

FCC RADIO TEST REPORT

FCC ID	: HLZA24008
Equipment	: Tablet PC
Brand Name	: acer
Model Name	: A24008
Marketing Name	: Acer Iconia X12, X12-11
Applicant	: Acer Incorporated
	8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Manufacturer	: Acer Incorporated
	8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Sep. 19, 2024 and testing was performed from Sep. 27, 2024 to Oct. 16, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

Hist	tory of	f this test report	3	
Sur	nmary	of Test Result	4	
1	Gene	ral Description	4 	
	1.1	Product Feature of Equipment Under Test	5	
	1.2	Modification of EUT	6	
	1.3	Testing Location	6	
	1.4	Applicable Standards	6	
2	Test	Configuration of Equipment Under Test	7	
	2.1	Carrier Frequency Channel	7	
	2.2	Test Mode	8	
	2.3	Connection Diagram of Test System	9	
	2.4	Support Unit used in test configuration and system	9	
	2.5	EUT Operation Test Setup	10	
	2.6	Measurement Results Explanation Example	10	
3	Test I	Result	11	
	3.1	Number of Channel Measurement	11	
	3.2	Hopping Channel Separation Measurement	12	
	3.3	Dwell Time Measurement	13	
	3.4	20dB and 99% Bandwidth Measurement	14	
	3.5	Output Power Measurement	15	
	3.6	Conducted Band Edges Measurement	16	
	3.7	Conducted Spurious Emission Measurement	17	
	3.8	Radiated Band Edges and Spurious Emission Measurement	18	
	3.9	AC Conducted Emission Measurement	22	
	3.10	Antenna Requirements	24	
4	List o	f Measuring Equipment	25	
5	Meas	urement Uncertainty	27	
App	pendix	A. Conducted Test Results		
Арр	pendix	B. AC Conducted Emission Test Result		
App	pendix	C. Radiated Spurious Emission Test Data		

Appendix D. Duty Cycle Plots

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR491901A	01	Initial issue of report	Oct. 30, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Pass	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	9.92 dB under the limit at 40.67 MHz
3.9	15.207	AC Conducted Emission	Pass	15.38 dB under the limit at 0.61 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Avis Chuang

Report Producer: Emma Hsiao

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
General Specs				
Bluetooth, Wi-Fi 2.4GHz 802.1	1b/g/n, Wi-Fi 5GHz 802.	11a/n/ac and GNSS.		
Antenna Type				
WLAN: FPC Antenna				
Bluetooth: FPC Antenna				
GPS / Glonass / BDS / Galileo: FPC Antenna				
Antenna information				
2400 MHz ~ 2483.5 MHz Peak Gain (dBi) -1.67				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

	SKU LIST					
Model	SKU1_8G+128G	SKU2_8G+128G	SKU3_8G+256G	SKU4_8G+256G		
CPU	MTK MT8781N	MTK MT8781N	MTK MT8781N	MTK MT8781N		
LCM	EDO 12.6",	EDO 12.6",	EDO 12.6",	EDO 12.6",		
	EC60QBC71.A	EC60QBC71.A	EC60QBC71.A	EC60QBC71.A		
UMCP	Spectek	KEYMOS	Spectek	KEYMOS		
	SMVUM17YZZCD91SK	KU16B6XOBFM-DBF,	SMVUM181ZZCDA1SK	KU21S6XOBFM-DDF,		
	SM, 8+128GB	8+128GB	PR, 8+256GB	8+256GB		
Battery	UTL	UTL	UTL	UTL		
	U28100115PV/1S2P/10	U28100115PV/1S2P/10	U28100115PV/1S2P/10	U28100115PV/1S2P/10		
	000mAh 3.8V	000mAh 3.8V	000mAh 3.8V	000mAh 3.8V		
Wifi / Bluetooth	MTK MT6631	MTK MT6631	MTK MT6631	MTK MT6631		
Front	Zhuocheng OV08D10,	Zhuocheng OV08D10,	Zhuocheng OV08D10,	Zhuocheng OV08D10,		
Camera	8MP	8MP	8MP	8MP		
Rear	Zhuocheng OV13B10,	Zhuocheng OV13B10,	Zhuocheng OV13B10,	Zhuocheng OV13B10,		
Camera	13MP	13MP	13MP	13MP		
Adapter	Aoda	Aoda	Aoda	Aoda		
	A829-120167C-AR1	A829-120167C-AR1	A829-120167C-AR1	A829-120167C-AR1		
	A829-120167C-US1	A829-120167C-US1	A829-120167C-US1	A829-120167C-US1		
	A829-120167C-EU1	A829-120167C-EU1	A829-120167C-EU1	A829-120167C-EU1		
	A829-120167C-TL1	A829-120167C-TL1	A829-120167C-TL1	A829-120167C-TL1		
	A829-120167C-UK1	A829-120167C-UK1	A829-120167C-UK1	A829-120167C-UK1		

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Sile NO.	TH05-HY, CO07-HY, 03CH20-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

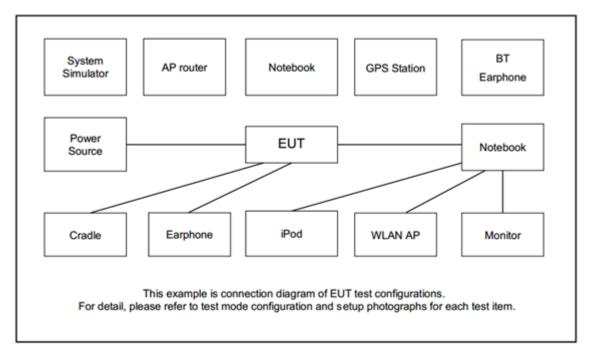
TEL : 886-3-327-0868	Page Number	: 6 of 27
FAX : 886-3-327-0855	Issue Date	: Oct. 30, 2024
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK		
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
	Bluetooth BR 1Mbps GFSK				
Radiated	Mode 1: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz				
		Mode 3: CH78_2480 MHz			
AC Conducted	Mode 1 :WLAN (2.4GHz)) Link + Bluetooth Link +	Earphone + USB Cable		
Emission	(Charging from AC Adapter) + Battery for SKU3_8G+256G				
 Remark: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. For Radiated Test Cases, the tests were performed with SKU3 8G+256G. 					

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	SonyEricsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded,1.8m
3.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
4.	Earphone + Mic	Samsung	Ecouteur	N/A	nonshielded 1.8m	N/A
5.	Earphone	МОТО	JYN1181B	N/A	N/A	Unshielded, 1.2m

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: Acer_AV0U0_M10-21_RV00RB01_PAPAP_GEN1) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

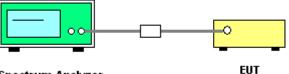
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 300 kHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

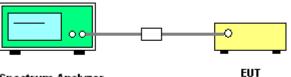
Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

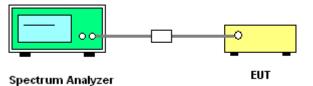
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

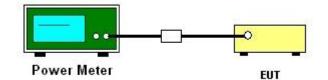
Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

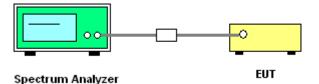
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

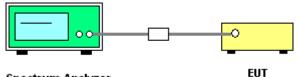
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

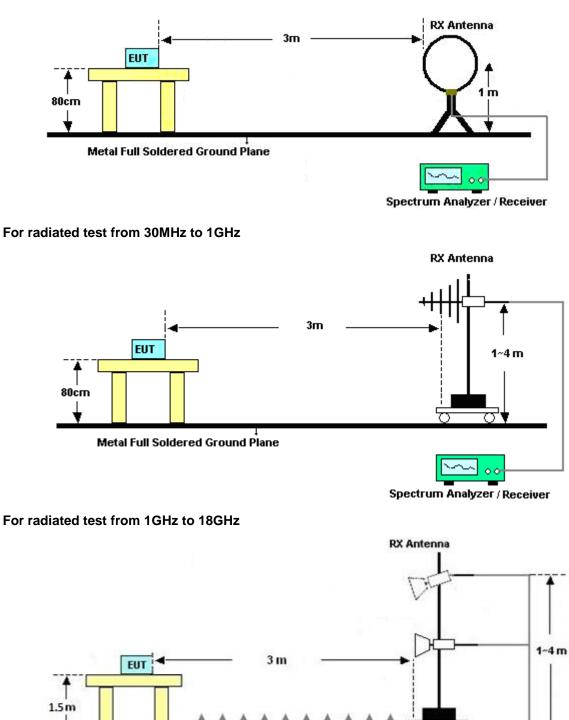
3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.8.3 Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - $\begin{array}{ll} \text{(3)} & \mbox{For average measurement: use duty cycle correction factor method per 15.35(c).} \\ & \mbox{Duty cycle = On time/100 milliseconds} \\ & \mbox{On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$} \\ & \mbox{Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.} \end{array}$
 - Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

