

FCC RADIO TEST REPORT

FCC ID	:	HLZA24007
Equipment	:	Tablet PC
Brand Name	:	acer
Model Name	:	A24007
Marketing Name	:	Acer Iconia V10, V10-21
Applicant	:	Acer Incorporated
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Manufacturer	:	Acer Incorporated
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Aug. 20, 2024 and testing was performed from Aug. 30, 2024 to Sep. 20, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

Page Number	: 1 of 26
Issue Date	: Oct. 15, 2024
Report Version	: 02

Table of Contents

Hist	tory of	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	6
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test I	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	13
	3.4	20dB and 99% Bandwidth Measurement	14
	3.5	Output Power Measurement	15
	3.6	Conducted Band Edges Measurement	16
	3.7	Conducted Spurious Emission Measurement	17
	3.8	Radiated Band Edges and Spurious Emission Measurement	18
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	List o	f Measuring Equipment	25
5	Meas	urement Uncertainty	26
App	pendix	A. Conducted Test Results	
App	pendix	B. AC Conducted Emission Test Result	
App	pendix	C. Radiated Spurious Emission Test Data	

Appendix D. Duty Cycle Plots

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR482028A	01	Initial issue of report	Oct. 09, 2024
FR482028A	02	Revise Product Feature This report is an updated version, replacing the report issued on Oct. 09, 2024.	Oct. 15, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Pass	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.31 dB under the limit at 45.52 MHz
3.9	15.207	AC Conducted Emission	Pass	18.05 dB under the limit at 0.20 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Michelle Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature							
General Specs	General Specs						
Bluetooth, Wi-Fi 2.4GHz 802.11b/g/r	Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, and GNSS.						
Antenna Type							
WLAN: PIFA Antenna							
Bluetooth: PIFA Antenna							
GPS / Glonass / BDS / Galileo: PIFA	GPS / Glonass / BDS / Galileo: PIFA Antenna						
Antenna information							
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-0.45					

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

	SKU List							
Model	SKU1_4G+64G	SKU2_4G+64G	SKU3_4G+128G	SKU4_4G+128G				
RAM	Shenzhen Longsys Electronics Co., Ltd. MLXC4004G-W6	SHENZHEN GCAIELECTRONICTEC HNOLOGY Co., Ltd. GD84D32MJ0-42C2	Shenzhen Longsys Electronics Co., Ltd. MLXC4004G-W6	SHENZHEN GCAIELECTRONICTEC HNOLOGY Co., Ltd. GD84D32MJ0-42C2				
ROM	Shenzhen Longsys Electronics Co., Ltd. FEMDNN064G-A3A55	Shenzhen Techwinsemi Technology Co., Ltd. UEMCGS63S0	Shenzhen Longsys Electronics Co., Ltd. FEMDNN128G-A3V01	Shenzhen Techwinsemi Technology Co., Ltd. UEMDGS63S0				
Front Camera	SHENZHEN KE YI TAI ELECTRONIC Co., Ltd. GC05A2 5M	Shenzhen Hongyou Electrionic Technology Co., Ltd. GC05A2 5M	SHENZHEN KE YI TAI ELECTRONIC Co., Ltd. GC05A2 5M	Shenzhen Hongyou Electrionic Technology Co., Ltd. GC05A2 5M				
Rear Camera	SHENZHEN KE YI TAI ELECTRONIC Co., Ltd. S5K4H8 8M	Shenzhen Hongyou Electrionic Technology Co., Ltd. S5K4H8 8M	SHENZHEN KE YI TAI ELECTRONIC Co., Ltd. S5K4H8 8M	Shenzhen Hongyou Electrionic Technology Co., Ltd. S5K4H8 8M				

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Sile No.	TH05-HY, CO07-HY, 03CH20-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL : 886-3-327-0868	Page Number	: 6 of 26
FAX : 886-3-327-0855	Issue Date	: Oct. 15, 2024
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 02

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Summary table of Test Cases						
Data Rate / Modulation						
Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps <i>π</i> /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK				
Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
Bluetooth BR 1Mbps GFSK						
	Mode 1: CH00_2402 MHz					
	Mode 2: CH39_2441 MHz					
Mode 3: CH78_2480 MHz						
Mode 1 :WLAN (2.4GHz)	Link + Bluetooth Link + USE	3 Cable (Charging from AC				
Adapter) + Batter	y for SKU4_4G+128G					
 Remark: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. For Radiated Test Cases, the tests were performed with SKU4_4G+128G. 						
	GFSK Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz Mode 1 :WLAN (2.4GHz) Adapter) + Battery Test Cases, the worst mode ver in the preliminary tests. T easurement for other data ra equencies found in conducted	Bluetooth BR 1Mbps GFSKBluetooth EDR 2Mbps π /4-DQPSKMode 1: CH00_2402 MHzMode 4: CH00_2402 MHzMode 2: CH39_2441 MHzMode 5: CH39_2441 MHzMode 3: CH78_2480 MHzMode 6: CH78_2480 MHzBluetooth BR 1Mbps GFSMMode 1: CH00_2402 MHzMode 2: CH39_2441 MHzMode 3: CH78_2480 MHzMode 1: CH00_2402 MHzMode 1: CH00_2402 MHzMode 2: CH39_2441 MHzMode 2: CH39_2441 MHzMode 3: CH78_2480 MHzMode 1: CH00_2402 MHzMode 3: CH78_2480 MHzMode 1 :WLAN (2.4GHz) Link + Bluetooth Link + USE Adapter) + Battery for SKU4_4G+128GTest Cases, the worst mode data rate 1Mbps was report ver in the preliminary tests. The conducted spurious emiseasurement for other data rates were not worse than 1M				

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	Netgear	RAXE500	PY320300508	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Earphone	МОТО	JYN1181B	N/A	N/A	Unshielded, 1.2 m

TEL : 886-3-327-0868	Page Number	: 9 of 26
FAX : 886-3-327-0855	Issue Date	: Oct. 15, 2024
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 02

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: Acer_AV0U0_M10-21_RV00RB01_PAPAP_GEN1) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

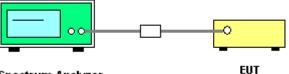
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

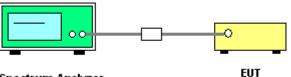
Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

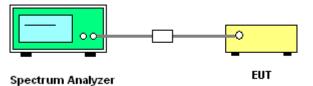
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

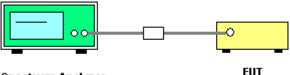
3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

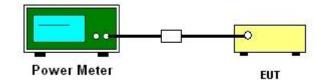
Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

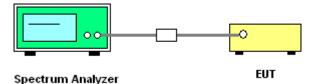
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

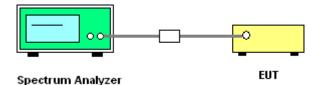
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

