

FCC 47 CFR PART 15 SUBPART C

for

Tablet Computer Model: A7001 Marketing name: B3-A40 Brand: acer

Test Report Number: C170328Z03-RP1-1 Issued Date: April 26, 2017

Issued for

Acer Incorporated

8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C

Issued by:

Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccssz.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	April 26, 2017	Initial Issue	ALL	Sabrina Wang

TABLE OF CONTENTS

1	TEST CERTIFICATION	. 4
	TEST RESULT SUMMARY	. 5
3	EUT DESCRIPTION	. 6
	TEST METHODOLOGY	
	4.1. DESCRIPTION OF TEST MODES	
5	SETUP OF EQUIPMENT UNDER TEST	
	5.1. DESCRIPTION OF SUPPORT UNITS	9
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	
6	FACILITIES AND ACCREDITATIONS	10
	6.1. FACILITIES	
	6.2. ACCREDITATIONS	10
	6.3. MEASUREMENT UNCERTAINTY	10
7	FCC PART 15.247 REQUIREMENTS	11
	7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT	11
	7.2. SPURIOUS EMISSIONS MEASUREMENT	18
	7.3. 6dB BANDWIDTH MEASUREMENT	
	7.4. ANTENNA GAIN	62
	7.5. PEAK OUTPUT POWER	64
	7.6. BAND EDGES MEASUREMENT	
	7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT	84

1 TEST CERTIFICATION

Product	Tablet Computer
Model	A7001
Marketing name	B3-A40
Brand	acer
Tested	March 28~26, 2017
Applicant	Acer Incorporated 8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C
Manufacturer	Acer Incorporated 8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C

APPLICABLE STANDARDS					
Standard	Test Type	Standard	Test Type		
15.207(a)	Power Line Conducted Emissions	15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 		
15.247(a)(2)	6dB Bandwidth Measurement	15.247(b)(3) 15.247(b)(4)	Peak Power Measurement		
15.247(d)	Band Edges Measurement	15.247(e)	Peak Power Spectral Density		

We hereby certify that:

The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.10: 2013** and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

hard

Sunday Hu Supervisor of EMC Dept. Compliance Certification Services (Shenzhen) Inc.

Reviewed by:

Ruby Zhang Supervisor of Report Dept. Compliance Certification Services (Shenzhen) Inc.

2 TEST RESULT SUMMARY

	APPLICABLE STANDARDS				
Standard	Test Type	Result	Remark		
15.247(a)(2)	6dB Bandwidth Measurement	Pass	Meet the requirement of limit.		
15.247(b)(3) 15.247(b)(4)	Peak Power Measurement	Pass	Meet the requirement of limit.		
15.247(d)	Band Edges Measurement	Pass	Meet the requirement of limit.		
15.247(e)	Peak Power Spectral Density	Pass	Meet the requirement of limit.		
15.247(d) 15.209(a)	 Spurious Emissions Conducted Measurement Radiated Emissions 	Pass	Meet the requirement of limit.		
15.207(a)	Power line Conducted Emissions	Pass	Meet the requirement of limit.		

Note: 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

3 EUT DESCRIPTION

Product	Tablet Computer
Model Number	A7001
Marketing name	B3-A40
Brand	acer
Model Discrepancy	N/A
Identify Number	C170328Z03-RP1-1
Received Date	March 28, 2017
Power Supply	DC5.35V or DC5.2V supplied by the Adapter or DC3.7V supplied by the battery
Adapter Manufacturer /Model No.	Adapter 1: Delta / ADP-10HW A I/P: 100-240Vac, 50/60Hz, 0.4A O/P: 5.35Vdc, 2A Adapter 2: Liteon / PA-1100-25 I/P: 100-240Vac, 50/60Hz, 0.3A O/P: 5.2Vdc, 2.0A
Battery Manufacturer /Model No.	Battery 1: TCL/ PR-279594N O/P:DC3.7V Battery 2: Huizhou Highpower Technology Co., LTD / HPP279594AB O/P: DC3.7V
Transmit PowerIEEE 802.11b mode: 17.40dBm IEEE 802.11g mode: 22.80dBm IEEE 802.11n HT20 MHz mode: 23.20Bm IEEE 802.11n HT40 MHz mode: 23.10Bm	
Modulation Technique	IEEE 802.11b mode: DSSS(CCK,QPSK, BPSK) IEEE 802.11g mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT20 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM) IEEE 802.11n HT40 MHz mode: OFDM (BPSK/QPSK/16QAM/64QAM)
Transmit Data Rate	IEEE 802.11b: 11Mbps(CCK) with fall back rates of 5.5/2/1Mbps IEEE 802.11g: 54Mbps with fall back rates of 48/36/24/18/12/9 /6Mbps IEEE 802.11n HT20: 65Mbps with fall back rates of 65/58.5/52/ 39/26/19.5/13/6.5Mbps IEEE 802.11n HT40: 135Mbps with fall back rates of 135/121.5/108/ 81/54/40.5/27/13.5Mbps
Number of ChannelsIEEE 802.11b mode: 11 Channels IEEE 802.11g mode: 11 Channels IEEE 802.11n HT20 MHz mode: 11 Channels IEEE 802.11n HT40 MHz mode: 7 Channels	
Antenna Specification	FPC antenna with 3.2dBi gain (Max)
Channels Spacing	IEEE 802.11b/g ,802.11n HT20/HT40 : 5MHz
Temperature Range	0°C ~ +35°C

Hardware Version	A10L2_MB_V2.1
Software Version	Acer_AV0N0_B3-A40_RV00RC00_WW_GEN1

- **Note:** 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
 - 2. This submittal(s) (test report) is intended for FCC ID: <u>HLZA7001</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Used the EngineerMode software to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Test Item	Test mode	Worse mode
	Mode 1: Charge (Adapter 1)+Battery 1+Play Vide (USB2.0)	\boxtimes
	Mode 2: Charge (Adapter 2)+Battery 1+Play Video(USB2.0)	
	Mode 3: Charge (Adapter 1)+Battery 1+ Record Video(TF Card)	
Conducted	Mode 4: Charge (Adapter 2)+Battery 1+Record Video (TF Card)	
Emission	Mode 5: Charge (Adapter 1)+Battery 2+Play Video(USB2.0)	
	Mode 6: Charge (Adapter 2)+Battery 2+Play Video(USB2.0)	
	Mode 7: Charge (Adapter 1)+Battery 2+Record Video(TF Card)	
	Mode 8: Charge (Adapter 2)+Battery 2+ Record Video(TF Card)	
Radiated Emission	Mode 1: Continuously Transmitting	\boxtimes

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only, and power line conducted emission below 30MHz, which worst case was in normal link mode.