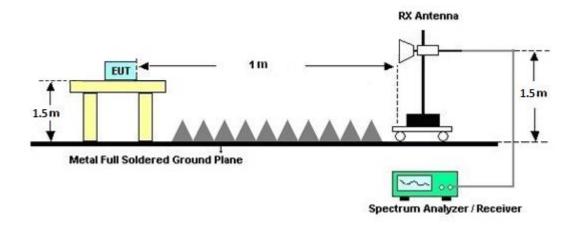

3.8.4 Test Setup

TEL: 886-3-327-0868

FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

For radiated test below 30MHz



Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

3.9 AC Conducted Emission Measurement

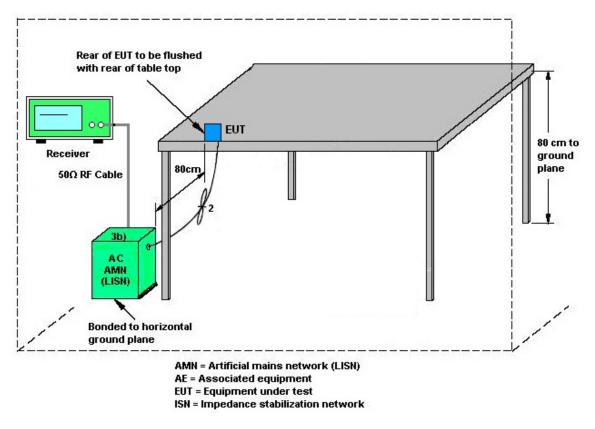
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.10.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038B	MY62210111	N/A	Sep. 03, 2024	Oct. 07, 2024 ~ Oct. 13, 2024	Sep. 02, 2025	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Oct. 07, 2024 ~ Oct. 13, 2024	Aug. 28, 2025	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	May 27, 2024	Oct. 07, 2024 ~ Oct. 13, 2024 May 26, 2025		Radiation (03CH20-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	urn N/A Oct. 07, 202		N/A	Radiation (03CH20-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Oct. 07, 2024 ~ Oct. 13, 2024	N/A	Radiation (03CH20-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Oct. 07, 2024 ~ Oct. 13, 2024	N/A	Radiation (03CH20-HY)
Signal Analyzer	Keysight	N9010B	MY60240520	N/A	Dec. 12, 2023	Oct. 07, 2024 ~ Oct. 13, 2024	Dec. 11, 2024	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802 N1D01N-06	55606 & 08	30MHz~1GHz	Oct. 20, 2023	Oct. 07, 2024 ~ Oct. 13, 2024	Oct. 19, 2024	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	02360	1GHz-18GHz	Oct. 30, 2023	Oct. 07, 2024 ~ Oct. 13, 2024	Oct. 29, 2024	
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz-40GHz	Oct. 07. 2024		Jun. 23, 2025	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 01, 2024	Oct. 07, 2024 ~ Oct. 13, 2024	Dec. 31, 2024	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45S E	980792	N/A	Nov. 13, 2023	Oct. 07, 2024 ~ Oct. 13, 2024	Nov. 12, 2024	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,804 015/2,804027 /2	N/A	Jan. 17, 2024	Oct. 07, 2024 ~ Oct. 13, 2024	Jan. 16, 2025	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP211382	N/A	Mar. 27, 2024	Oct. 07, 2024 ~ Oct. 13, 2024	Mar. 26, 2025	Radiation (03CH20-HY)
Software	Audix	N/A	RK-002156	N/A	N/A	Oct. 07, 2024 ~ Oct. 13, 2024	N/A	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Oct. 04, 2024~ Oct. 16, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 04, 2024	Oct. 04, 2024~ Oct. 16, 2024	Jul. 03, 2025	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Jul. 04, 2024	Oct. 04, 2024~ Oct. 16, 2024	Jul. 03, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2024	Oct. 04, 2024~ Oct. 16, 2024	Aug. 22, 2025	Conducted (TH05-HY)
Switch Control Mainframe	Burgeon	ETF-058	EC1300484 (BOX3)	N/A	May 20, 2024	Oct. 04, 2024~ Oct. 16, 2024	May 19, 2025	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final_ version_24092 0	N/A	Conducted Other Test Item	N/A	Oct. 04, 2024~ Oct. 16, 2024	N/A	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 27, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 27, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Sep. 27, 2024	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Sep. 27, 2024	Mar. 13, 2025	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Sep. 27, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Sep. 27, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 20, 2024	Sep. 27, 2024	Feb. 19, 2025	Conduction (CO07-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.4 dB
of 95% (U = 2Uc(y))	0.4 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.5 dB
of 95% (U = 2Uc(y))	4.5 uB

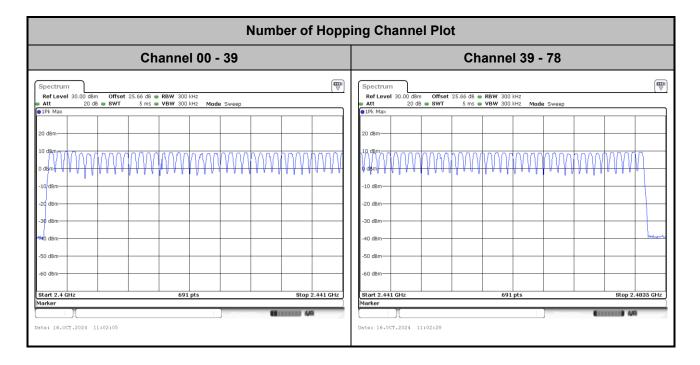
Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

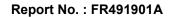
Measuring Uncertainty for a Level of Confidence	4.6 dB
of 95% (U = 2Uc(y))	4.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	5.4 UB

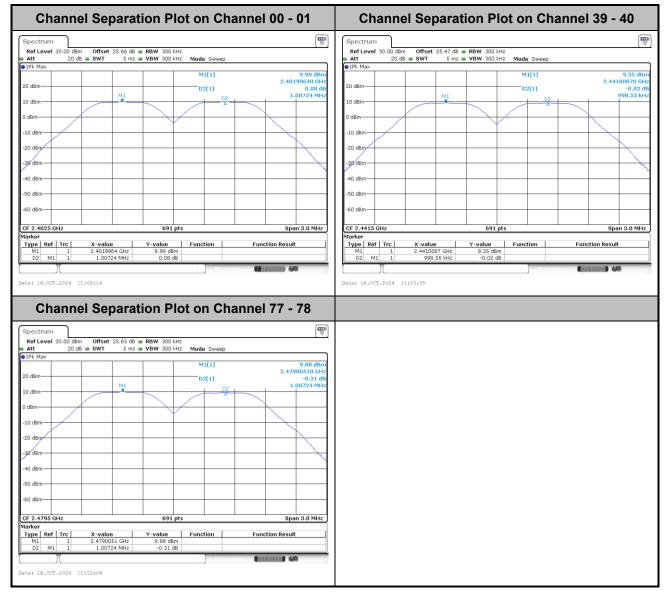
Report Number : FR491901A


Appendix A. Test Result of Conducted Test Items


Test Engineer:	Mina Liu	Temperature:	21~25	°C
Test Date:	2024/10/4~2024/10/16	Relative Humidity:	51~54	%

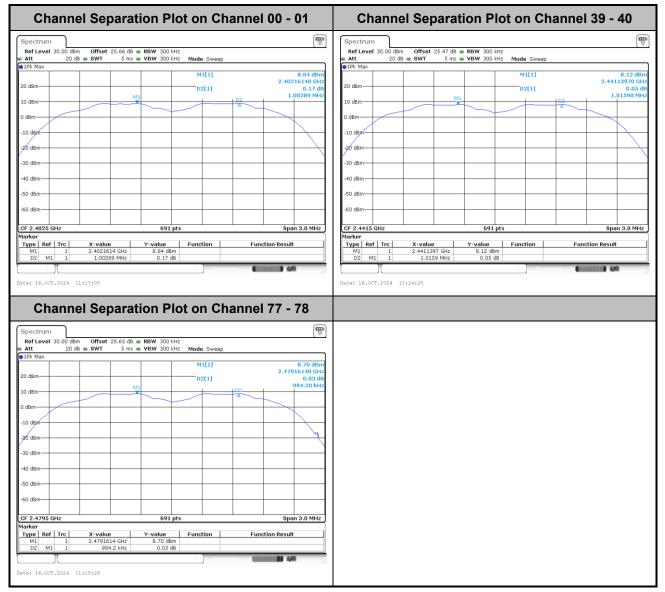
						TEST	RESI		ΟΑΤΑ			
	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwi (MHz	。 idth	Sepa Measi	g Channel aration urement IHz)	Hopping Chanr Separation Measuremen Limit (MHz)	Pass/Fai	il
DH	1Mbps 1Mbps	1	0 39	2402 2441	0.773	0.721				0.5154 0.5180	Pass Pass	-
DH	1Mbps	1	78	2480	0.770	0.72			007	0.5133	Pass	_
2DH	2Mbps	1	0	2402	1.211	1.13			994	0.8076	Pass	
	2Mbps	1	39	2441	1.208	1.13			986	0.8054	Pass	
	2Mbps	1	78	2480	1.216	1.13			986	0.8104	Pass	
3DH	3Mbps	1	0	2402	1.217	1.13			003	0.8112	Pass	
	3Mbps		39	2441	1.216	1.12			016	0.8104	Pass	
3DH	3Mbps	1	78	2480	1.216	1.12	8	0.	994	0.8106	Pass	
						<u>TEST</u>		ULTS I I Time	DATA			
Мо	od.		oping C umber		Hops Over Occupanc y Time (hops)	Package Transfer Time (msec)	r D T	well ime sec)	Limits (sec)	Pass/Fail		
3D	H5		79		106.670	2.89	0	.31	0.4	Pass		
3DH5	(AFH)		20		53.330	2.89	0	.15	0.4	Pass		
						Pea	ak Por	<u>ULTS I</u> wer Ta				
DH	СН. 0	NTX	(ak Power (dBm) 11.15	· Power (dB	im)	Test Result Pass	t				
DH1	39 78	1 1		11.00 11.29	20.	97	Pass Pass Pass					
2DH1	0 39	1 1		10.59 10.42	20. 20.	97 97	Pass Pass					
3DH1	78 0 39	1 1 1		10.64 10.48 10.30	20. 20. 20.	97	Pass Pass Pass					
	78	1	,	10.58	20.	97	Pass					
						<u>TEST</u>	RES	ULTS L	DATA			
								ower 1 ng On				
DH		NTX	(age Pow (dBm)	(d							
	0	1		9.97	5.2							
DH1	39	1		9.86	5.2							
	78	1		9.99	5.2							
2DH1	0 39	1		8.55 8.27	5.							
	78	1		8.62	5.							
	0	1		8.46	5.							
3DH1	39	1		8.24	5.							
	78	1		8.55	5.							
r												
					Nı			<u>ULTS I</u> pina F	D <u>ATA</u> requenc	V		
	per of Ho Channe		g	Adapti Freque Hoppi (Chanr	ncy ng	Limits (Channe	I)	Pass/Fa	ail			
	79			20		> 15		Pass				