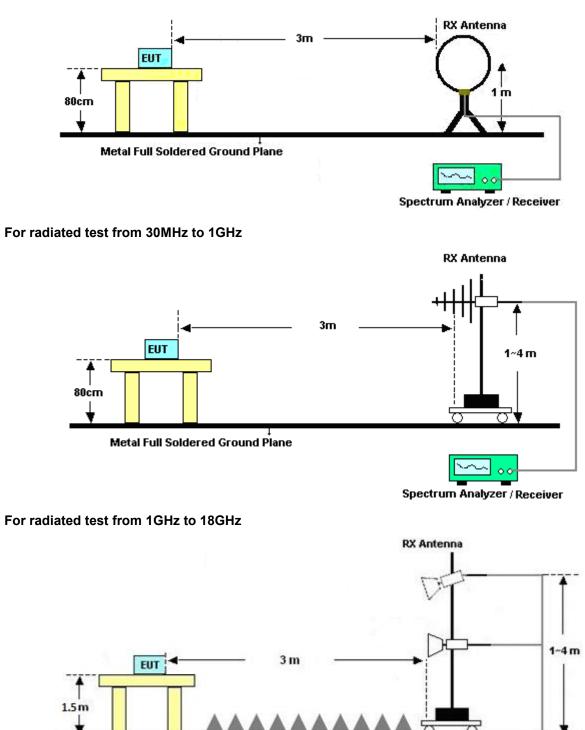
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

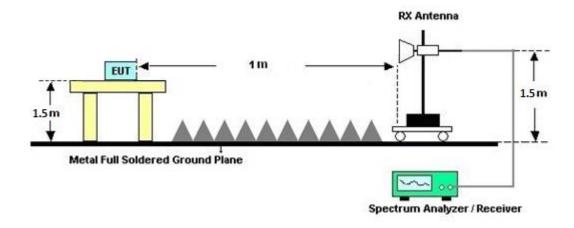
3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - $\begin{array}{ll} \text{(3)} & \mbox{For average measurement: use duty cycle correction factor method per 15.35(c).} \\ & \mbox{Duty cycle = On time/100 milliseconds} \\ & \mbox{On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$} \\ & \mbox{Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.} \end{array}$
 - Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated test below 30MHz



Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

3.9 AC Conducted Emission Measurement

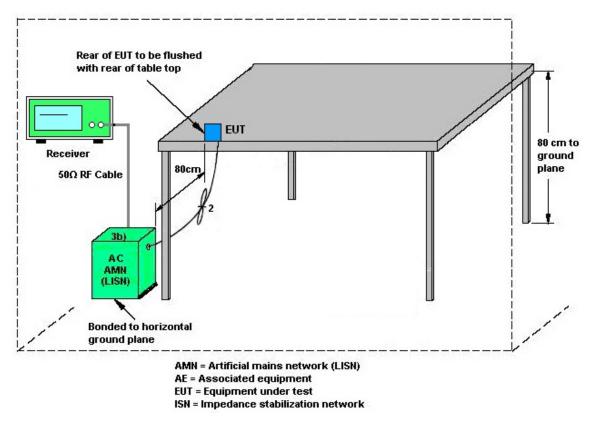
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.10.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	N/A	Oct. 06, 2023	Sep. 14, 2024~ Sep. 20, 2024	Oct. 05, 2024	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Sep. 14, 2024~ Sep. 20, 2024	Aug. 28, 2025	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	May 27, 2024	Sep. 14, 2024~ Sep. 20, 2024	May 26, 2025	Radiation (03CH20-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Sep. 14, 2024~ Sep. 20, 2024	N/A	Radiation (03CH20-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Sep. 14, 2024~ Sep. 20, 2024	N/A	Radiation (03CH20-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Sep. 14, 2024~ Sep. 20, 2024	N/A	Radiation (03CH20-HY)
Signal Analyzer	Keysight	N9010B	MY60240520	N/A	Dec. 12, 2023	Sep. 14, 2024~ Sep. 20, 2024	Dec. 11, 2024	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N1 D01N-06	55606 & 08	30MHz~1GHz	Oct. 20, 2023	Sep. 14, 2024~ Sep. 20, 2024	Oct. 19, 2024	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	02360	1GHz-18GHz	Oct. 30, 2023	Sep. 14, 2024~ Sep. 20, 2024	Oct. 29, 2024	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1224	18GHz-40GHz	Jun. 24, 2024	Sep. 14, 2024~ Sep. 20, 2024	Jun. 23, 2025	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 01, 2024	Sep. 14, 2024~ Sep. 20, 2024	Dec. 31, 2024	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45SE	980792	N/A	Nov. 13, 2023	Sep. 14, 2024~ Sep. 20, 2024	Nov. 12, 2024	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,804 015/2,804027 /2	N/A	Jan. 17, 2024	Sep. 14, 2024~ Sep. 20, 2024	Jan. 16, 2025	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP211382	N/A	Mar. 27, 2024	Sep. 14, 2024~ Sep. 20, 2024	Mar. 26, 2025	Radiation (03CH20-HY)
Software	Audix	N/A	RK-002156	N/A	N/A	Sep. 14, 2024~ Sep. 20, 2024	N/A	Radiation (03CH20-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Aug. 30, 2024~ Sep. 04, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 04, 2024	Aug. 30, 2024~ Sep. 04, 2024	Jul. 03, 2025	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 04, 2024	Aug. 30, 2024~ Sep. 04, 2024	Jul. 03, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz~40GHz	Dec. 19, 2023	Aug. 30, 2024~ Sep. 04, 2024	Dec. 18, 2024	Conducted (TH05-HY)
Switch Control Mainframe	Burgeon	ETF-058	EC1300484 (BOX3)	N/A	May 20, 2024	Aug. 30, 2024~ Sep. 04, 2024	May 19, 2025	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final_ve rsion 240513	N/A	Conducted Other Test Item	N/A	Aug. 30, 2024~ Sep. 04, 2024	N/A	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 06, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 06, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Sep. 06, 2024	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Sep. 06, 2024	Mar. 13, 2025	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Sep. 06, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Sep. 06, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Sep. 06, 2024	Sep. 19, 2024	Conduction (CO07-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.40 dB
of 95% (U = 2Uc(y))	0.40 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4 50 dP
of 95% (U = 2Uc(y))	4.50 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.60 dB
of 95% (U = 2Uc(y))	4.00 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.40 dB
of 95% (U = 2Uc(y))	5.40 UB