IEEE802.11b mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE802.11g mode: Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT20 MHz mode: Channel Low (2412MHz), Channel Mid(2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT40 MHz mode: Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

5 SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Notebook	Thinkpad S2	SL 10K92342	N/A	Lenovo	N/A	Unshielded 1.020m (AC Cable) Unshielded 1.50m (DC Cable)
2	Earphone	MH126	N/A	N/A	OPPO	Unshielded 1.20m	N/A
3	TF Card	MB-MP 16D	N/A	N/A	SAMSUNG	N/A	N/A

Note:

Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at No.10-1 Mingkeda Logistics park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.10, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA	A2LA
China	CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA	FCC
Japan	VCCI (C-4815,R-4320,T-2317, G-10624)
Canada	INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.ccssz.com</u>

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site : 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

7 FCC PART 15.247 REQUIREMENTS

7.1. POWER LINE CONDUCTED EMISSIONS MEASUREMENT

7.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

NOTE:

(1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

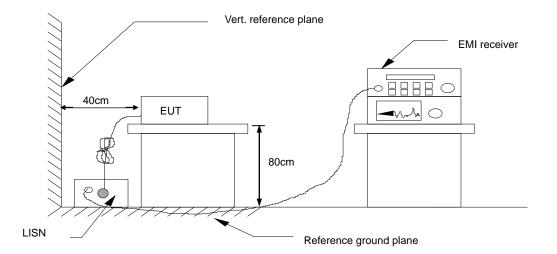
(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

	Conducted Emission Test Site											
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration							
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/11/2017	02/10/2018							
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	02/11/2017	02/10/2018							
LISN	EMCO	3825/2	8901-1459	02/12/2017	02/11/2018							
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/15/2017	02/14/2018							
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE										

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.



7.1.3. TEST PROCEDURES (please refer to measurement standard)

- The EUT and Support equipment, if needed, was placed on a non-conducted table, which is 0.8m above the ground plane and 0.4m away from the conducted wall.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane. All support equipment power received from a second LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The frequency range from 150 kHz to 30 MHz was searched. The test data of the worst-case condition(s) was recorded. Emission levels under limit 20dB were not recorded.

7.1.4. TEST SETUP

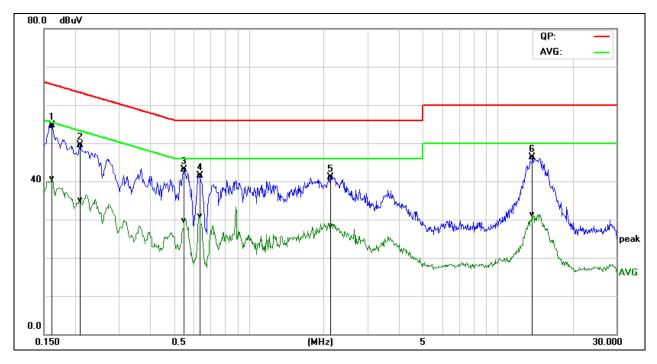
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

	equency (MHz)		Average Reading (dBuV)		QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
Х	.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

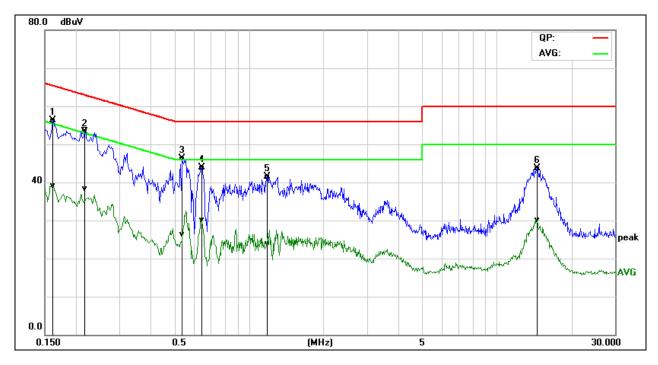
Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor


Limit = Limit stated in standard

Margin = Result (dBuV) – Limit (dBuV)

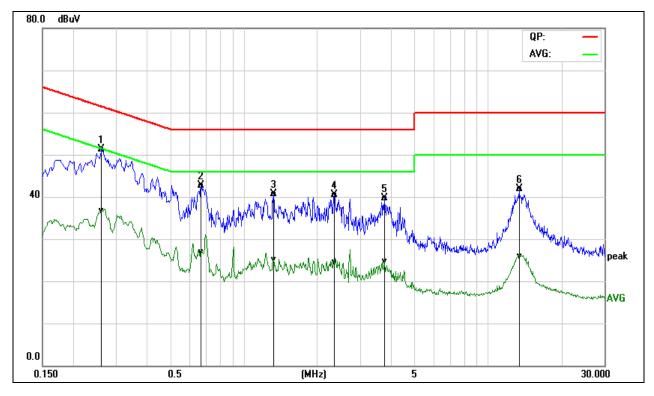
7.1.6. TEST RESULTS


Model No.	A7001	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Will Wei	Line	L1
Test Date	March 29, 2017	Test Voltage	AC 120V/60Hz

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Margin	Remark (Pass/Fail)
0.1620	35.15	21.23	19.54	54.69	40.77	65.36	55.36	-10.67	-14.59	Pass
0.2100	29.77	15.41	19.64	49.41	35.05	63.20	53.21	-13.79	-18.16	Pass
0.5500	23.42	9.99	19.67	43.09	29.66	56.00	46.00	-12.91	-16.34	Pass
0.6340	21.75	11.12	19.75	41.50	30.87	56.00	46.00	-14.50	-15.13	Pass
2.1220	21.45	8.62	19.72	41.17	28.34	56.00	46.00	-14.83	-17.66	Pass
13.8300	26.34	11.34	19.97	46.31	31.31	60.00	50.00	-13.69	-18.69	Pass