Number of Hopping Frequency



Hopping Channel Separation

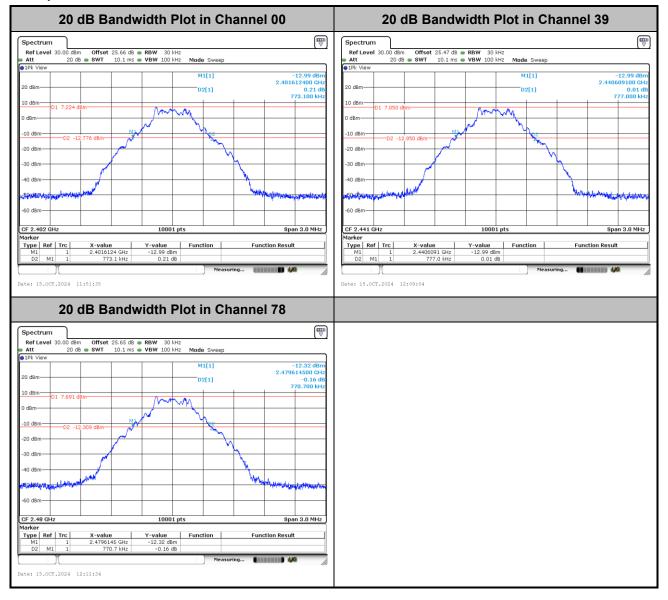
<1Mbps>



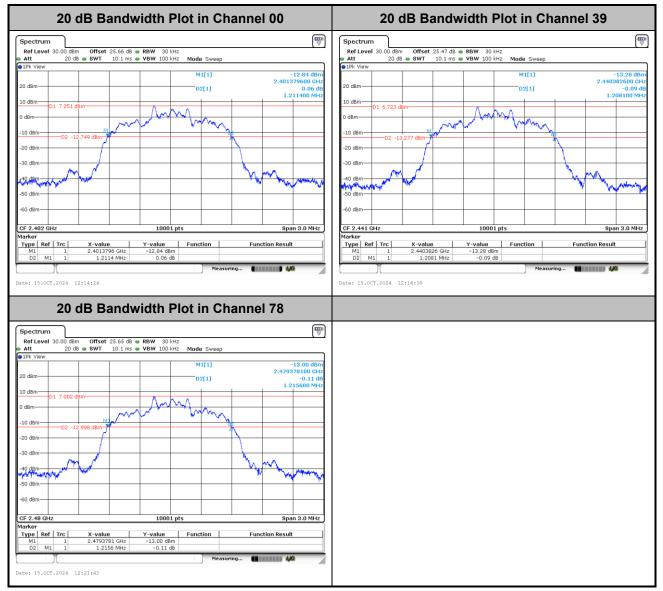
<2Mbps>

Channel Separa	ation Plot on Cha	annel 00 - 01	Channel	Separation I	Plot on Ch	annel 39 - 40
Spectrum			Spectrum			
Ref Level 30.00 dBm Offset 25.66 d	dB 🖷 RBW 300 kHz	(*)	Ref Level 30.00 dBm	Offset 25.47 dB . RBW 30		(•
Att 20 dB SWT 5 m 1Pk Max	ns 🖶 VBW 300 kHz Mode Sweep		Att 20 dB IPk Max	SWI 5 ms - VBW 30	0 kHz Mode Sweep	
0 dBm	M1[1]	8.94 dBm 2.40215700 GHz	0.0 40-1		M1[1]	8.37 dBn 2.44084880 GH
	D2[1]	0.21 dB 994.21 kHz	20 dBm-	MI	D2[1]	-0.01 di 985.53 kH
D dBm			10 dBm	×	12 	
dBm			0 dBm			
) dBm			-10 dBm			
dBm			-20 dBm			
dBm			-30 dBm			
dBm			-40 dBm			
dBm-						
			-50 dBm			
dBm			-60 dBm			
2.4025 GHz	691 pts	Span 3.0 MHz	CF 2.4415 GHz	69	91 pts	Span 3.0 MHz
ker pe Ref Trc X-value	Y-value Function	Function Result	Marker Type Ref Trc 2	X-value Y-value	Function	Function Result
M1 1 2.402157 GHz D2 M1 1 994.21 kHz	8.94 dBm		M1 1 2 D2 M1 1	2.4408488 GHz 8.37 985.53 kHz -0.0	dBm	
I M	Measuri	44			Measu	1 mar (1 m m m m m m m m m m m m m m m m m m
: 16.0CT.2024 11:13:15			Date: 16.0CT.2024 11:14	4:29		
9: 16.0CT.2024 11:13:15			Date: 16.0CT.2024 11:14	4:29		
	ation Plot on Cha	annel 77 - 78	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	ation Plot on Cha		Date: 16.0CT.2024 11:14	4:29		
Channel Separa	dB 🖷 RBW 300 kHz	annel 77 - 78	Date: 16.0CT.2024 11:14	1:29		
			Date: 16.00T.2024 11:14	4:29		
Channel Separa ectrum of Level 30.00 dBm Offset 25.65 d 20 dB @ BWT 5 m Pk Max	dB 🖷 RBW 300 kHz		Date: 16.00T.2024 11:14	1:29		
Channel Separa ectrum of Level 30.00 d8m Offset 25.65 d tt 20 d8 SWT 5 m k Max	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.00T.2024 11:14	1:29		
Channel Separa	dB • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1]	8.78 dBm 2.47916140 GHz	Date: 16.00T.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.00T.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.00T.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 RBW 300 kHz ns VBW 300 kHz M1[1] D2[1]	8.78 dBm 2.47916140 GHz -0.09 dB 985.53 kHz	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	d8 • RBW 300 kHz ns • VBW 300 kHz Mode Sweep M1[1] D2[1]	(100) 8.78 dBm 2.47916140 GHz -0.09 dB	Date: 16.0CT.2024 11:14	4:29		
Channel Separa	dB RBW 300 kHz Mode Sweep M1[1] D2[1] M1 D2[1] D2[1] D1 D2[1] D2[1]	8.78 dBm 2.47916140 GHz -0.09 dB 985.53 kHz	Date: 16.0CT.2024 11:14	4129		
Channel Separa	B • RBW 300 IH2: Ins • VBW 300 IH2: Mode Sweep M1 D2(1) D2(1) D2(1) Image: Sweet particular state	8.78 dBm 2.47916140 GHz -0.09 dB 985.53 kHz 2 2 2 2 3 3 3 3 5 5 3 kHz 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Date: 16.0CT.2024 11:14	1:29		
Spectrum Offset 25.65 d Ref Level 30.00 dlm Offset 25.65 d Att 20 dB # SWT 5 m D1PL Max 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 00 dBm 0 dBm 0 dBm 00 dBm 0 dBm 0 dBm 00 dBm 0 dBm 0 dBm 50 dBm 0 dBm 0 dBm 50 dBm 0 dBm 0 dBm 10 dBm 1 2.4795 GHz	B • RBW 300 IH2: Ins • VBW 300 IH2: Mode Sweep M1 D2(1) D2(1) D2(1) Image: Sweet particular state	8.78 dBm 2.47916140 GHz -0.09 dB 985.53 kHz 2 2 2 2 3 3 3 3 5 5 3 kHz 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Date: 16.00T.2024 11:14	4:29		

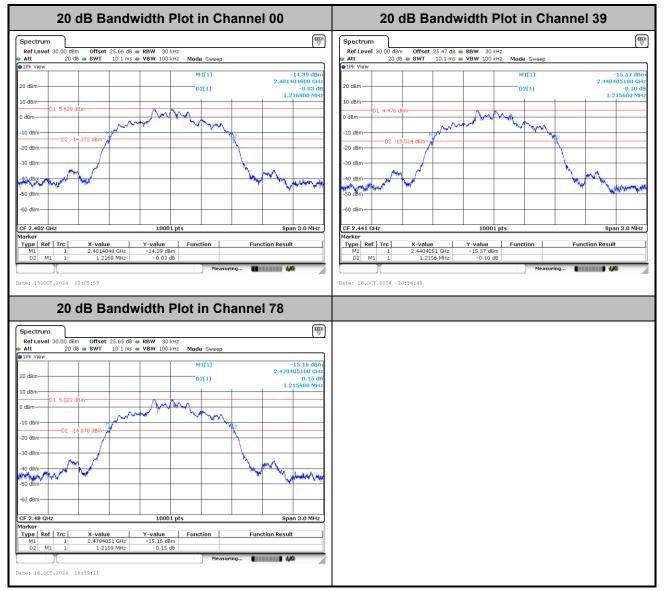
<3Mbps>

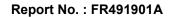

Dwell Time

	Package Transfer Time Plot
	Spectrum Image: Constraint of the sector of th
	
	0 dBm
	-30 dbm
	-60 dBm
	Type Ref Trc X-value Y-value Function Function Result M1 1 1.78 ms 0.18 dBm 1
	Date: 4.0CT.2024 11:17:30
1	Remark: In normal mode, hopping rate is 1600 hops/s with 6 slots in 79
-	hopping channels. With channel hopping rate (1600 / 6 / 79) in
	Occupancy Time Limit (0.4 x 79) (s),Hops Over Occupancy
	Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
2	In AFH mode, hopping rate is 800 hops/s with 6 slots in 20
	hopping channels. With channel hopping rate (800 / 6 / 20) in
	Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy
	Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
3	Dwell Time(s) = Hops Over Occupancy Time (hops) x
	Package Transfer Time