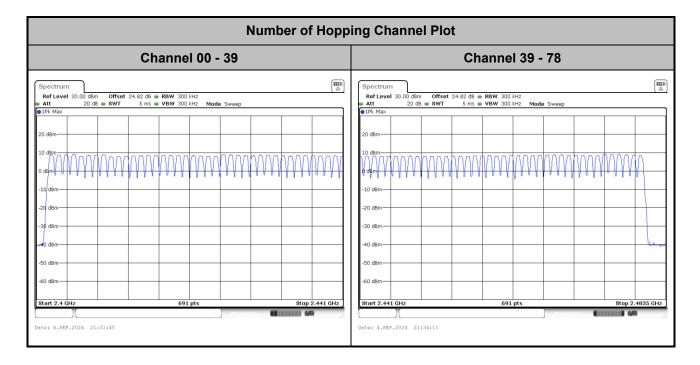
Report Number : FR482028A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Willy Chang	Temperature:	21~25	°C
Test Date:	2024/08/30~2024/09/04	Relative Humidity:	51~54	%

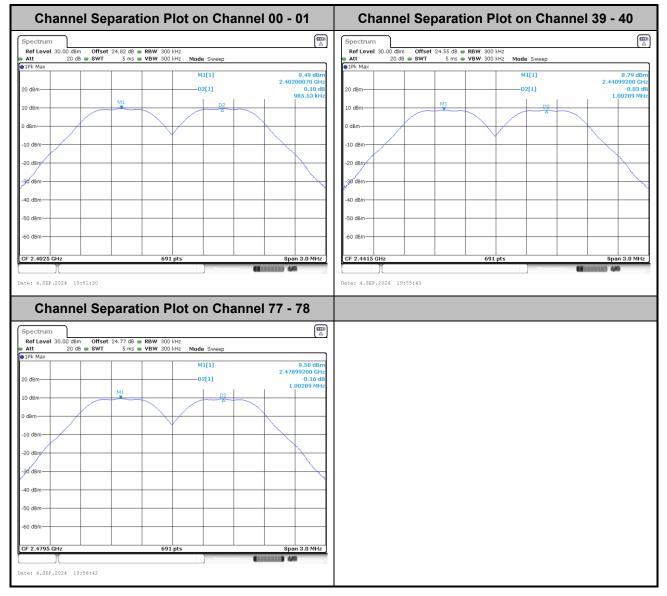
			20dB	and 99	% Occup	-	<u>ULTS DATA</u> Ith and Hopping	Channel Separ	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.776	0.721	0.986	0.5174	Pass
DH	1Mbps	1	39	2441	0.777	0.723	1.003	0.5182	Pass
DH	1Mbps	1	78	2480	0.777	0.723	1.003	0.5180	Pass
2DH	2Mbps	1	0	2402	1.213	1.141	1.003	0.8086	Pass
2DH	2Mbps	1	39	2441	1.233	1.141	1.003	0.8220	Pass
2DH	2Mbps	1	78	2480	1.206	1.139	1.003	0.8038	Pass
3DH	3Mbps	1	0	2402	1.218	1.137	1.003	0.8118	Pass
3DH	3Mbps	1	39	2441	1.219	1.135	1.003	0.8124	Pass
3DH	3Mbps	1	78	2480	1.216	1.131	1.003	0.8104	Pass

	TEST RESULTS DATA Dwell Time							
Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)		Dwell Time (sec)	Limits (sec)	Pass/Fail		
2DH5	79	106.670	2.90	0.31	0.4	Pass		
2DH5 (AFH)	20	53.330	2.90	0.15	0.4	Pass		


					T RESUL eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	10.96	20.97	Pass
DH1	39	1	10.57	20.97	Pass
	78	1	10.92	20.97	Pass
	0	1	10.18	20.97	Pass
2DH1	39	1	9.99	20.97	Pass
	78	1	10.12	20.97	Pass
	0	1	10.14	20.97	Pass
3DH1	39	1	9.86	20.97	Pass
	78	1	10.09	20.97	Pass

				Ave	<u>ST RESULTS DATA</u> erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	10.50	5.17	
DH1	39	1	9.96	5.17	
	78	1	10.42	5.17	
	0	1	8.56	5.11	
2DH1	39	1	8.22	5.11	
	78	1	8.40	5.11	
	0	1	8.32	5.11	
3DH1	39	1	8.17	5.11	
	78	1	8.29	5.11	

		<u>TEST RE</u> Number of He	SULTS DA	
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