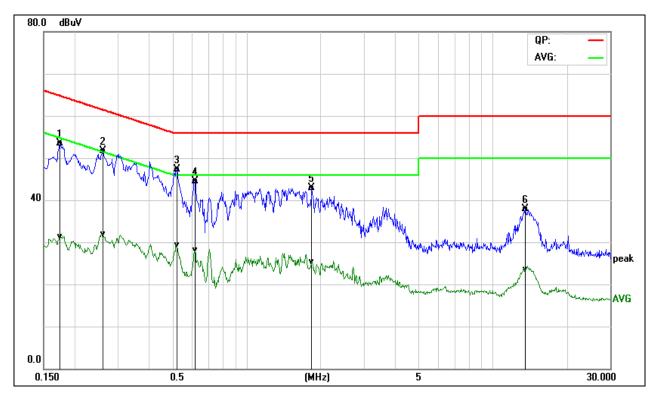
REMARKS: L1 = Line One (Live Line)

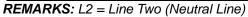
Model No.	A7001	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Will Wei	Line	L2
Test Date	March 29, 2017	Test Voltage	AC 120V/60Hz



Frequency	QuasiPeak	0		QuasiPeak	0		0		0	Remark
(MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(* 5.5 5.7 5)
0.1620	36.56	19.40	19.72	56.28	39.12	65.36	55.36	-9.08	-16.24	Pass
0.2184	34.09	18.64	19.73	53.82	38.37	62.88	52.88	-9.06	-14.51	Pass
0.5380	26.71	6.69	19.64	46.35	26.33	56.00	46.00	-9.65	-19.67	Pass
0.6460	24.28	10.39	19.69	43.97	30.08	56.00	46.00	-12.03	-15.92	Pass
1.1900	21.78	4.21	19.74	41.52	23.95	56.00	46.00	-14.48	-22.05	Pass
14.5180	23.89	10.43	19.75	43.64	30.18	60.00	50.00	-16.36	-19.82	Pass

REMARKS: L2 = Line Two (Neutral Line)


Model No.	A7001	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Will Wei	Line	L1
Test Date	March 29, 2017	Test Voltage	AC 240V/50Hz


Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
0.2620	31.71	16.98	19.64	51.35	36.62	61.36	51.37	-10.01	-14.75	Pass
0.6700	22.88	7.15	19.78	42.66	26.93	56.00	46.00	-13.34	-19.07	Pass
1.3260	20.99	5.35	19.67	40.66	25.02	56.00	46.00	-15.34	-20.98	Pass
2.3580	20.88	4.86	19.71	40.59	24.57	56.00	46.00	-15.41	-21.43	Pass
3.7820	20.00	5.02	19.67	39.67	24.69	56.00	46.00	-16.33	-21.31	Pass
13.4300	21.88	5.97	19.99	41.87	25.96	60.00	50.00	-18.13	-24.04	Pass

REMARKS: L1 = Line One (Live Line)

Model No.	A7001	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Will Wei	Line	L2
Test Date	March 29, 2017	Test Voltage	AC 240V/50Hz

Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	Reading	Reading	Factor	Result	Result	Limit	Limit	Margin	Margin	
· · ·	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	(Pass/Fail)
0.1748	33.71	11.54	19.73	53.44	31.27	64.72	54.73	-11.28	-23.46	Pass
0.2620	31.94	12.16	19.72	51.66	31.88	61.36	51.37	-9.70	-19.49	Pass
0.5220	27.61	9.66	19.64	47.25	29.30	56.00	46.00	-8.75	-16.70	Pass
0.6180	24.78	8.48	19.68	44.46	28.16	56.00	46.00	-11.54	-17.84	Pass
1.8460	23.14	5.61	19.73	42.87	25.34	56.00	46.00	-13.13	-20.66	Pass
13.6220	18.07	3.57	19.84	37.91	23.41	60.00	50.00	-22.09	-26.59	Pass

7.2. SPURIOUS EMISSIONS MEASUREMENT

7.2.1. CONDUCTED EMISSIONS MEASUREMENT

7.2.1.1. LIMITS OF CONDUCTED EMISSIONS MEASUREMENT

§15.247(d)specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3)requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

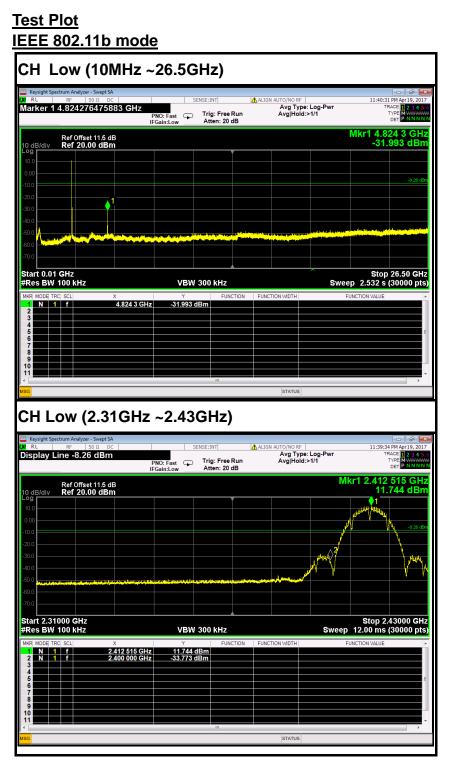
If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b) (3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