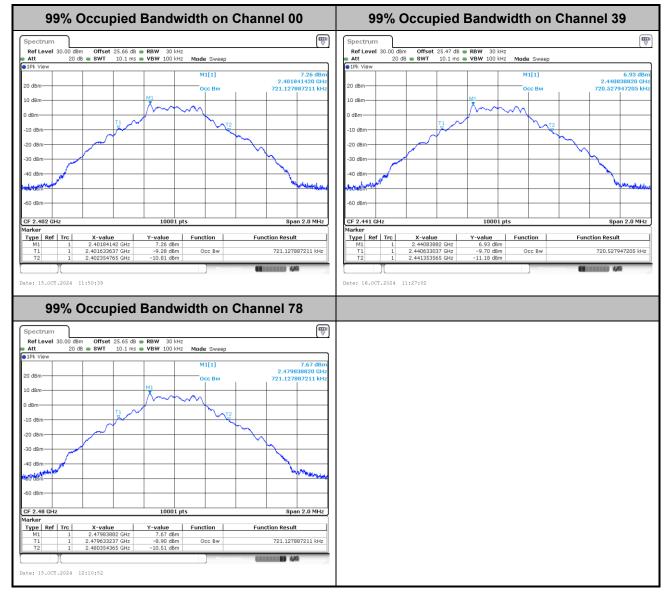

20dB Bandwidth

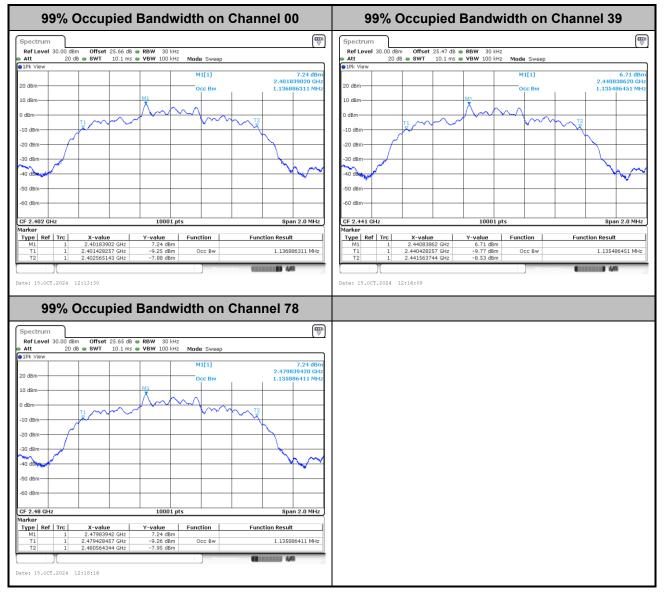
<1Mbps>



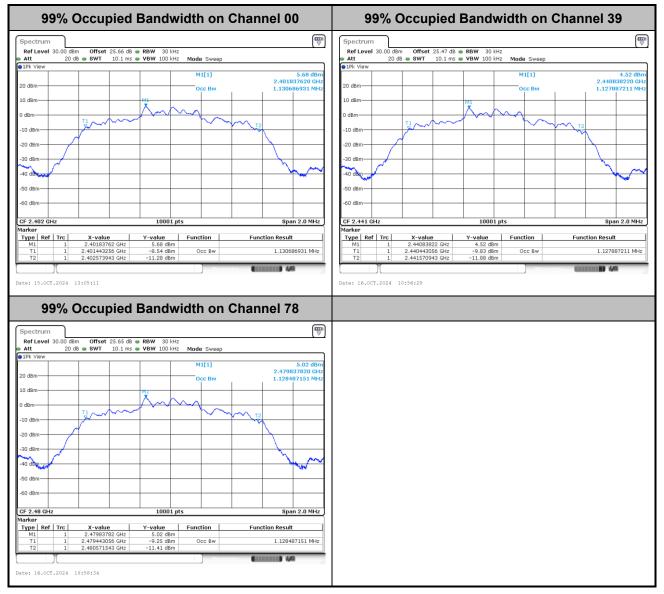

<2Mbps>

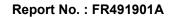
<3Mbps>



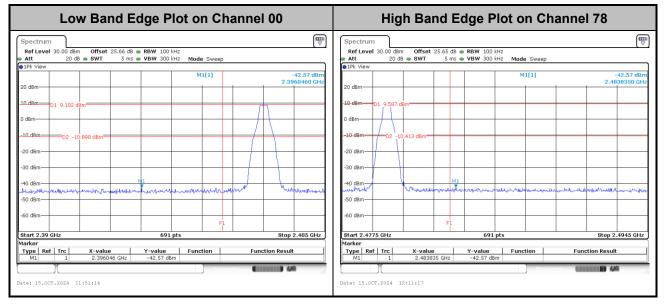

99% Occupied Bandwidth

<1Mbps>




<2Mbps>

<3Mbps>

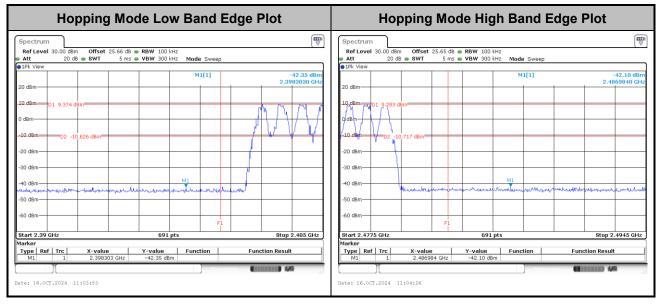


Band Edges

<1Mbps>

<2Mbps>

Low Ban	d Edge Plot on Cha	annel 00	High Band Edge Plot on Channel 78				
Spectrum Ref Level 30.00 dBm Offset 25	5.66 dB 👄 RBW 100 kHz		Spectrum				
Att 20 dB 👄 SWT	5 ms 👄 VBW 300 kHz 🛛 Mode Sweep		Att 20 dB SWT 5 ms VBW 300 kHz Mode Sweep				
1Pk View 20 dBm	M1[1]	-42.93 dBm 2.3972830 GHz					
10. dBm 01 0.147 dBm 0 0 dBm 02 -10.853 dBm			20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm				
-60 dBm	F1		-60 d8m				
Start 2.39 GHz Marker Type Ref Trc X-value M1 1 2.397283	691 pts	Stop 2.405 GHz	Start 2.4775 GHz 691 pts Stop 2.4945 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.493061 GHz -42.67 dBm				
Date: 15.0CT.2024 12:14:06	Measurt		Date: 15.007.2024 12:21:27				


<3Mbps>

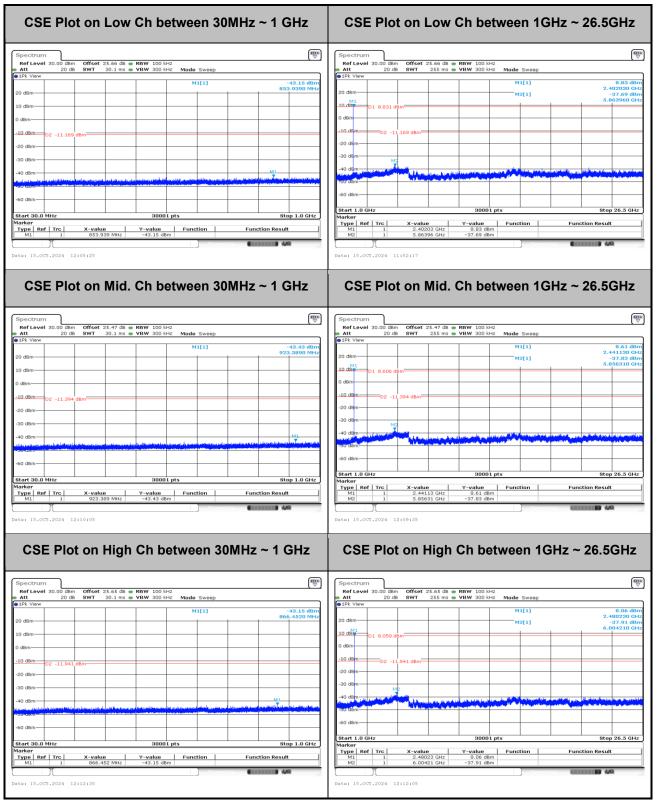
Low Band I	Edge Plot on Cha	annel 00	High Band Edge Plot on Channel 78				
Spectrum Ref Level 30.00 dBm Offset 25.66 d	B 🖷 RBW 100 kHz		Spectrum				
● Att 20 dB ● SWT 5 m	is 🖶 VBW 300 kHz Mode Sweep		Att 20 dB SWT 5 ms VBW 300 kHz Mode Sweep				
• 1Pk View			●1Pk View				
20 dBm	M1[1]	-42.71 dBm 2.3946350 GHz	M1[1] -42.03 dBm 2.4891240 GHz				
20 0811			20 0011				
10.d8m D1 9.157 d8m		M	10 dBm 01 ,8.508 dBm				
0 dBm			0 dBm				
_10.dBmD2 -10.843 dBm			-10 dBmD2 -11.492 dBm				
-20 dBm			-20 dBm				
-30 dBm		who have	-30 dBm /				
-40 dBm			-40 d\$m				
wand the war and have all have	have many and the second and	meeting	UN lowers will an or the here will be an and a first and a strain the second state of				
-50 dBm			-50 dBm				
-60 dBm	F1		-60 d8m				
Start 2.39 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz 691 pts Stop 2.4945 GHz				
Marker]	Marker				
Type Ref Trc X-value M1 1 2.394635 GHz	-42.71 dBm	Function Result	Type Ref Trc X-value Y-value Function Function Result M1 1 2.489124 GHz -42.03 dBm -42.03 dBm <t< td=""></t<>				
MI 1 2.394035 GH2	-42.71 0Bm		Mr. 1 2.489124 GH2 -42.03 UBM				
	Sleasuri						
Date: 15.0CT.2024 13:05:45			Date: 16.0CT.2024 10:58:56				

