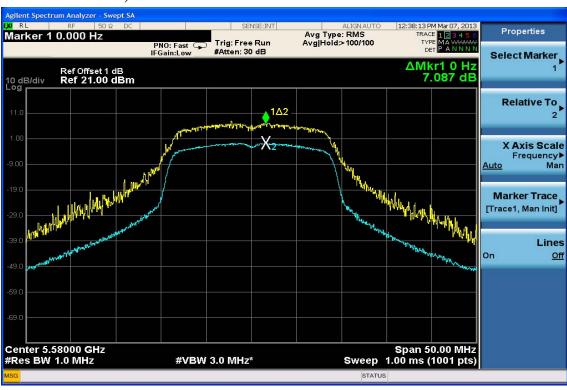
Peak Excursion Data Plot 802.11n HT20 mode, 5180MHz

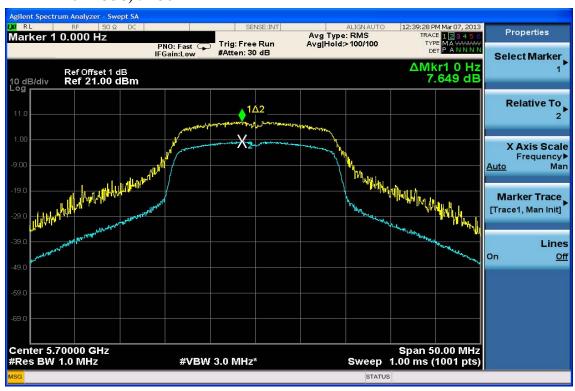

802.11n HT20 mode, 5180MHz


類智科技股份有限公司 International Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

802.11n HT20 mode, 5180MHz


802.11n HT20 mode, 5180MHz


類智科技股份有限公司 International Standards Laboratory

FCC ID: HLZFX1 IC: 1754F-FX1

802.11n HT20 mode, 5180MHz

802.11n HT20 mode, 5180MHz

-47 of 108- FCC ID: HLZFX1 IC: 1754F-FX1

10. UNDESIRABLE EMISSION - CONDUCTED MEASUREMENT

10.1 Standard Applicable

According to §15.407(b),

- (b) Undesirable Emission Limits: Except as shown in Paragraph (b)(6) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz.
- (5) The above emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Report Number: ISL-13LR036FE

-48 of 108- FCC ID: HLZFX1

IC: 1754F-FX1

Report Number: ISL-13LR036FE

According to RSS-210 A9.2

(1) For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27dBm/MHz e.i.r.p.

- (2) For transmitters operating in the band 5250-5350 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27dBm/MHz e.i.r.p. Devices operating in the band 5250-5350 MHz that generate emissions in the band 5150-5250 MHz shall not exceed an out-of-band emission limit of -27dBm/MHz e.i.r.p. in the band 5150-5250 MHz in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the band 5150-5250 MHz and shall be labeled "for indoor use only".
- (3) For transmitters operating in the band 5470-5725 MHz, all emissions outside that band shall not exceed -27dBm/MHz e.i.r.p.
- (4) For transmitters operating in the band 5725-5825 MHz, all emissions within the frequency range from the band edges to 10 MHz above or below the band edges shall not exceed -17dBm/MHz e.i.r.p. For frequencies more than 10 MHz above or below the band edges, emissions shall not exceed -27dBm/MHz.

10.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum.
- 3. Set Spectrum RBW=1MHz, VBW = 1MHz for peak measurement and 10Hz for average measurement.
- 4. Set Spectrum at lower/upper band edge and the restricted band adjacent to the low-er/upper edge of the authorized band, with the transmitter set to the lowest/highest channel.
- 5. Set Spectrum over the 30MHz to 40GHz range with the transmitter set to the lowest, middle, and highest channels.

Refer to section E of KDB Document: KDB789033 D01 General UNII Test Procedures v01r02

Conducted RF measurements of the transmitter output were made at the band edges and the adjacent restricted bands.

Also, conducted RF measurements of the transmitter output over the 30 MHz to 40 GHz band were made in order to identify any spurious signals that require further investigation or measurements on the radiated emissions site

10.3 Measurement Equipment Used:

Refer to section 6.3 for details.