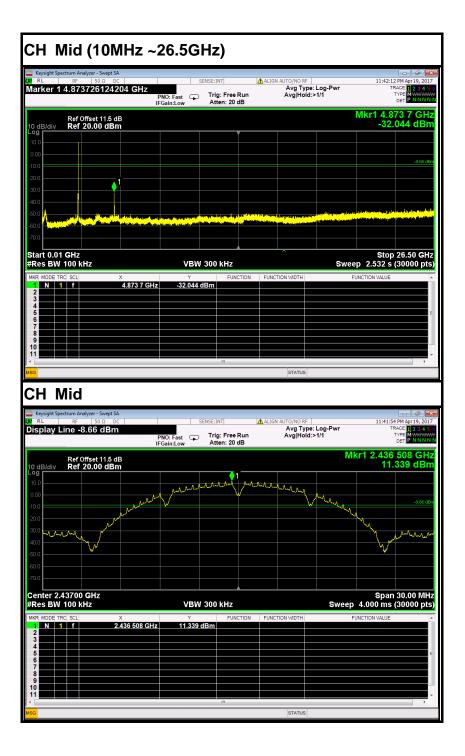
7.2.1.2. TEST INSTRUMENTS

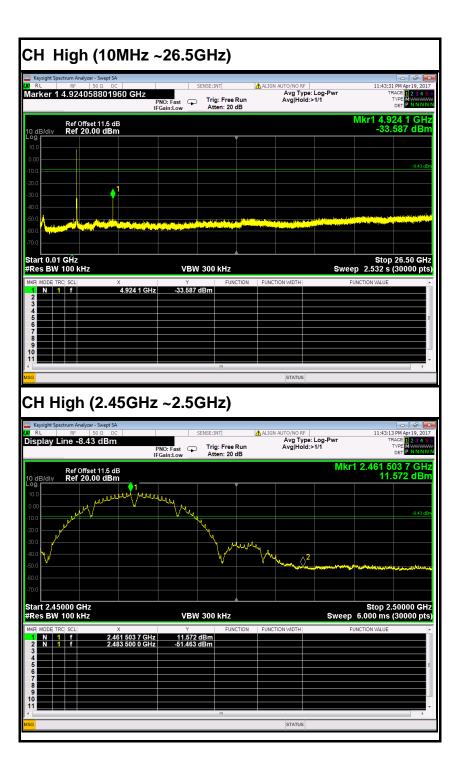
Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration	
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2017	02/20/2018	

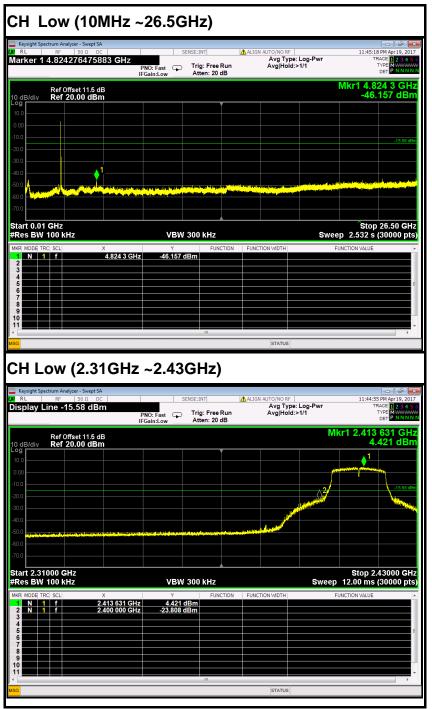
7.2.1.3. TEST PROCEDURE (please refer to measurement standard)

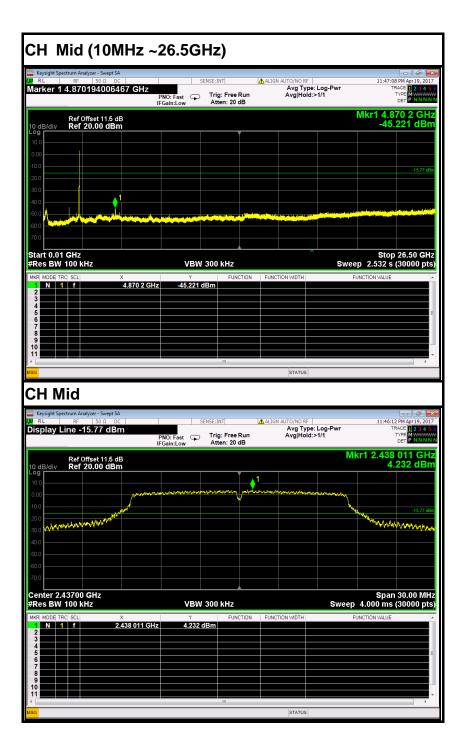

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site. The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is

set to 100 kHz. The video bandwidth is set to 300 kHz.

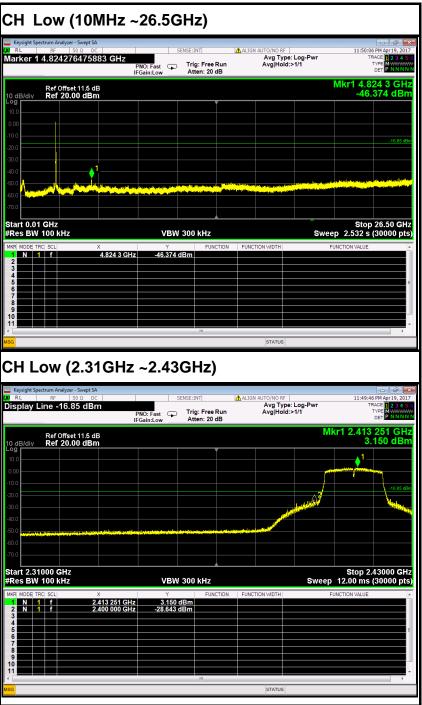

Measurements are made over the 9kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz, it is only recorded 10MHz to 26GHz.

