1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 STANDARD APPLICABLE

According to \$1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)
	Limits for Gene	ral Population/Uncon	trolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-15000	/	/	1.0	30

F = frequency in MHz

* = Plane-wave equipment power density

1.2 MAXIMUM PERMISSIBLE EXPOSURE (MPE) EVALUATION

	Cable loss $= 0$	Peak Power Output						
СП			Data		D 11. 4			
СН	Frequency (MHz)	1	2	5.5	11	Required Limit		
1	2412	17.89	17.82	17.75	17.72	1 Watt = 30 dBm		
6	2437	18.31	18.19	18.08	18.01	1 Watt = 30 dBm		
11	2462	18.21	18.08	18.05	18.03	1 Watt = 30 dBm		

MPE Prediction (802.11b)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ and $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	18.31	(dBm)
Maximum peak output power at antenna input terminal:	67.76415076	(mW)
Duty cycle:	100	(%)
Maximum Pav :	67.76415076	(mW)
Antenna gain (typical):	0.73	(dBi)
Maximum antenna gain:	1.183041556	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.015957	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.015957mW/cm². This is below the uncontrolled exposure limit of 1mW/cm² at 2437MHz.

802.11g

1										
Cab	le loss = 0	Peak Power Output								
CII	Frequency		D							
СН	(MHz)	6	9	12	18	24	36	48	54	Required Limit
1	2412	22.05	22.01	21.91	21.86	21.77	21.73	21.63	21.56	1 Watt = 30 dBm
6	2437	23.37	23.27	23.18	23.11	22.99	22.96	22.83	22.82	1 Watt = 30 dBm
11	2462	22.51	22.48	22.40	22.33	22.27	22.23	22.20	22.16	1 Watt = 30 dBm

MPE Prediction (802.11g)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ and $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	23.37	(dBm)
Maximum peak output power at antenna input terminal:	217.2701179	(mW)
Duty cycle:	100	(%)
Maximum Pav :	217.2701179	(mW)
Antenna gain (typical):	0.73	(dBi)
Maximum antenna gain:	1.183041556	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.051162	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.051162mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2437MHz.

802.11n_20M

Cab	le loss $= 0$	Peak Power Output								
СН	Frequency			Dogwined Limit						
Сп	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	Required Limit
1	2412	20.32	20.27	20.14	20.11	20.05	19.98	19.95	19.86	1 Watt = 30 dBm
6	2437	22.78	22.66	22.65	22.59	22.51	22.42	22.37	22.31	1 Watt = 30 dBm
11	2462	20.82	20.76	20.66	20.52	20.49	20.35	20.29	20.23	1 Watt = 30 dBm

MPE Prediction (802.11 n_20M)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 π R²

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ and $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	22.78	(dDm)
Waxinium peak output power at antenna input terminar.	22.70	(dBm)
Maximum peak output power at antenna input terminal:	189.6705921	(mW)
Duty cycle:	100	(%)
Maximum Pav :	189.6705921	(mW)
Antenna gain (typical):	0.73	(dBi)
Maximum antenna gain:	1.183041556	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.044663	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.044663mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2437MHz.

802.11n_20M

Cab	le loss $= 0$	Peak Power Output								
СН	Frequency			Dogwined Limit						
Сп	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	Required Limit
1	2412	20.32	20.27	20.14	20.11	20.05	19.98	19.95	19.86	1 Watt = 30 dBm
6	2437	22.78	22.66	22.65	22.59	22.51	22.42	22.37	22.31	1 Watt = 30 dBm
11	2462	20.82	20.76	20.66	20.52	20.49	20.35	20.29	20.23	1 Watt = 30 dBm

MPE Prediction (802.11 n_20M)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 π R²

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ and $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	22.78	(dDm)
Waxinium peak output power at antenna input terminar.	22.70	(dBm)
Maximum peak output power at antenna input terminal:	189.6705921	(mW)
Duty cycle:	100	(%)
Maximum Pav :	189.6705921	(mW)
Antenna gain (typical):	0.73	(dBi)
Maximum antenna gain:	1.183041556	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.044663	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.044663mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2437MHz.

802.11n_20M

Cab	le loss $= 0$	Peak Power Output								
СН	Frequency			Dogwined Limit						
Сп	(MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	Required Limit
1	2412	20.38	20.33	20.24	20.14	20.10	20.02	19.95	19.86	1 Watt = 30 dBm
6	2437	22.79	22.68	22.65	22.60	22.49	22.43	22.39	22.32	1 Watt = 30 dBm
11	2462	20.73	20.69	20.66	20.52	20.49	20.45	20.38	20.30	1 Watt = 30 dBm

MPE Prediction (802.11 n_20M)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 π R²

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ and $\mathbf{R} = \mathbf{D}\mathbf{i}\mathbf{s}\mathbf{t}$ to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	22.79	(dBm)
Maximum peak output power at antenna input terminal:	190.107828	(mW)
Duty cycle:	100	(%)
Maximum Pav :	190.107828	(mW)
Antenna gain (typical):	0.73	(dBi)
Maximum antenna gain:	1.183041556	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.044766	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.044766mW/cm2. This is below the uncontrolled exposure limit of 1mW/cm2 at 2437MHz.