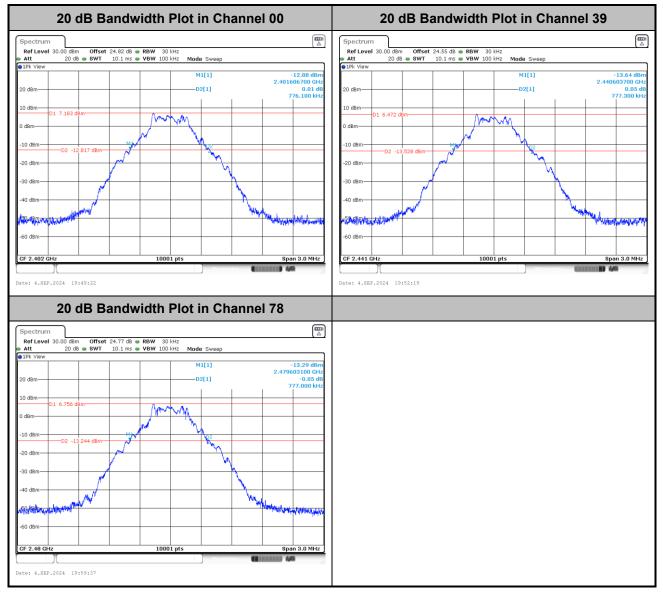

Number of Hopping Frequency

Hopping Channel Separation

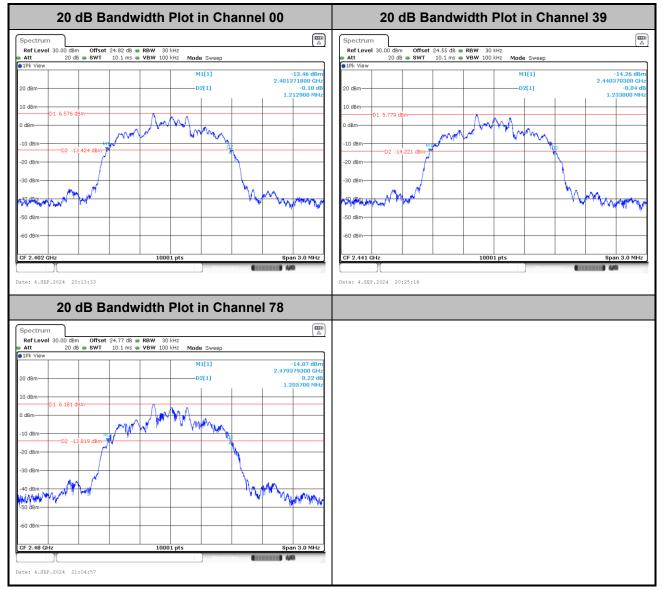
<1Mbps>

<2Mbps>

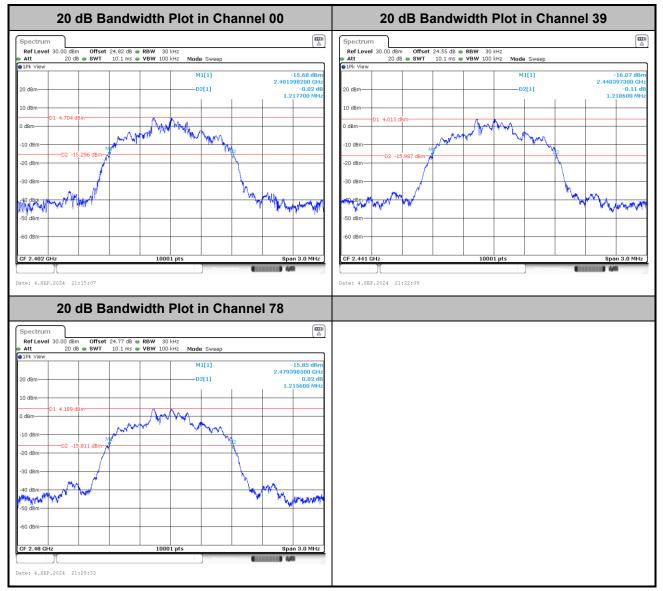
Channel Se	paration Plot on C	hannel 00 - 01	Channe	i Separation	Plot on Cha	annel 39 - 40
Spectrum			Spectrum			
	24.82 dB • RBW 300 kHz 5 ms • VBW 300 kHz Mode Sweep	· · ·	RefLevel 30.00 dBm Att 20 dB	Offset 24.55 dB RBW	300 kHz 300 kHz Mode Sweep	4a4
1Pk Max			1Pk Max			
20 dBm	M1[1]	8.51 dBm 2.40215270 GHz 0.18 dB	20 dBm		M1[1]	7.63 dBm 2.44083140 GHz -0.08 dB
	M1	1.00289 MHz		MI		1.00289 MHz
10 dBm		- A A	10 dBm		D2 	
D dBm			0 dBm			
-10 dBm			-10 dBm			
Z0 dBm			-20 dBm			
, I I I I I I I I I I I I I I I I I I I						
30 dBm			-30 dBm			
D dBm			-40 dBm-			
dBm			-50 dBm			
dBm			-60 dBm			
			CS UBIT			
2.4025 GHz	691 pts	Span 3.0 MHz	CF 2.4415 GHz		691 pts	Span 3.0 MHz
	paration Plot on C	hannel 77 - 78	Date: 4.SEP.2024 20:5	59:07	Measuri	
Channel Se	paration Plot on C			59:07	Measure	
pectrum Ref Level 30.00 dBm Offset	24.77 dB 🖷 RBW 300 kHz			59:07	Pescere	
Channel Se				59:07		
Channel Se	24.77 dB • RBW 300 kHz 5 ms • VBW 300 kHz Mode Sweep M1[1]	8.34 dBm 2.47883570 GHz		59:07		
Channel Se bectrum of Level 30.00 dBm offset 20 dB s swr 2k Max	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweet	(Ⅲ) 0 8.34 dBm		99:07		
Channel Se	24.77 dB • RBW 300 kHz 5 ms • VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99:07		
Channel Se bectrum kef Lavel 30.00 dBm Offset ttt 20 dB S SWT PK Max dBm U	24.77 dB • RBW 300 kHz 5 ms • VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99:07		
Channel Se ectrum of Level 30.00 dBm Offset tt 20 dB SWT k Max dBm M1 dBm M1	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		59:07		
Channel Se ectrum of Level 30.00 dim Offset tt 20 db s swT k Max JBm MI JBm MI dam	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		59:07		
Channel Se ectrum of Level 30.00 dim Offset tt 20 db s SWT k Max JBm MI dam	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		9:07		
Channel Se ectrum of Level 30.00 dBm Offset 20 dB • SWT k Max dBm M1 dBm M1 dBm	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		9107		
Channel Se ectrum 20 dB Offset tt 20 dB SWT k Max dBm dBm dBm dBm dBm	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99107		
Channel Se bectrum ted Level 30.00 dBm Offset tt 20 dB SVT PK Max dBm MI dBm MI	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99107		
Channel Se	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99107		
Channel Se ectrum ef Level 30.00 dbm Offset 20 db • BWT 20 db • BWT dbm Max dbm M1 dbm M1 dbm dbm	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99107		
Channel Se pectrum tet Lavel 30.00 dBm Offset 20 dB SVT PK Max dBm MI dBm MI dB	24.77 dB ● RBW 300 kHz 5 ms ● VBW 300 kHz Mode Sweep M1[1]	(m) 3 9.34 dBm 2.47883570 GHz - 0.23 dB		99:07		