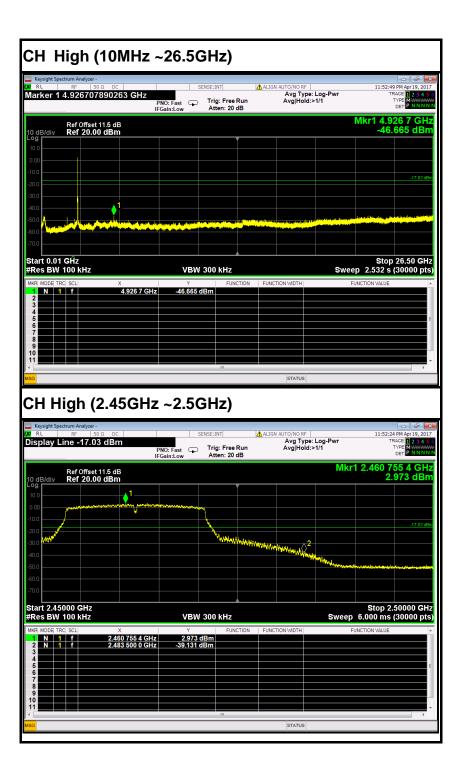

7.2.1.4. TEST RESULTS

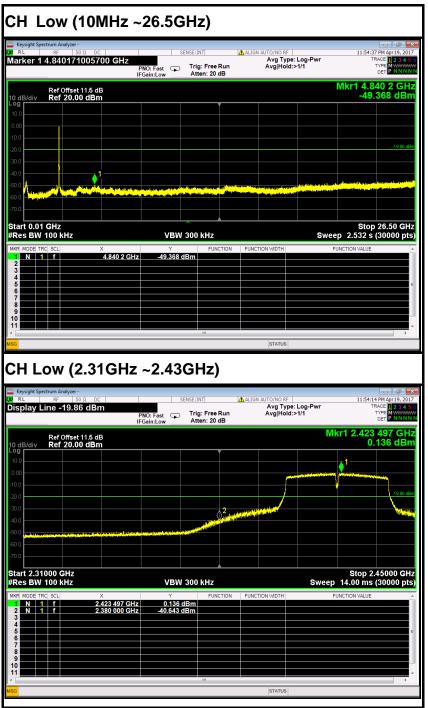




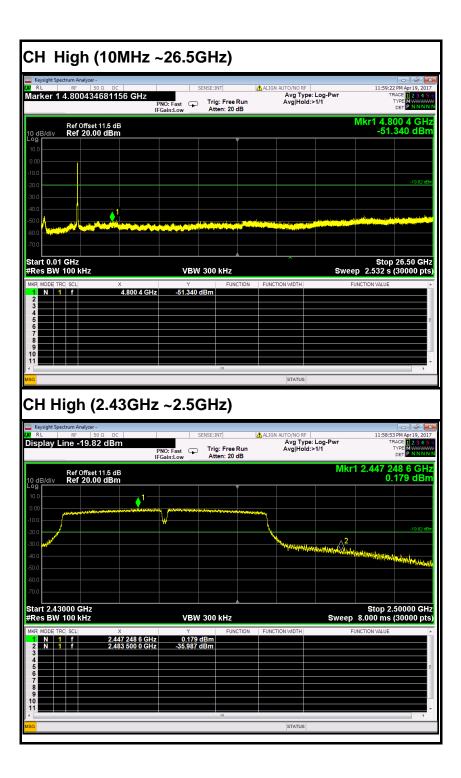

IEEE 802.11g mode







t Spectrum Analyzer - Sw RF 50 ດ	2 DC	SENSE:INT	ALIGN AUTO/NO RF		1:51:03 PM Apr
r 1 4.8790243	PNO	: Fast Trig: Free in:Low Atten: 20	Run Avg Hole	e: Log-Pwr d:>1/1	TRACE TYPE DET
Ref Offset 17	1.5 dB d B m			Mkr1	4.879 0 -46.987
And the second					and the second
01 GHz					Stop 26.5
W 100 kHz		VBW 300 kHz		Sweep 2.53	32 s (3000
TRC SCL	× 4.879 0 GHz	Y FUN -46.987 dBm	NCTION FUNCTION WIDTH	FUNCTION V	ALUE
			STATUS		
Mid Spectrum Analyzer - Sw RF 50 G / Line -17.53	2 DC dBm PNO	: Fast _ Trig: Free in:Low Atten: 20	ALIGN AUTO/NO RF Avg Typ Run Avg[Hoi	e: Log-Pwr	1:50:44 PM Ap
Spectrum Analyzer - Sw RF 50 ຜ r Line -17.53	dBm PNO	: Fast 😱 Trig: Free	ALIGN AUTO/NO RF Avg Typ Run Avg[Hoi	e: Log-Pwr	1:50:44 PM Ap TRACE 1 TYPE M DET P
Spectrum Analyzer - Sw RF 50 G V Line -17.53 Ref Offset 17	dBm PNO	: Fast 😱 Trig: Free	ALIGN AUTO/NO RF Avg Typ Run Avg[Hoi	e: Log-Pwr d:>1/1	1:50:44 PM Ap TRACE 1 TYPE M DET P
Spectrum Analyzer - Sw RF 50 ຜ V Line -17.53	dBm PNO	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e: Log-Pwr d:>1/1	1:50:44 PM Ap TRACE 1 TYPE M DET P
Spectrum Analyzer - So G RF 50 G V Line -17.53 Ref Offset 1' Ref 20.00	dBm PNO IFGal dBm	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e:Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE TYPE 438 259 2.466
Spectrum Analyzer - So G RF 50 G Line -17.53 Ref Offset 1' Ref 20.00	dBm PNO IFGal dBm	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e:Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE DET 438 259 2.466
Spectrum Analyzer - Sw RF 50 ឆ / Line -17.53	dBm PNO IFGal dBm	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e:Log:Pwr :>1/1 Mkr1 2./	2.466
Spectrum Analyzer - So G RF 50 G V Line -17.53 Ref Offset 1' Ref 20.00	dBm PNO IFGal dBm	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e:Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE DET 438 259 2.466
Spectrum Analyzer - Six RF 50 G / Line -17.53 Ref Offset 1' v Ref 20.00	dBm PNO IFGal dBm	: Fast 😱 Trig: Free	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e:Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE DET 438 259 2.466
Spectrum Analyzer - Sw RF 50 C V Line -17.53 Ref Offset 1' Ref 20.00 M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/M/	dBm PNO IFGal dBm	Fast Trig: Free Atten: 20	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e: Log:Pwr :>1/1 Mkr1 2./	150:44 PM 40 TRACC 1 TYPE 1 438 259 2.466
Spectrum Analyzer - Sw RF 50 G Line -17.53 Ref Offset 1' Ref 20.00	x	Fast Trig: Free Atten: 20	I∆ ALIGN AUTO/NO RF Avg Typ Run Avg Hold dB	e: Log/Pwr :>1/1 Mkr1 2./	15:0:44 PMC E TRACCE E TYPE M 0 ET P 438 259 2.466
Spectrum Analyzer - Sw RF 50 G Line -17.53 Ref Offset 1' , Ref 20.00 	dBm PNO IFGal dBm	VBW 300 kHz	Aution Auto/No RF Avg Typ Run Avg Hold	e: Log:Pwr :>1/1 Mkr1 2./	15:0:44 PMC E TRACCE E TYPE M 0 ET P 438 259 2.466
Spectrum Analyzer - Sw RF 50 G Line -17.53 Ref Offset 1' , Ref 20.00 	x	Fast Trig: Free Atten: 20	Aution Auto/No RF Avg Typ Run Avg Hold	e: Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE 1 TVPE 9 2.466
Spectrum Analyzer - So G RF 50 G V Line -17.53 Ref Offset 1' Ref 20.00	x	Fast Trig: Free Atten: 20	Aution Auto/No RF Avg Typ Run Avg Hold	e: Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE 1 TVPE 9 2.466
Spectrum Analyzer - Sw RF 50 G Line -17.53 Ref Offset 1' , Ref 20.00 	x	Fast Trig: Free Atten: 20	Aution Auto/No RF Avg Typ Run Avg Hold	e: Log:Pwr :>1/1 Mkr1 2./	1:50:44 PM Ap TRACE 2.466
Spectrum Analyzer - Sw RF 50 C Line -17.53 Ref Offset 1' Ref 20.00	x	Fast Trig: Free Atten: 20	Aution Auto/No RF Avg Typ Run Avg Hold	e: Log:Pwr :>1/1 Mkr1 2./	1:50:34 PM A TRACE DET 438 25 2.460