Hopping Mode Band Edges

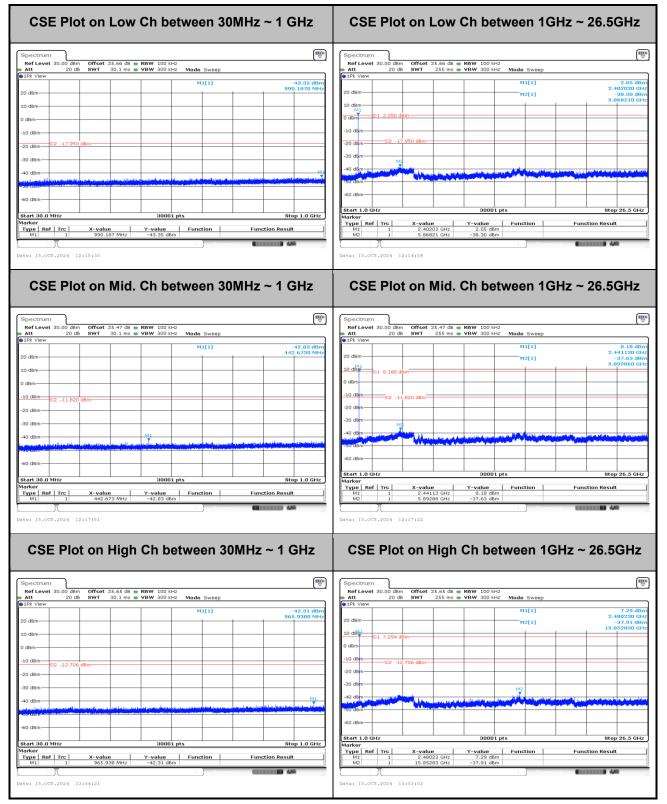
<1Mbps>

<2Mbps>

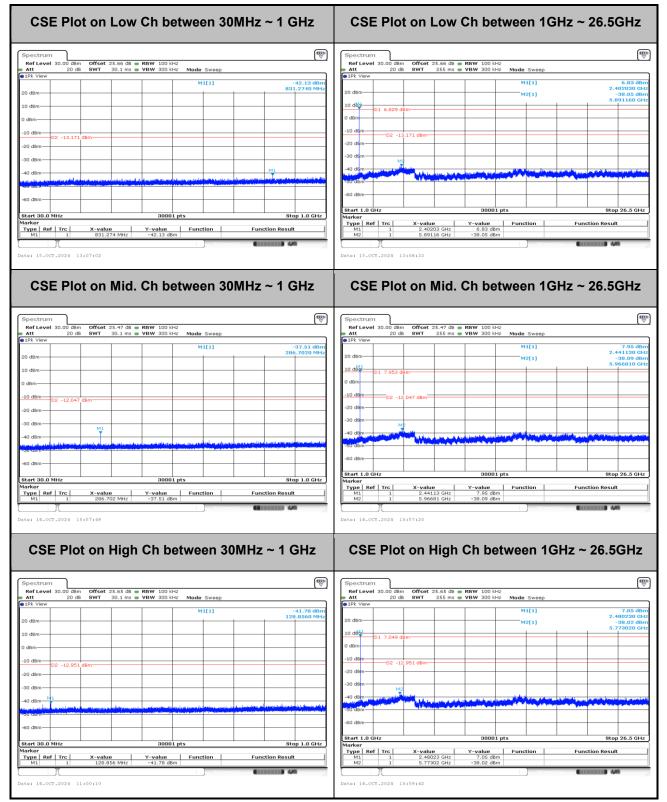
Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot				
Spectrum Image: Constraint of the sector of th	Spectrum Image: Construction of the sector of				
1.14 view M1[1] -42.81 dBm 20 dBm 10.48 m 2.3997360 GHz 10.48 m 0 dBm 10.49 dBm -10.48 m 0 dBm 10.49 dBm -20 dBm 0 dBm 10.49 dBm -30 dBm 0 dBm 10.49 dBm -30 dBm 10.49 dBm 10.49 dBm -30 dBm 10.49 dBm 10.49 dBm -40 dBm 10.49 dBm 10.49 dBm -30 dBm 10.49 dBm 10.49 dBm -40 dBm 10.49 dBm 10.49 dBm -50 dBm 10.49 dBm 11.49 dBm -50 dBm 10.49 dBm 11.49 dBm -60 dBm 11.49 dBm 11.49 dBm -50 dBm 11.49 dBm 11.49 dBm -50 dBm 11.49 dBm 11.49 dBm -60 dBm 11.2990736 GHz -42.81 dBm -40.49 dBm -42.81 dBm 11.49 dBm	Image: Start 2.4775 GHz 691 pts Stort 2.4775 GHz 691 pts				


<3Mbps>

Hopping Mode Low Band Edge Plot	Hopping Mode High Band Edge Plot				
Spectrum Image: Spectrum Ref Level 30.00 dBm Offset 25.66 dB = RBW 100 kHz Att 20 dB = SWT Sms VBW 300 kHz Mode Sweep	Spectrum Image: Constraint of the sector of t				
91Pt View -42.02 dbm 20 dbm -2.09 Gbc 10 dbm 18.424 dbm 0 dbm -0 0 dbm -0 -0 dbm -02 -11.576 dbm -10 dbm -02 -11.576 dbm -20 dbm -04 -104 -104 -104 -104 -104 -104 -104 -	• 1Pk View • 1.05 dBm 20 dBm • 1.05 dBm 10 dBm • 1.05 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm • 0 dBm /</th				

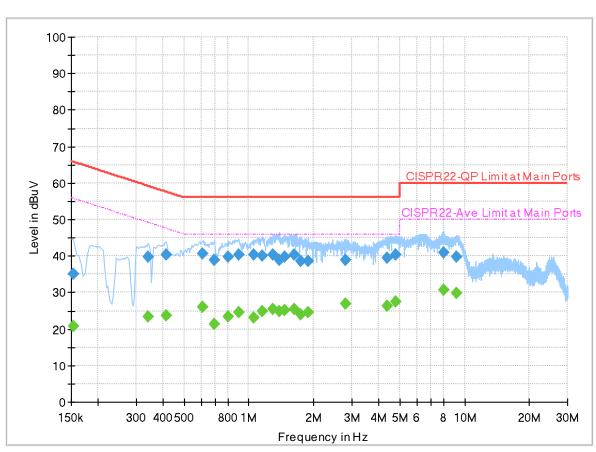

Conducted Spurious Emission

<1Mbps>



<2Mbps>

<3Mbps>



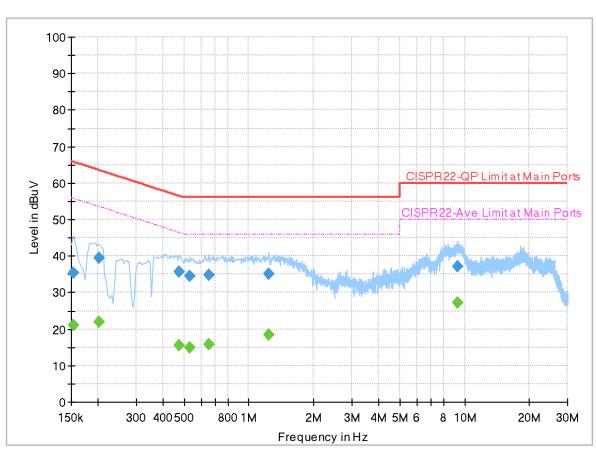
Appendix B. AC Conducted Emission Test Results

Toot Engineer	Louio Chung	Temperature :	23.6~26.8 ℃
Test Engineer :		Relative Humidity :	42.3~54.7%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 491901 Mode 1 120Vac/60Hz Line

Full Spectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.154000		20.67	55.78	35.11	L1	FLO	19.9
0.154000	35.16		65.78	30.62	L1	FLO	19.9
0.342000		23.42	49.16	25.74	L1	FLO	19.9
0.342000	39.88		59.16	19.28	L1	FLO	19.9
0.414000		23.68	47.57	23.89	L1	FLO	19.9
0.414000	40.46		57.57	17.11	L1	FLO	19.9
0.610000		26.13	46.00	19.87	L1	FLO	19.9
0.610000	40.62		56.00	15.38	L1	FLO	19.9
0.694000		21.37	46.00	24.63	L1	FLO	19.9
0.694000	38.83		56.00	17.17	L1	FLO	19.9
0.798000		23.25	46.00	22.75	L1	FLO	19.9
0.798000	39.77		56.00	16.23	L1	FLO	19.9
0.898000		24.45	46.00	21.55	L1	FLO	19.9
0.898000	40.30		56.00	15.70	L1	FLO	19.9
1.054000		23.02	46.00	22.98	L1	FLO	19.9
1.054000	40.28		56.00	15.72	L1	FLO	19.9
1.150000		24.77	46.00	21.23	L1	FLO	19.9
1.150000	40.04		56.00	15.96	L1	FLO	19.9
1.298000		25.56	46.00	20.44	L1	FLO	19.9

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1.390000 38.93 56.00 17.07 L1 FLO 19.9 1.458000 25.21 46.00 20.79 L1 FLO 19.9 1.458000 39.86 56.00 16.14 L1 FLO 19.9 1.622000 25.49 46.00 20.51 L1 FLO 19.9 1.622000 40.23 56.00 15.77 L1 FLO 19.9 1.746000 24.10 46.00 21.90 L1 FLO 19.9 1.746000 38.52 56.00 17.48 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 <td>1.298000</td> <td>40.34</td> <td></td> <td>56.00</td> <td>15.66</td> <td>L1</td> <td>FLO</td> <td>19.9</td>	1.298000	40.34		56.00	15.66	L1	FLO	19.9
1.458000 25.21 46.00 20.79 L1 FLO 19.9 1.458000 39.86 56.00 16.14 L1 FLO 19.9 1.622000 25.49 46.00 20.51 L1 FLO 19.9 1.622000 40.23 56.00 15.77 L1 FLO 19.9 1.746000 24.10 46.00 21.90 L1 FLO 19.9 1.746000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.786000 <td>1.390000</td> <td></td> <td>24.86</td> <td>46.00</td> <td>21.14</td> <td>L1</td> <td>FLO</td> <td>19.9</td>	1.390000		24.86	46.00	21.14	L1	FLO	19.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.390000	38.93		56.00	17.07	L1	FLO	19.9
1.622000 25.49 46.00 20.51 L1 FLO 19.9 1.622000 40.23 56.00 15.77 L1 FLO 19.9 1.746000 24.10 46.00 21.90 L1 FLO 19.9 1.746000 38.52 56.00 17.48 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 26.82 46.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000	1.458000		25.21	46.00	20.79	L1	FLO	19.9
1.622000 40.23 56.00 15.77 L1 FLO 19.9 1.746000 24.10 46.00 21.90 L1 FLO 19.9 1.746000 38.52 56.00 17.48 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000	1.458000	39.86		56.00	16.14	L1	FLO	19.9
1.746000 24.10 46.00 21.90 L1 FLO 19.9 1.746000 38.52 56.00 17.48 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 7.986000	1.622000		25.49	46.00	20.51	L1	FLO	19.9
1.746000 38.52 56.00 17.48 L1 FLO 19.9 1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000	1.622000	40.23		56.00	15.77	L1	FLO	19.9
1.874000 24.46 46.00 21.54 L1 FLO 19.9 1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 9.150000 <td>1.746000</td> <td></td> <td>24.10</td> <td>46.00</td> <td>21.90</td> <td>L1</td> <td>FLO</td> <td>19.9</td>	1.746000		24.10	46.00	21.90	L1	FLO	19.9
1.874000 38.73 56.00 17.27 L1 FLO 19.9 2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000	1.746000	38.52		56.00	17.48	L1	FLO	19.9
2.814000 26.82 46.00 19.18 L1 FLO 20.0 2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	1.874000		24.46	46.00	21.54	L1	FLO	19.9
2.814000 38.80 56.00 17.20 L1 FLO 20.0 4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	1.874000	38.73		56.00	17.27	L1	FLO	19.9
4.366000 26.42 46.00 19.58 L1 FLO 20.0 4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	2.814000		26.82	46.00	19.18	L1	FLO	20.0
4.366000 39.41 56.00 16.59 L1 FLO 20.0 4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	2.814000	38.80		56.00	17.20	L1	FLO	20.0
4.786000 27.41 46.00 18.59 L1 FLO 20.0 4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	4.366000		26.42	46.00	19.58	L1	FLO	20.0
4.786000 40.23 56.00 15.77 L1 FLO 20.0 7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	4.366000	39.41		56.00	16.59	L1	FLO	20.0
7.986000 30.84 50.00 19.16 L1 FLO 20.0 7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	4.786000		27.41	46.00	18.59	L1	FLO	20.0
7.986000 40.96 60.00 19.04 L1 FLO 20.0 9.150000 29.76 50.00 20.24 L1 FLO 20.1	4.786000	40.23		56.00	15.77	L1	FLO	20.0
9.150000 29.76 50.00 20.24 L1 FLO 20.1	7.986000		30.84	50.00	19.16	L1	FLO	20.0
	7.986000	40.96		60.00	19.04	L1	FLO	20.0
9.150000 39.68 60.00 20.32 L1 FLO 20.1	9.150000		29.76	50.00	20.24	L1	FLO	20.1
	9.150000	39.68		60.00	20.32	L1	FLO	20.1