<3Mbps>

20 dlm 0.37 dll 10 dlm 0.17 dlll <td< th=""><th>Ref Level 30.00 dbm Offset 24.82 db RBW 300 bit2 MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep OFF MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep OFF MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep O D D1 2.402 dbm 0.20 dbm 0.57 set 24.57 db RBW 300 bit2 Mode Swep 0 dbm D1 D2(1) 2.402 dbm 0.00 dbm 0 dbm M1(1) 10 dbm D1 D2(1) 2.402 dbm M1(1) 2.402 dbm M1(1) 20 dbm D1 D0 D1 D2(1) D1 D1 D1 D1 D1 D2(1) D1 D1 D2(1) D1 D2 D1 D2 D1 D2 D2 D1 D2 D2 D1 D2 D2<!--</th--><th></th><th>ot on Chan</th><th>ion Plo</th><th>parat</th><th>el Sej</th><th>hann</th><th>C</th><th>01</th><th>I 00 -</th><th>anne</th><th>on Ch</th><th>Plot</th><th>ion F</th><th>oarat</th><th>el Sep</th><th>anne</th><th>Cna</th></th></td<>	Ref Level 30.00 dbm Offset 24.82 db RBW 300 bit2 MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep OFF MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep OFF MAX 20 db SWT 5 ms VBW 300 bit2 Mode Swep O D D1 2.402 dbm 0.20 dbm 0.57 set 24.57 db RBW 300 bit2 Mode Swep 0 dbm D1 D2(1) 2.402 dbm 0.00 dbm 0 dbm M1(1) 10 dbm D1 D2(1) 2.402 dbm M1(1) 2.402 dbm M1(1) 20 dbm D1 D0 D1 D2(1) D1 D1 D1 D1 D1 D2(1) D1 D1 D2(1) D1 D2 D1 D2 D1 D2 D2 D1 D2 D2 D1 D2 D2 </th <th></th> <th>ot on Chan</th> <th>ion Plo</th> <th>parat</th> <th>el Sej</th> <th>hann</th> <th>C</th> <th>01</th> <th>I 00 -</th> <th>anne</th> <th>on Ch</th> <th>Plot</th> <th>ion F</th> <th>oarat</th> <th>el Sep</th> <th>anne</th> <th>Cna</th>		ot on Chan	ion Plo	parat	el Sej	hann	C	01	I 00 -	anne	on Ch	Plot	ion F	oarat	el Sep	anne	Cna
Ref Level 30.00 dim Offset 24.82 dill = RBW 300 Hz Att 20 dill Will 1 0.00 dim 19 Max 0 dim 0 dill 0.00 dim Offset 24.92 dill RBW 300 Hz 10 dim 0.00 dim 0 dim 0.00 dim 0 dim Mill 1 2.402 dill 10 dim 0.00 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 0 dim 0 dim 0 dim 0 dim 0 dim 10 dim 0 dim 10 dim 0 dim 10 dim 0 dim 0 dim 0 dim	Intervel 30.05 dm Other 24/82 48	EL Z					m	Spectru	m									ectrum
(a) P1 Max (b) P2 Max 20 dm (b) P2 Max 20 dm (b) P2 Max 10 dm (b) P2 Max 10 dm (b) P2 Max -10 dm (c) P2 Max -20 d	Bind market of the second	(A	z Z Mode Sween	 RBW 300 kHz VBW 300 kHz 	24.55 dB		el 30.00 d	Ref Lev	(=			de Sween						fLevel
20 dm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 - delta				1										0 110	• • • • •	20 00	
10 dm dial dial dial dial dial dial dial dial	10 dam 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.66 dBi 2.44083570 GH -0.05 d 1.00289 MH						20 dBm—	214830 GHz 0.17 dB									.Bm—
0 den	0 dam -10 dam -20 dam -30 dam -30 dam -40 d	1.00289 MH	D2			M1		10 dBm-	1.00289 MHZ	· · · ·	D2			1	М1			Bm
10 dpm 40 dpm	10 den de den de							0 dBm									_	
20 dan 30 dan 40 dan 50 dan 50 dan 60 dan 50 dan 60 dan	20 dan						X											_ X
ao dem 40 dem 50 dem 60 dem	ao dan 40 dan 50 dan 60 dan 50 dan 60 dan 57 2.4025 GHz 50 dan 60 dan 57 2.4025 GHz 601 pts 50 dan 60 juts 50 dan 60 juts 60							-10 dBm-										-mat
40 dbm 50 dbm 60 dbm 60 dbm 60 dbm 62 dbm 62 dbm 63 dbm 64 dbm 64 dbm 65 dbm 60 dbm 65 dbm 60 dbm 66 dbm 66 dbm 66 dbm 66 dbm 66 dbm 60 dbm	40 den den den de den de den de de den de de den de de den de den de den de den de den de den de de de den de de den de de den de de den de						-	-20 dBm—	+									.lBm—
50 dBm 60	so dan							-30 dBm-										dBm
D dBm	b dam 691 pts 8pon 3.0 MHz 2.0025 GHz 691 pts 8pon 3.0 MHz e: 4.58P.2024 21:20:07 Channel Separation Plot on Channel 77 - 78 Dectrum 0 dam Dec: 4.58P.2024 21:20:39 Channel Separation Plot on Channel 77 - 0.13 da 0 dam 0 dam							-40 dBm-										
dem	dBm 2.4025 GHz 691 pts Bpon 3.0 MHz 2.4025 GHz 691 pts Bpon 3.0 MHz 2.4025 GHz 691 pts Date: 4.5EP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78 Channel Separation Plot on Channel 77 - 78 Channel Separation Plot on Sweep ftwei 20.00 dBm 0.002 B * SWT 5 ms * VBW 300 Hz 1.																	
2.4025 GHz 691 pts 8pan 3.0 MHz 2.4025 GHz 691 pts 8pan 3.0 MHz Dete: 4.5EP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78 ectrum of Level 30.00 dBm Offset 24.77 dB • RBW 300 kHz the 20 dB • SWT 5 ms • VBW 300 kHz Max 90 dB • SWT 5 ms • VBW 300 kHz the 10 dB • SWT 5 ms • VBW 300	2.4025 GHz 691 pts Spon 3.0 MHz 691 pts 691 pt						1	-50 dBm—										JBm-
4.5EP.2024 21:20:07 Date: 4.5EP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78 Channel Separation Plot on Channel 71 - 0.34 Channel Separation Plot on Channel 71 - 0.34 Channel Separation Plot on Channel 71 - 0.34 Channel Separation Plot on Channel 72 - 0.34 Channel Separation Plot on Channel 73	A:SEP.2024 21:20:07 Dete: 4.SEP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78			+			-	-60 dBm-										tBm —
4.5EP.2024 21:20:07 Date: 4.5EP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78 Image: Colspan="2">Colspan="2"Co	A.SEP.2024 21:25:39 Channel Separation Plot on Channel 77 - 78 Ture 1 20:00 dm Offset 24.77 d8 + RBW 300 LH2 20:08 + SWT 5 ms + VBW 300 LH2 1 002(1) 2.47808370 GH2 -0.13 d8 1 002(9) MH2 m M1 m M1	Span 3.0 MHz		601 mtr			5 CH2	CE 2 441	an 3.0 Mida				01 ptc					4025.0
of Luvel 30.00 dBm Offset 24.77 dB @ RBW 300 kHz t 20 dB @ SWT 5 ms @ VBW 300 kHz Max M1[1] 8.19 dBm IBm 02[1] -0.13 dB IBm M1 1.00289 MHz	ft Lovel 30.00 dBm Offset 24.77 dB @ RBW 300 HHz 20 dB @ SWT 5 ms @ VBW 300 HHz k Max M1[1] BBm 0.13 dB M1 0 BBm 0 dBm 0 dBm 0 dBm 0								78	77 -	anne	on Ch	Plot	ion F	oarat	el Sep	anne	Cha
tt 20 d8 S ms VBW 300 kHz Mode Sweep 9k Max <th>utt 20 dB SWT 5 ms VBW 300 kHz Mode Sweep 9k Max 0 0.19 dBm 0.19 dBm 0.19 dBm dBm 02[1] -0.13 dE dBm 02 0.13 dE dBm 0.00280 MHz dBm 0.00280 MHz dBm 0.00280 MHz</th> <th></th> <th>ctrum</th>	utt 20 dB SWT 5 ms VBW 300 kHz Mode Sweep 9k Max 0 0.19 dBm 0.19 dBm 0.19 dBm dBm 02[1] -0.13 dE dBm 02 0.13 dE dBm 0.00280 MHz dBm 0.00280 MHz dBm 0.00280 MHz																	ctrum
Pk Max M1[1] 8.19 dBm dBm D2[1] -0.13 dB M1 52 1.00289 MHz	Pk Max M1[1] 8.19 dBm dBm D2[1] -0.10 dBm dBm M1 D2 D D2 M1 D D2 M1											de Sweep	00 kHz 00 kHz Mo	RBW 30 VBW 30	24.77 dB 🖷 5 ms 🖷			
dBm D2[1] -0.13 dB dBm M1 D2 dBm Δ Δ	dBm 02(1) 0.13 d0 dBm 01 0.0289 MHz dBm 02 0.03 d0 dBm 0.00289 MHz 0.00289 MHz dBm 0.00289 MHz 0.00289 MHz dBm 0.00289 MHz 0.00289 MHz 0.00289 MHz 0.00289 MHz 0.00289 MHz								8.19 dBm									Max
	dBm M1 PC F F F F F F F F F F F F F F F F F F								'883570 GHz	2.47								Bm
									L.00289 MHz	1	1	L				М1		
																		3m
	dem																_	m
dBm	d8m								\land			-						:IBm
dBm																		dBm
	dem																	
																		1810
dBm	dam																	1Bm
d8m 11 1 11 11 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		dBm —
	dBm																	dBm
dBm																		
dBm	2.4795 GHz 691 pts Span 3.0 MHz							1										