IEEE 802.11n HT40 MHz mode

Spectrum Analyzer -	CENCEANT		11:57:19 PM A
1 4.801317710590 GH		ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:57:19 PM A TRACE TYPE DET
Ref Offset 11.5 dB Ref 20.00 dBm			Mkr1 4.801 3 -50.815
1			New Manuary Manuary () . Same bar
and the second second	an di pangan dangan kepangan kepangan dan di katalah dan kepangan dan di pangan dan di pangan dan di pangan da Katalah pangan dan pangan dan di pangan d		an a Mill Address and An Andres 191
1 GHz			Stop 26.
/ 100 kHz	VBW 300 kHz		ep 2.532 s (300
rrc scl. X 1 f 4.801 3	Y FUNCTION GHz -50.815 dBm	FUNCTION WIDTH F	UNCTION VALUE
-	m	STATUS	
Mid pectrum Analyzer - ℝF 50 Ω DC Line -20.24 dBm		ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET
pectrum Analyzer - RF 50 Ω DC	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM AN TRACE TRACE TYPE EET Kr11 2.439 14: -0.242
RF 50 Ω DC Line -20.24 dBm	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET Kr1 2.439 14
RF 50 Ω DC Line -20.24 dBm	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET Kr1 2.439 14
Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET (r1 2.439 14: -0.242
Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET (r1 2.439 14: -0.242
Pectrum Analyzer - RF 50 Ω DC Line -20.24 dBm Ref Offset 11.5 dB	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM A TRACE TYPE DET Kr1 2.439 14
Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT	ALIGN AUTO/NO RF Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM TRACE Trace Type Jort cr1 2.439 14: -0.242
Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT	Auton Auto/No RF	11:55:30 PM A TRACE TYPE DET (r1 2.439 14: -0.242
Ref Offset 11.5 dB Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB	Auton Auto/No RE Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30PM TRACE TARCE TYPE DET (r1 2.439 14 -0.242
Ref Offset 11.5 dB Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB	Auton Auto/No RE Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30PM TRACE TYPE DET Kr1 2:439 14 -0.242
Ref Offset 11.5 dB Ref Offset 11.5 dB Ref 20.00 dBm	SENSE:INT PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB	Auton Auto/No RE Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30PM TRACE TYPE DET Kr1 2:439 14 -0.242
Alarge Analyzer- RF 50 2 DC Line -20.24 dBm Ref Offset 11.5 dB Ref 20.00 dBm Alarge Analyzer Alarge Al	SENSE:INT PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB	Auton Auto/No RE Avg Type: Log-Pwr Avg Hold:>1/1	11:55:30 PM Type Det Kr1 2.439 14 -0.24(Kr1 2.439 14) -0.24(Kr1

Compliance Certification Services (Shenzhen) Inc.

7.2.2. RADIATED EMISSIONS MEASUREMENT

7.2.2.1. LIMITS OF RADIATED EMISSIONS MEASUREMENT

According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

1. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

NOTE:(1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

7.2.2.2. TEST INSTRUMENTS

Radiated Emission Test Site 966(2)								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02/21/2017	02/20/2018			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2017	02/20/2018			
Amplifier	EMEC	EM330	060661	03/18/2017	03/17/2018			
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2017	02/20/2018			
Loop Antenna	COM-POWER	AL-130	121044	09/25/2016	09/24/2017			
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2017	02/20/2018			
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/28/2017	02/27/2018			
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/28/2017	02/27/2018			
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R			
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R			
Controller	СТ	N/A	N/A	N.C.R	N.C.R			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2017	02/20/2018			
Test S/W	FARAD		LZ-RF / CC	S-SZ-3A2				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The FCC Site Registration number is 101879.

3. N.C.R = No Calibration Required.

Compliance Certification Services (Shenzhen) Inc.

7.2.2.3. Measuring Instruments and Setting

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10kHz for Average
RB / VB (Emission in non-restricted	1MHz / 1MHz for Peak, 1 MHz / 10kHz for
band)	Average

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.2.2.4. TEST PROCEDURE (please refer to measurement standard)

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

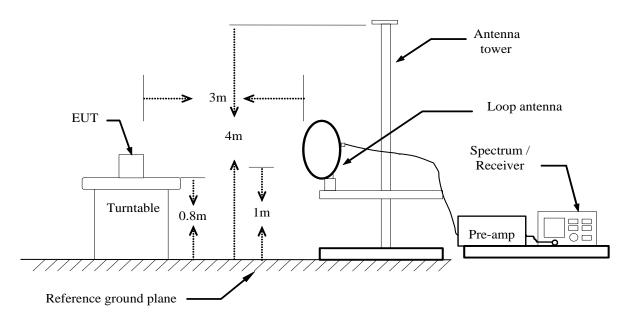
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

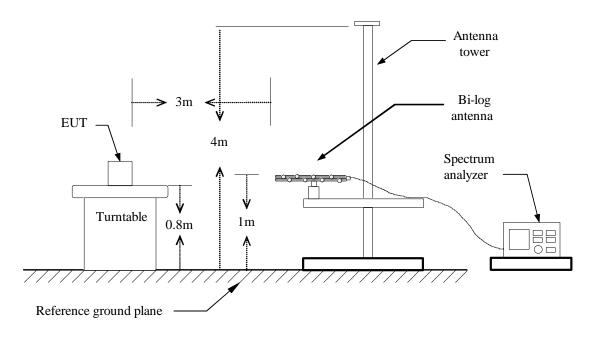
Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:

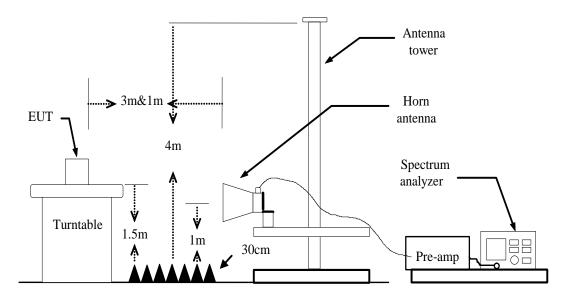

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.