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 491901 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.154000		21.13	55.78	34.65	Ν	FLO	19.9
0.154000	35.36		65.78	30.42	Ν	FLO	19.9
0.202000		21.96	53.53	31.57	Ν	FLO	19.9
0.202000	39.49		63.53	24.04	Ν	FLO	19.9
0.474000		15.43	46.44	31.01	Ν	FLO	19.9
0.474000	35.75		56.44	20.69	Ν	FLO	19.9
0.534000		14.78	46.00	31.22	Ν	FLO	19.9
0.534000	34.38		56.00	21.62	Ν	FLO	19.9
0.650000		15.76	46.00	30.24	Ν	FLO	19.9
0.650000	34.91		56.00	21.09	Ν	FLO	19.9
1.230000		18.41	46.00	27.59	Ν	FLO	19.9
1.230000	35.00		56.00	21.00	Ν	FLO	19.9
9.226000		27.29	50.00	22.71	Ν	FLO	20.1
9.226000	37.15		60.00	22.85	Ν	FLO	20.1

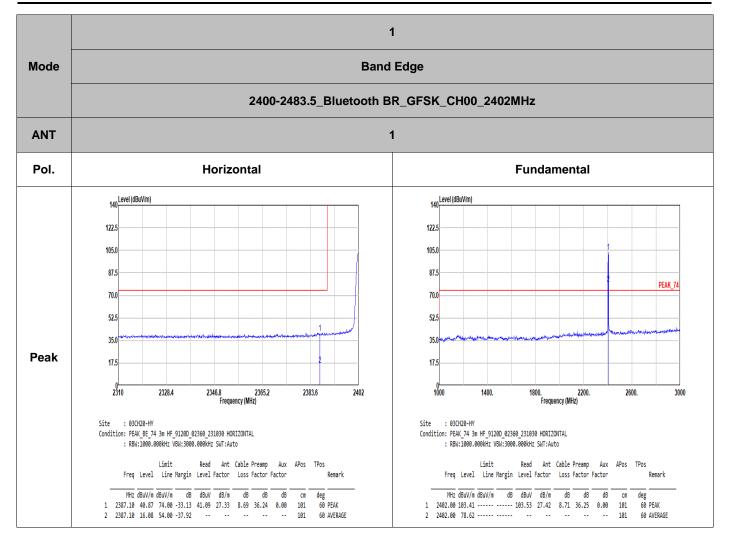
Appendix C. Radiated Spurious Emission Test Data

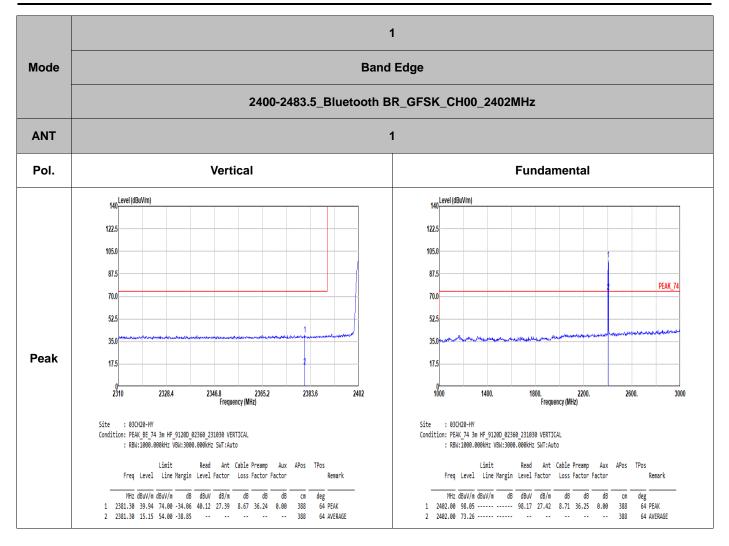
Test Engineer	John Chuong, Dovid Doi and Sam Chou	Temperature :	19.8~23.4 ℃	
Test Engineer .	John Chuang, David Dai and Sam Chou	Relative Humidity :	64.9~70.5%	

Note symbol

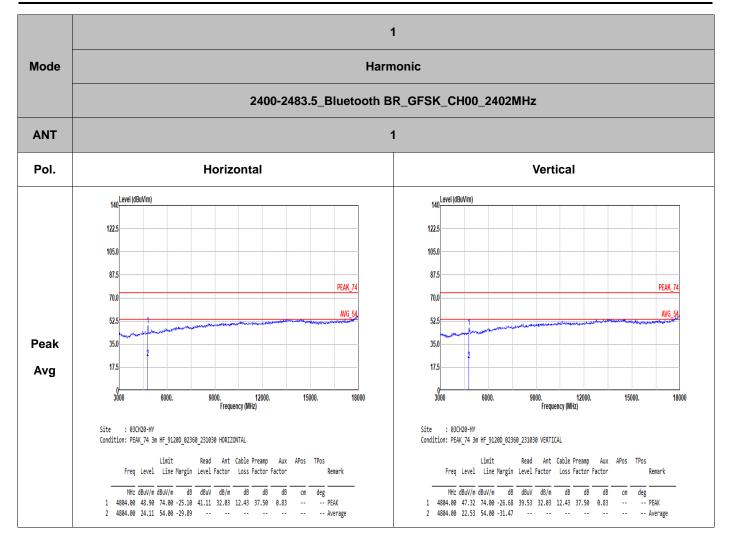
-L	Low channel location
-R	High channel location

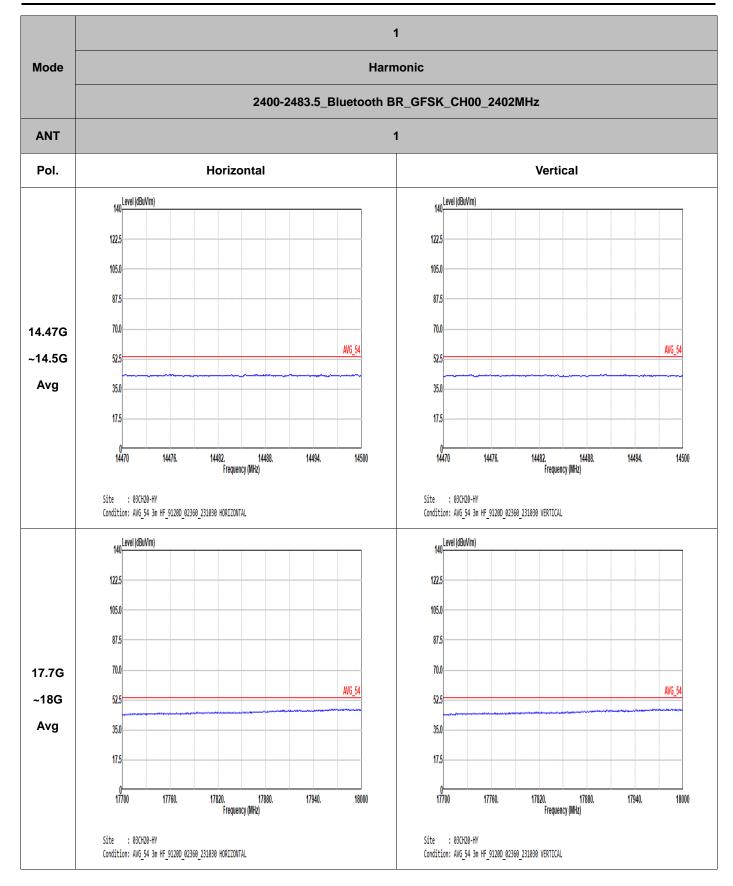
C1. Radiated Spurious Emission Test Modes