20dB Bandwidth

<1Mbps>



<2Mbps>

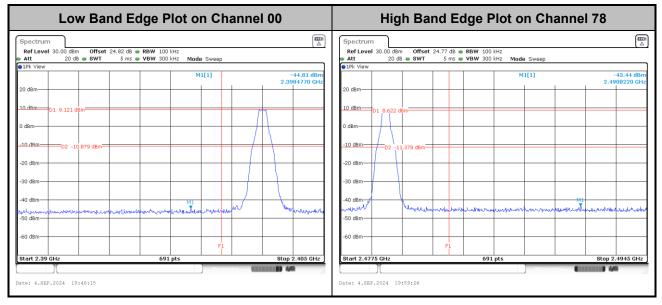
<3Mbps>



99% Occupied Bandwidth

<1Mbps>

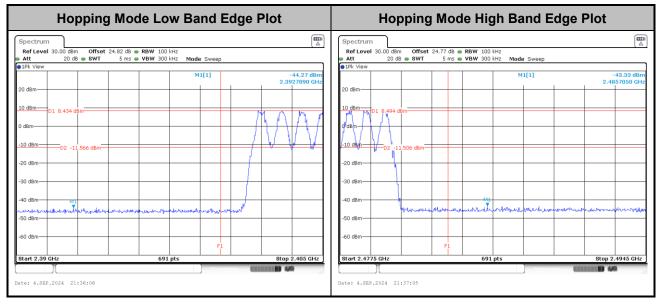
<2Mbps>

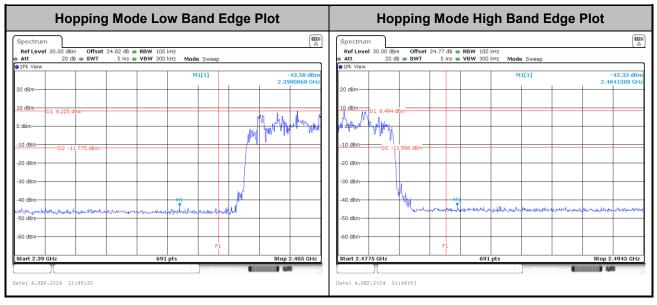


Band Edges

<1Mbps>

<2Mbps>

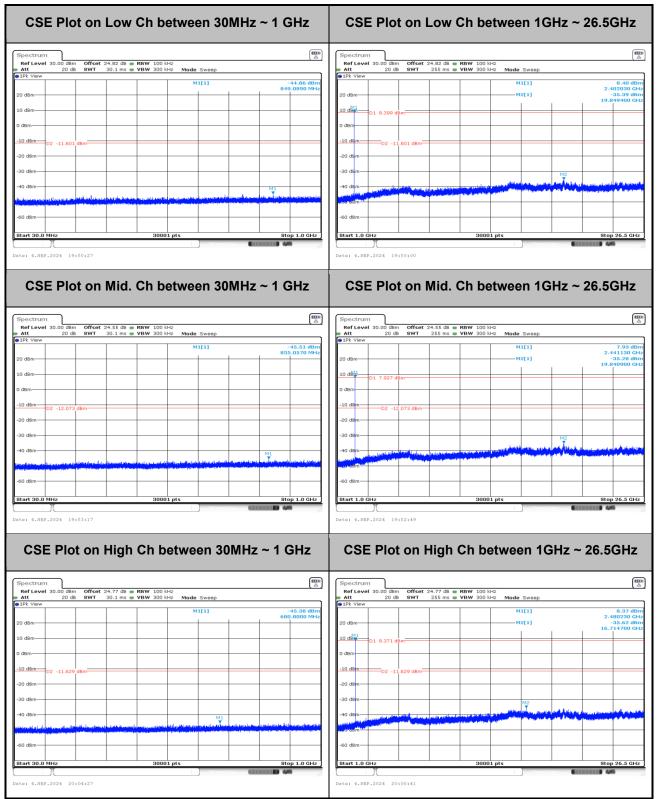

Low Bar	nd Edge Plot on Chan	inel 00	High Band E	dge Plot on Channe	el 78
	24.82 dB 🖷 RBW 100 kHz		Spectrum Ref Level 30.00 dBm Offset 24.77 dB		
Att 20 dB SWT 1Pk View	5 ms 🖶 VBW 300 kHz Mode Sweep		■ Att 20 dB ■ SWT 5 ms ■ 1Pk View	VBW 300 kHz Mode Sweep	
	M1[1]	-44.09 dBm 2.3930500 GHz		M1[1]	-43.28 dBm 2.4905020 GHz
20 dBm			20 dBm		
10 dBm-D1 8.176 dBm-		Mm	10 dBm D1 7.792 dBm		
0 dBm			0 dBm		
-10 dBm D2 -11,824 dBm			-10 dBm		
-20 dBm			-20 dBm		
-30 dBm		V hun	-30 dBm		
-40 dBm	- musel was present and a manufacture of the second	Keenen	-40 dBm	man	alan na antonin a
-50 dBm	and a second and the second and the second and the second s		-50 dBm		
-60 dBm	F1		-60 dBm		
Start 2.39 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz	691 pts	Stop 2.4945 GHz
Ì		6	, T	Measuring	449
Date: 4.SEP.2024 21:14:17		110	Date: 4.SEP.2024 21:29:05		