7.2.2.5. TEST SETUP

Below 30MHz



Below 1 GHz

Compliance Certification Services (Shenzhen) Inc.

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.2.2.6. DATA SAPLE

Below 1GHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXX.XXXX	36.37	-12.20	24.17	40.00	-15.83	V	QP

Frequency (MHz)	= Emission frequency in MHz
Reading (dBuV)	= Uncorrected Analyzer / Receiver reading
Correct Factor (dB/m)	= Antenna factor + Cable loss – Amplifier gain
Result (dBuV/m)	= Reading (dBuV) + Corr. Factor (dB/m)
Limit (dBuV/m)	= Limit stated in standard
Margin (dB)	= Result (dBuV/m) – Limit (dBuV/m)
Q.P.	= Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
XXXX.XXXX	62.09	-11.42	50.67	74.00	-23.33	V	Peak
XXXX.XXXX	49.78	-11.42	38.36	54.00	-15.64	V	AVG

Frequency (MHz) Reading (dBuV) Correction Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Peak AVG	 = Emission frequency in MHz = Uncorrected Analyzer / Receiver reading = Antenna factor + Cable loss – Amplifier gain = Reading (dBuV) + Corr. Factor (dB/m) = Limit stated in standard = Result (dBuV/m) – Limit (dBuV/m) = Peak Reading = Average Reading
--	---

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limits (dBuV/m) Result (dBuV/m) = Reading (dBuV) + Correction Factor

Tested by: Sam Zeng

7.2.2.7. TEST RESULTS

Below 1 GHz

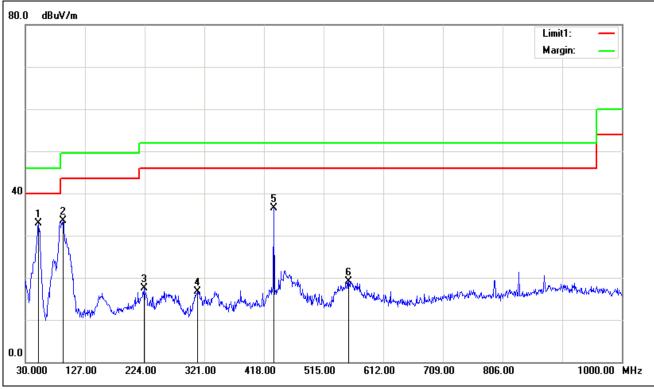
Test Mode: <u>TX / IEEE 802.11b(CH Low)</u>

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u> Date: <u>April 25, 2017</u>

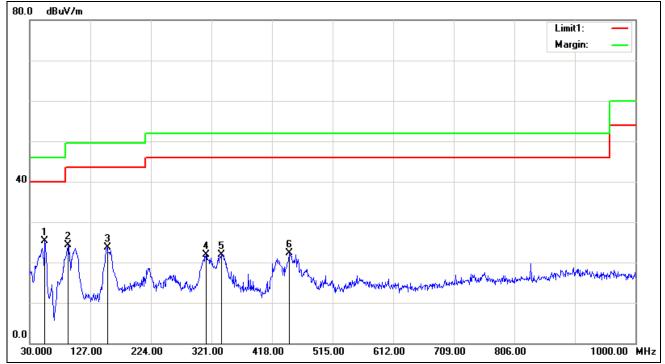
<u> </u>							<u>p:::: =0; =0:::</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
51.3400	54.49	-21.56	32.93	40.00	-7.07	V	QP
91.1100	58.13	-24.62	33.51	43.50	-9.99	V	QP
223.0300	38.28	-20.80	17.48	46.00	-28.52	V	QP
310.3300	35.95	-19.17	16.78	46.00	-29.22	V	QP
433.5200	52.08	-15.62	36.46	46.00	-9.54	V	QP
555.7400	32.24	-13.19	19.05	46.00	-26.95	V	QP
				•			
54.2500	47.77	-22.47	25.30	40.00	-14.70	Н	QP
91.1100	48.90	-24.62	24.28	43.50	-19.22	Н	QP
154.1600	45.88	-22.08	23.80	43.50	-19.70	Н	QP
312.2700	40.95	-19.12	21.83	46.00	-24.17	Н	QP
337.4900	40.07	-18.21	21.86	46.00	-24.14	Н	QP
445.1600	37.85	-15.57	22.28	46.00	-23.72	Н	QP

**Remark: 1. No emission found between lowest internal used/generated frequency to 30MHz.

2. Pre-scan all mode and recorded the worst case results in this report (802.11b (Low Channel)


Notes:

- 1. Radiated emissions measured in frequency range from 9kHz to 1GHz were made with an instrument using Quasi-peak detector mode.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. The IF bandwidth of Receiver between 30MHz to 1GHz was 120kHz.


4. Frequency (MHz). Reading (dBμV/m)	= Emission frequency in MHz = Receiver reading
Correction Factor (dB)	= Antenna factor + Cable loss – Amplifier gain
Limit (dBµV/m)	= Limit stated in standard
Margin (dB)	= Measured (dBµV/m) – Limits (dBµV/m)
Antenna Pol e(H/V)	= Current carrying line of reading

Vertical

Horizontal

Above 1 GHz

Test Mode: TX / IEEE 802.11b(CH Low)

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Tested by: <u>Sam Zeng</u> Date: March 28, 2017

Ambient temperature: 24° Relative numidity: 52° RH					<u>1</u> Date	: <u>Iviarch 2</u>	<u>8, 2017</u>
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1900.000	47.15	-5.63	41.52	74.00	-32.48	V	peak
2233.000	47.00	-3.72	43.28	74.00	-30.72	V	peak
2656.000	45.46	-1.98	43.48	74.00	-30.52	V	peak
3664.000	44.10	0.17	44.27	74.00	-29.73	V	peak
3961.000	45.21	1.43	46.64	74.00	-27.36	V	peak
4753.000	46.34	4.17	50.51	74.00	-23.49	V	peak
2107.000	45.97	-4.41	41.56	74.00	-32.44	Н	Peak
2494.000	47.56	-2.29	45.27	74.00	-28.73	Н	Peak
3781.000	44.25	0.67	44.92	74.00	-29.08	Н	Peak
4600.000	42.88	3.68	46.56	74.00	-27.44	Н	peak
5050.000	42.85	5.07	47.92	74.00	-26.08	Н	Peak
5635.000	42.75	5.93	48.68	74.00	-25.32	Н	peak
REMARKS.							