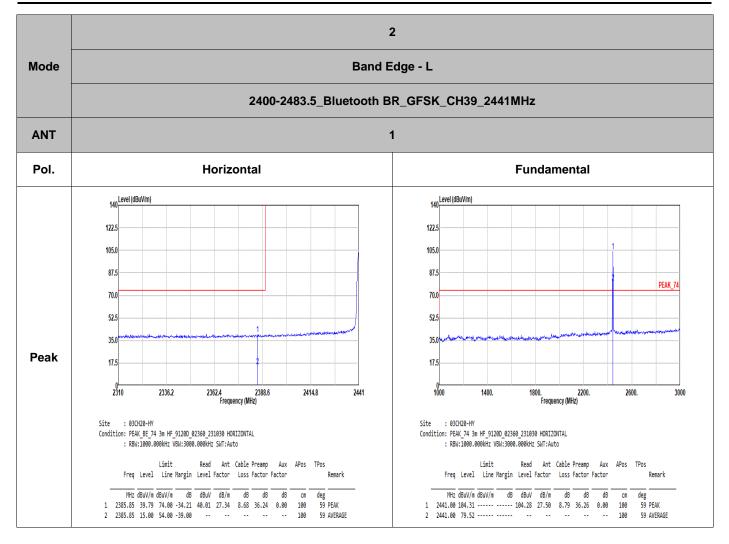

Mode	Band (MHz)	Modulation	Channel Frequency		Data Rate	RU	Remark
Mode 1	2400-2483.5	Bluetooth BR_GFSK	00	2402	1Mbps	-	-
Mode 2	2400-2483.5	Bluetooth BR_GFSK 39 2441 1M		1Mbps	-	-	
Mode 3	2400-2483.5	Bluetooth BR_GFSK	78	2480	1Mbps	-	-
Mode 4	2400-2483.5	Bluetooth BR_GFSK	39	2441	1Mbps	-	LF
Mode 5	2400-2483.5	Bluetooth BR_GFSK	39	2441	1Mbps	-	SHF

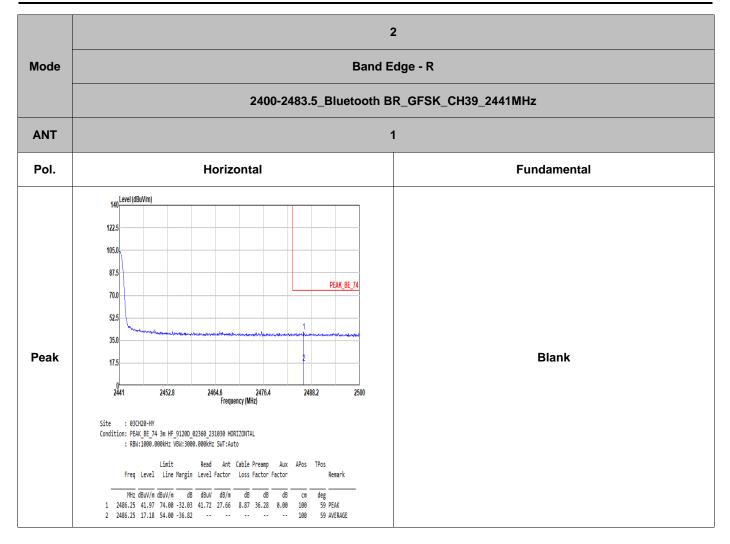

C2. Summary of each worse mode

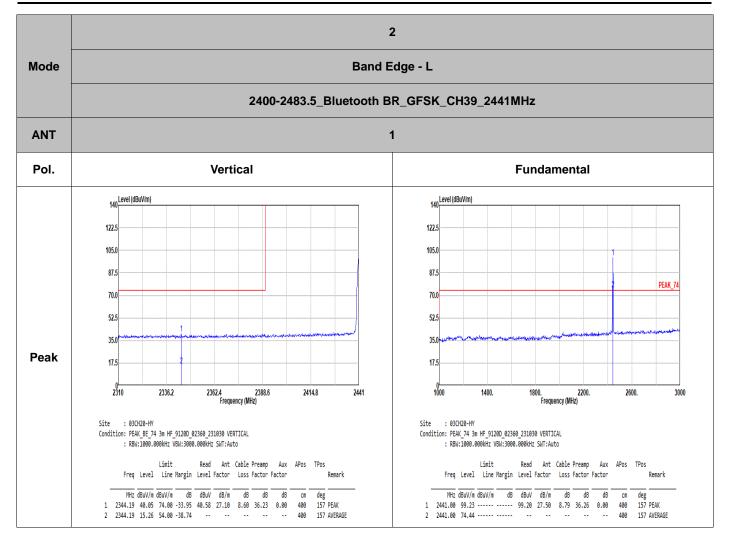
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
	Bluetooth BR_GFSK	00	2387.10	40.87	74.00	-33.13	Н	Peak	Pass	-	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	48.90	74.00	-25.10	Н	Peak	Pass	-	Harmonic
	Bluetooth BR_GFSK	39	2486.25	41.97	74.00	-32.03	Н	Peak	Pass	-	Band Edge
2	Bluetooth BR_GFSK	39	4882.00	49.49	74.00	-24.51	Н	Peak	Pass	-	Harmonic
3	Bluetooth BR_GFSK	78	2483.68	45.17	74.00	-28.83	Н	Peak	Pass	-	Band Edge
3	Bluetooth BR_GFSK	78	4960.00	49.47	74.00	-24.53	Н	Peak	Pass	-	Harmonic
4	LF	39	40.67	30.08	40.00	-9.92	V	Peak	Pass	-	LF
5	SHF	39	24972.00	41.81	74.00	-32.19	Н	Peak	Pass	-	SHF