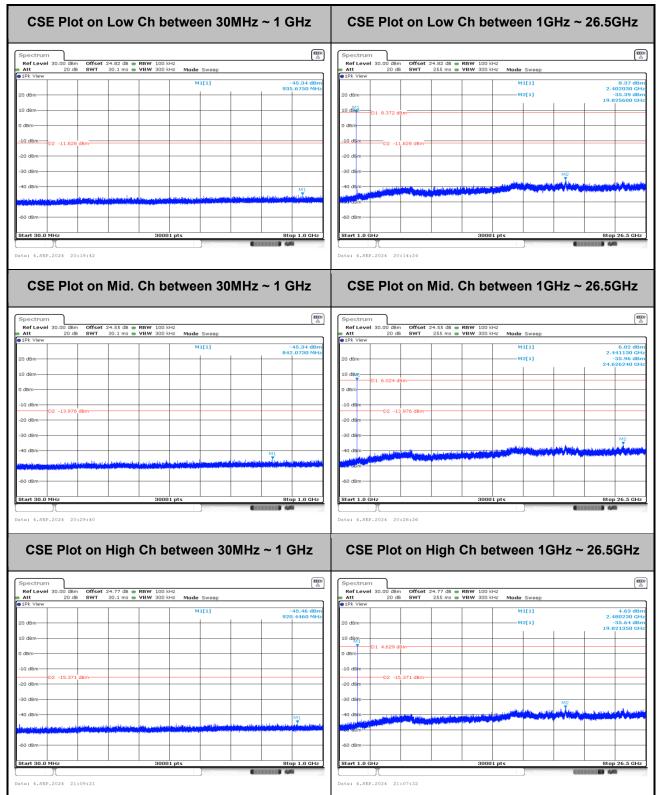
Hopping Mode Band Edges

<1Mbps>

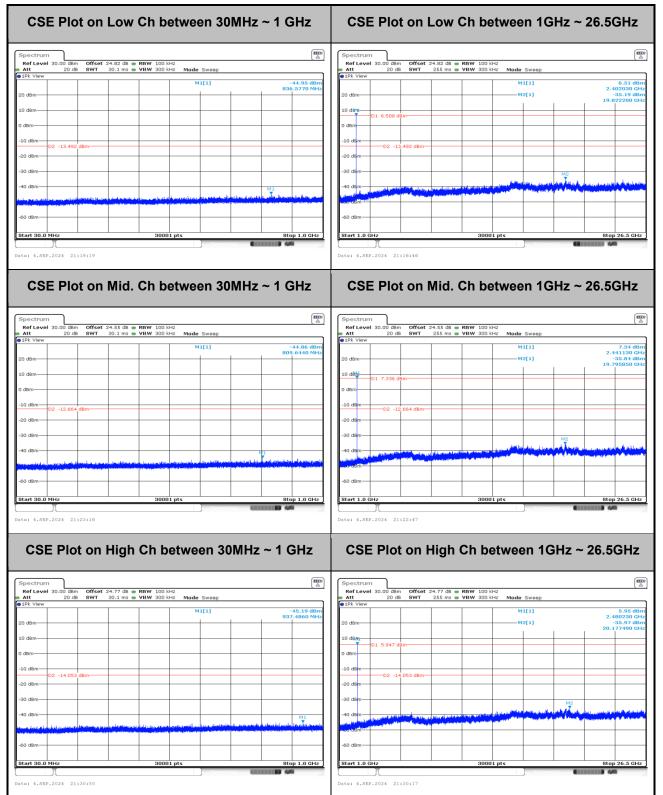
<2Mbps>



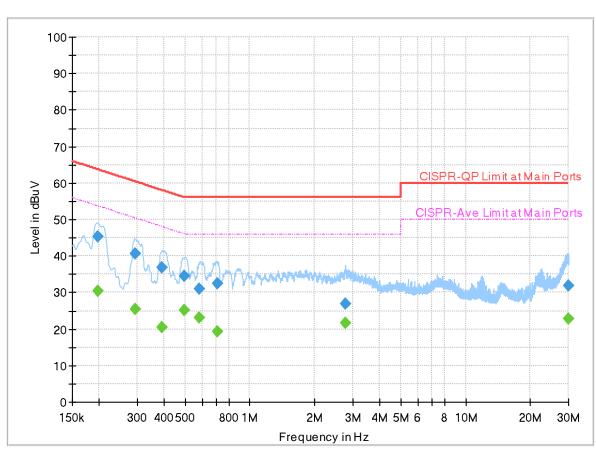
Hopping Mo	ode Low Band Edg	e Plot	Hopping Mode H	ligh Band Edge Plot
Spectrum Ref Level 30.00 dBm Offset 24.82 dB Att 20 dB SWT 5 ms • IPk View	A CRAW 100 KHZ S VBW 300 KHZ Mode Sweep M1[1]	e Plot	Spectrum Ref Level 30.00 dBm Offset 24.77 dB RBW 10 dBm 20 dB SWT 5 ms VBW 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm D1 8,171 dBm 10 dBm 10 dBm 10 dBm -30 dBm -11,829 dBm 10 dBm 10 dBm 10 dBm	
-40 dBm	لیس سال سال کی معالی کی معالی 691 pts	Stop 2.405 GHz	-60 d8m	لله عن 2.4945 GHz
Date: 4.SEP.2024 21:49:51	Measuring		Date: 4.SEP.2024 21:51:00	