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11b (CH Mid)

Ambient temperature: <u>24°C</u> Relative humidity: <u>52% RH</u>

Tested by: <u>Sam Zeng</u> Date: March 28, 2017

				_		
Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
46.56	-3.77	42.79	74.00	-31.21	V	Peak
45.71	-2.22	43.49	74.00	-30.51	V	Peak
45.22	1.43	46.65	74.00	-27.35	V	Peak
43.82	2.85	46.67	74.00	-27.33	V	Peak
44.22	4.20	48.42	74.00	-25.58	V	Peak
43.18	5.89	49.07	74.00	-24.93	V	Peak
46.80	-2.25	44.55	74.00	-29.45	Н	Peak
45.68	0.44	46.12	74.00	-27.88	Н	Peak
43.24	3.71	46.95	74.00	-27.05	Н	Peak
42.82	5.05	47.87	74.00	-26.13	Н	Peak
42.46	5.84	48.30	74.00	-25.70	Н	Peak
41.91	7.65	49.56	74.00	-24.44	Н	Peak
	(dBuV) 46.56 45.71 45.22 43.82 44.22 43.18 46.80 45.68 43.24 42.82 42.46	Reading (dBuV) Correction Factor (dB/m) 46.56 -3.77 45.71 -2.22 45.22 1.43 43.82 2.85 44.22 4.20 43.18 5.89 46.80 -2.25 45.68 0.44 43.24 3.71 42.82 5.05 42.46 5.84	Reading (dBuV) Correction Factor (dB/m) Result (dBuV/m) 46.56 -3.77 42.79 45.71 -2.22 43.49 45.22 1.43 46.65 43.82 2.85 46.67 44.22 4.20 48.42 43.18 5.89 49.07 46.80 -2.25 44.55 45.68 0.44 46.12 43.24 3.71 46.95 42.82 5.05 47.87 42.46 5.84 48.30	Reading (dBuV)Correction Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)46.56-3.7742.7974.0045.71-2.2243.4974.0045.221.4346.6574.0043.822.8546.6774.0044.224.2048.4274.0043.185.8949.0774.0046.80-2.2544.5574.0045.680.4446.1274.0043.243.7146.9574.0042.825.0547.8774.0042.465.8448.3074.00	Reading (dBuV)Correction Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)46.56-3.7742.7974.00-31.2145.71-2.2243.4974.00-30.5145.221.4346.6574.00-27.3543.822.8546.6774.00-27.3344.224.2048.4274.00-25.5843.185.8949.0774.00-24.9346.80-2.2544.5574.00-29.4545.680.4446.1274.00-27.0542.825.0547.8774.00-27.0542.465.8448.3074.00-26.13	Reading (dBuv)Correction Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Antenna Pole (V/H)46.56-3.7742.7974.00-31.21V45.71-2.2243.4974.00-30.51V45.221.4346.6574.00-27.35V43.822.8546.6774.00-27.33V44.224.2048.4274.00-25.58V43.185.8949.0774.00-24.93V46.80-2.2544.5574.00-27.88H45.680.4446.1274.00-27.05H43.243.7146.9574.00-27.05H42.825.0547.8774.00-26.13H42.465.8448.3074.00-25.70H

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11b (CH High) Relative humidity: 52% RH Ambient temperature: 24°C

Tested by: Sam Zeng Date: March 28, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1900.000	49.46	-5.63	43.83	74.00	-30.17	<u>(v/н)</u> ∨	Peak
2521.000	46.54	-2.22	44.32	74.00	-29.68	V	Peak
3961.000	45.44	1.43	46.87	74.00	-27.13	V	Peak
4762.000	43.97	4.20	48.17	74.00	-25.83	V	Peak
5068.000	43.62	5.10	48.72	74.00	-25.28	V	Peak
6067.000	42.19	6.19	48.38	74.00	-25.62	V	Peak
		· · · · · · · · · · · · · · · · · · ·					
1936.000	47.09	-5.41	41.68	74.00	-32.32	Н	Peak
2242.000	46.86	-3.67	43.19	74.00	-30.81	Н	Peak
2521.000	46.95	-2.22	44.73	74.00	-29.27	Н	Peak
3349.000	43.70	-0.77	42.93	74.00	-31.07	Н	Peak
4123.000	43.33	2.02	45.35	74.00	-28.65	Н	Peak
5185.000	42.82	5.31	48.13	74.00	-25.87	н	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Test Mode: TX / IEEE 802.11g(CH Low)

Ambient temperature: 24°C

CH Low)Tested by: Sam ZengRelative humidity: 52% RHDate: March 28, 2017

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1504.000	47.66	-6.87	40.79	74.00	-33.21	V	Peak
1927.000	47.21	-5.46	41.75	74.00	-32.25	V	Peak
2503.000	46.85	-2.25	44.60	74.00	-29.40	V	Peak
3700.000	44.38	0.32	44.70	74.00	-29.30	V	Peak
4753.000	44.81	4.17	48.98	74.00	-25.02	V	Peak
5554.000	43.31	5.89	49.20	74.00	-24.80	V	Peak
2161.000	46.08	-4.12	41.96	74.00	-32.04	Н	Peak
2503.000	46.16	-2.25	43.91	74.00	-30.09	Н	Peak
3223.000	44.41	-0.99	43.42	74.00	-30.58	Н	Peak
3781.000	44.51	0.67	45.18	74.00	-28.82	н	Peak
4510.000	43.42	3.38	46.80	74.00	-27.20	н	Peak
5149.000	42.71	5.25	47.96	74.00	-26.04	н	Peak

REMARKS:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).