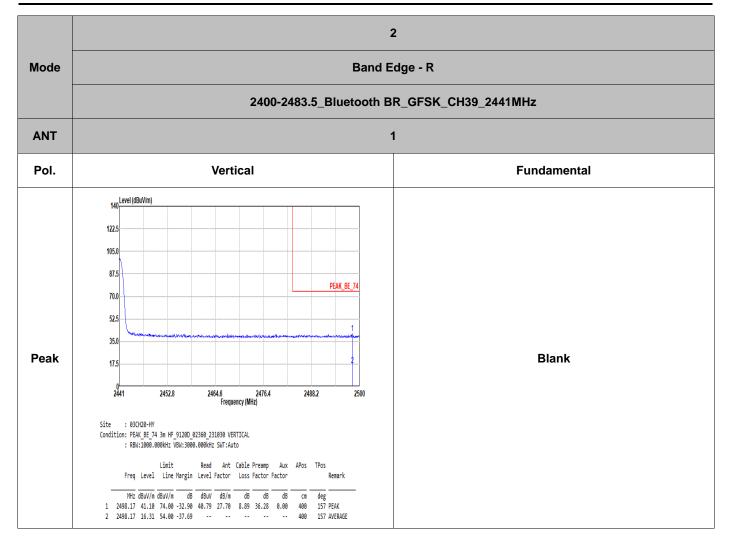


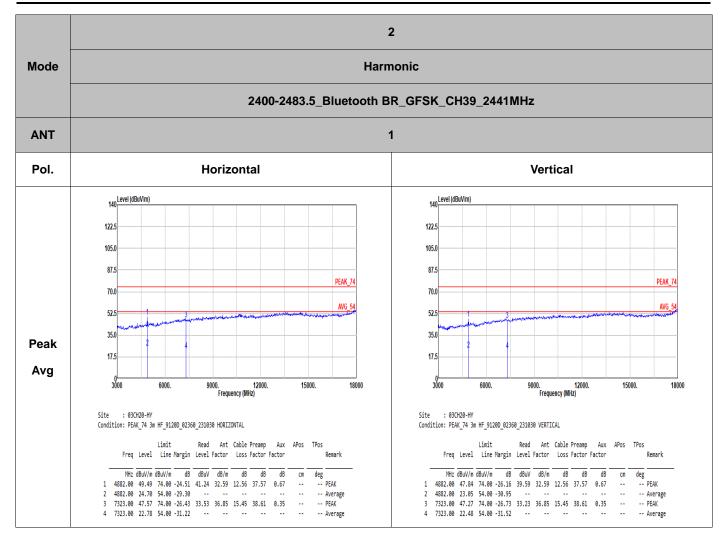


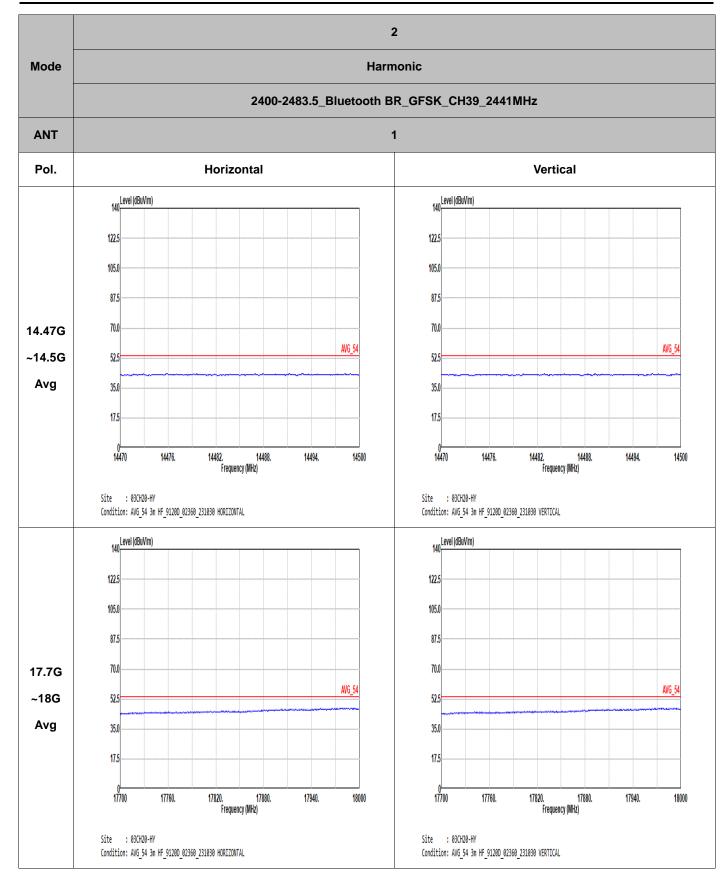


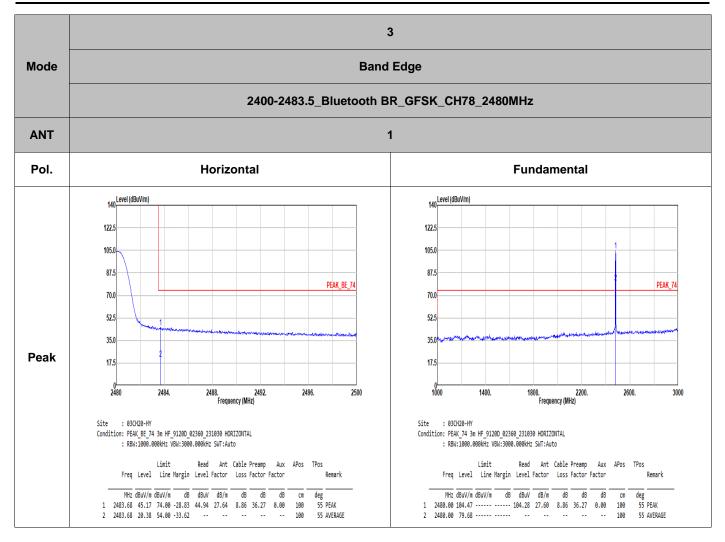


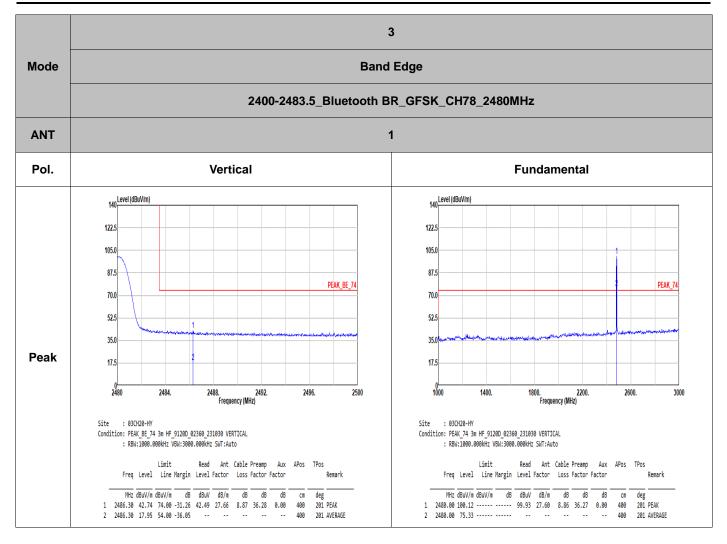


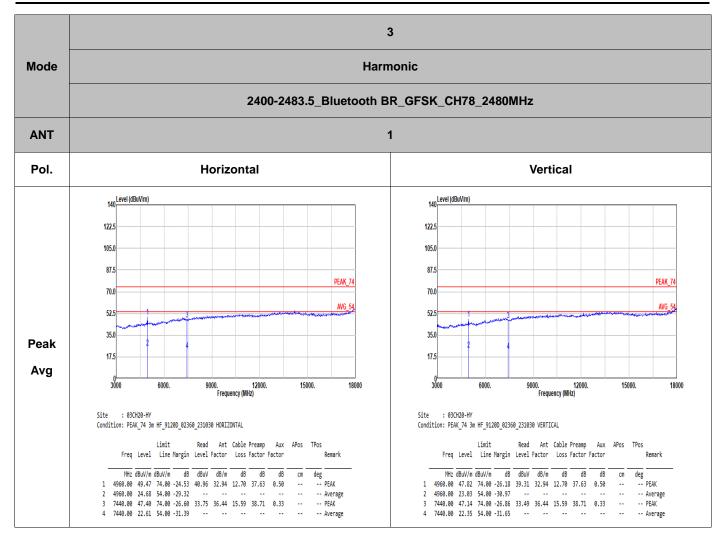


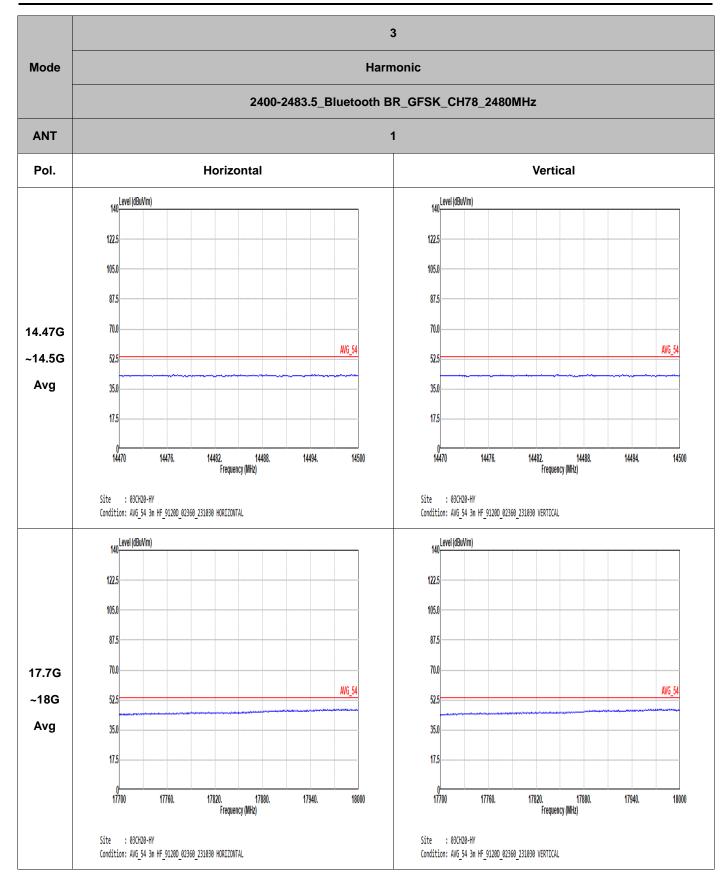


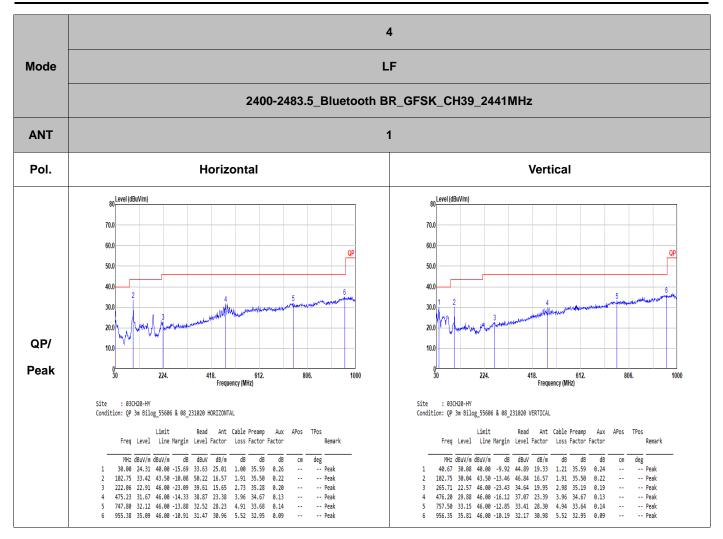


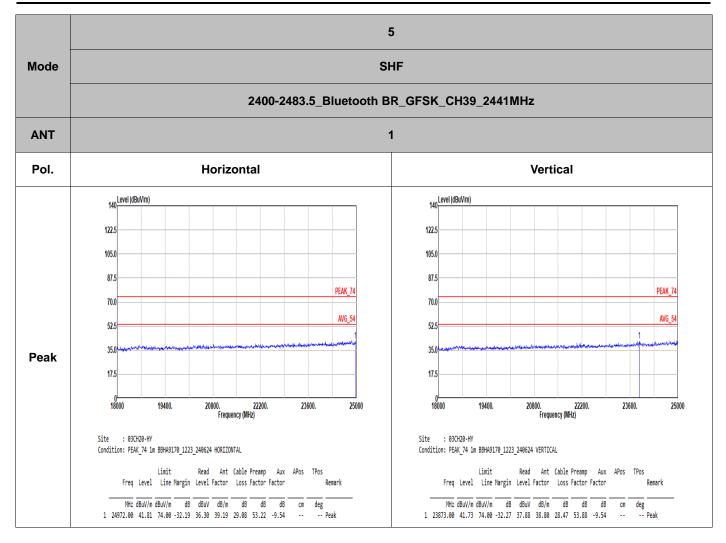












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 78					on time (Count Pulses) Plot on Channel 78		
Spectrum Analyzer 1 Swept SA KEVSIGHT Input RF RL → Icourpoint IS Agen of Seate(Div 10 dB 10 10 10 10 10 10 10 10 10 10	Corr CCorr Freq Ref. Int (S)	Alten 20 dB PNO Fast Sale Or Sal Love Sal finace Or ILevel 116.99 dByV	IfAvg Type: Power (RMS]] > 3.4 °.6 Ing Tree Run Ψ N N N N N ΔMkr3 3.750 mS -0.03 dB	Marker A Time Settings 3.75000 ms Peak Marker Mode Search Normal Pk Search Config	KEVSIGHT Input. R ² Input. Z. 50.0 Adden. 20.48 PNO First #Avg Type. Power (RMS) [2.3.4.5.5] RL → Dagage Off Corr CCorr Gate Off Tig Free Fun W were their With With With With With With With With	Marker Image: Constraint of the second	
67.0 57.0 47.0 37.0 27.0 Center 2.480000000 GHz Res BW 1.0 MHz		Agtua) هر المعالي	Span 0 Hz Sweep 10.0 ms (1001 pts)	Fixed Properties Fixed Marker Off Marker Delta Marker (Reset Delta) Marker Table Counter	012 717 717 717 719 729 720 730 730 7417 747 747 747 747 747 747 74	Next Pk Right Properties Next Pk Left Marker Minimum Peak Marker Pk-Pk Search Counter	
δ Marker Table 6 Marker Table 1 Δ2 1 t 2 F 1 t 3 Δ4 1 t 4 F 1 t 5 6 6 6	 (Δ) 2.880 ms (Δ) 2.130 ms (Δ) 3.750 ms (Δ)) 2.361 dB 91.08 dBµV)-0.02940 dB 91.08 dBµV	iction Width Function Value	Marker indee Off Diagram Al Markers Off Couple Markers Off On Off	E Moder Table V Mode Trace Scale X Y Function Function Width Function Value 2 X T X 75.00 ms 98.33 dByV 3 4	Marker Delta MirCF MirRef Lvi Jontifiruous Peak Search Off	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$