Conducted Spurious Emission

<1Mbps>



<2Mbps>

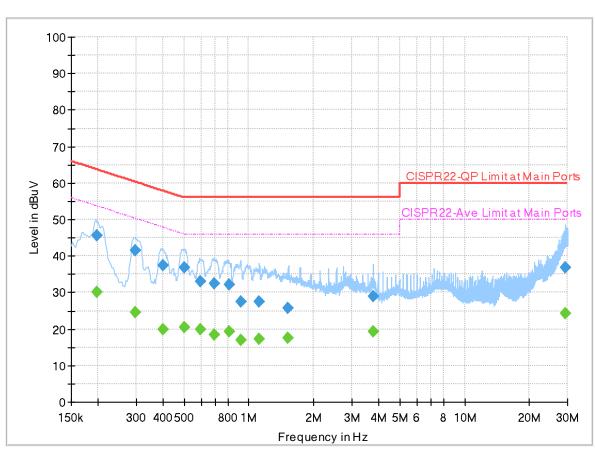


Appendix B. AC Conducted Emission Test Results

Test Engineer	Louio Chung	Temperature :	23.5~25.5°C
Test Engineer :		Relative Humidity :	58.3~58.9%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 482028 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.196080		30.52	53.78	23.26	L1	FLO	19.9
0.196080	45.36		63.78	18.42	L1	FLO	19.9
0.294360		25.45	50.40	24.95	L1	FLO	19.9
0.294360	40.56		60.40	19.84	L1	FLO	19.9
0.391020		20.35	48.04	27.69	L1	FLO	19.9
0.391020	36.80		58.04	21.24	L1	FLO	19.9
0.496500		25.05	46.06	21.01	L1	FLO	19.9
0.496500	34.58		56.06	21.48	L1	FLO	19.9
0.584970		23.21	46.00	22.79	L1	FLO	19.9
0.584970	31.09		56.00	24.91	L1	FLO	19.9
0.704220		19.37	46.00	26.63	L1	FLO	19.9
0.704220	32.32		56.00	23.68	L1	FLO	19.9
2.757750		21.74	46.00	24.26	L1	FLO	20.0
2.757750	26.98		56.00	29.02	L1	FLO	20.0
29.921190		22.72	50.00	27.28	L1	FLO	20.2
29.921190	31.86		60.00	28.14	L1	FLO	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 482028 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	PE	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.197160		29.99	53.73	23.74	Ν	FLO	19.9
0.197160	45.68		63.73	18.05	Ν	FLO	19.9
0.298590		24.43	50.28	25.85	Ν	FLO	19.9
0.298590	41.40		60.28	18.88	Ν	FLO	19.9
0.398850		19.92	47.88	27.96	Ν	FLO	19.9
0.398850	37.29		57.88	20.59	Ν	FLO	19.9
0.503250		20.44	46.00	25.56	Ν	FLO	19.9
0.503250	36.74		56.00	19.26	Ν	FLO	19.9
0.595500		19.95	46.00	26.05	Ν	FLO	19.9
0.595500	32.91		56.00	23.09	Ν	FLO	19.9
0.692250		18.30	46.00	27.70	Ν	FLO	19.9
0.692250	32.47		56.00	23.53	Ν	FLO	19.9
0.807000		19.32	46.00	26.68	Ν	FLO	19.9
0.807000	32.12		56.00	23.88	Ν	FLO	19.9
0.919500		17.01	46.00	28.99	Ν	FLO	19.9
0.919500	27.35		56.00	28.65	Ν	FLO	19.9
1.113000		17.27	46.00	28.73	Ν	FLO	19.9
1.113000	27.59		56.00	28.41	Ν	FLO	19.9
1.522410		17.53	46.00	28.47	Ν	FLO	19.9

1.522410	25.62		56.00	30.38	Ν	FLO	19.9
3.770880		19.27	46.00	26.73	Ν	FLO	20.0
3.770880	28.87		56.00	27.13	Ν	FLO	20.0
29.457960		24.17	50.00	25.83	Ν	FLO	20.2
29.457960	36.88		60.00	23.12	Ν	FLO	20.2

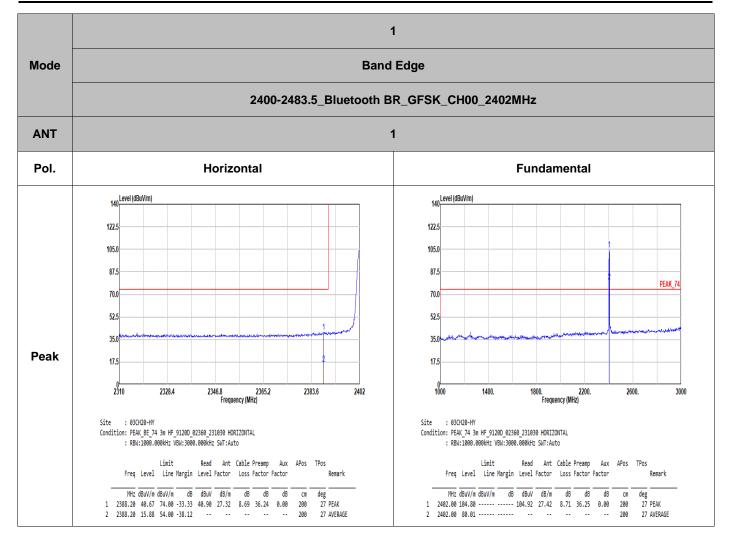
Appendix C. Radiated Spurious Emission Test Data

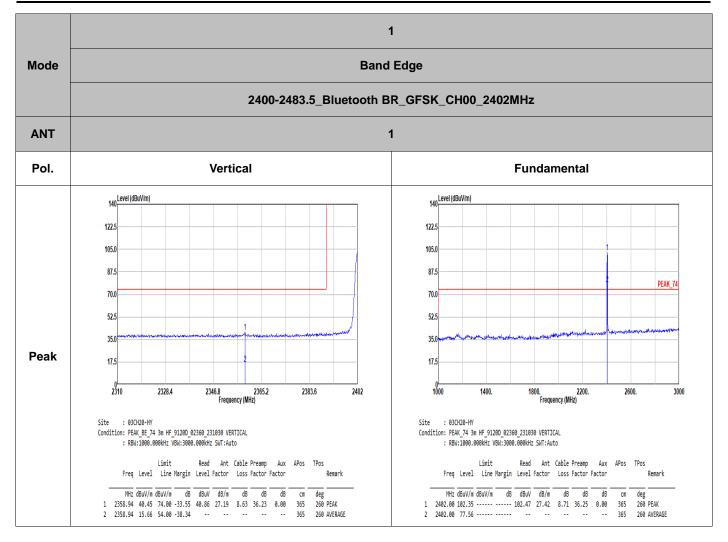
Test Engineer :	John Chuang, David Dai and Sam Cho	Relative Humidity :	65.0~70.3 %
Test Engineer .	John Chuang, David Dar and Sam Chu	Temperature :	19.6~23.4 ℃

Note symbol

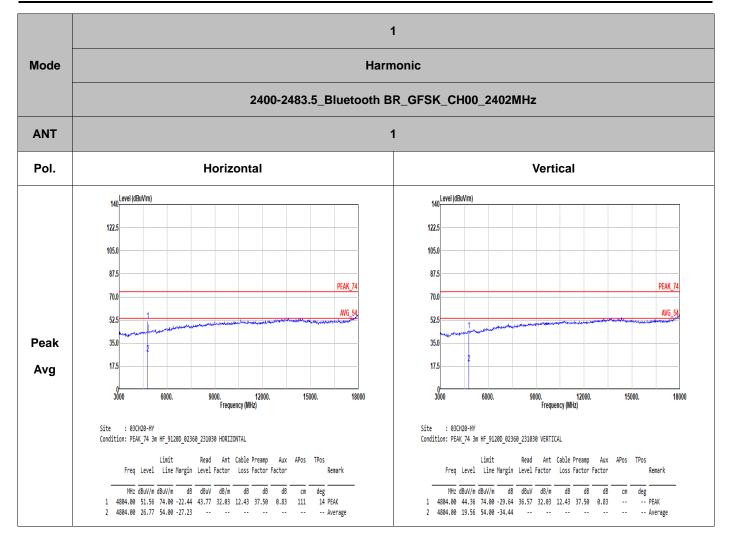
-L	Low channel location
-R	High channel location

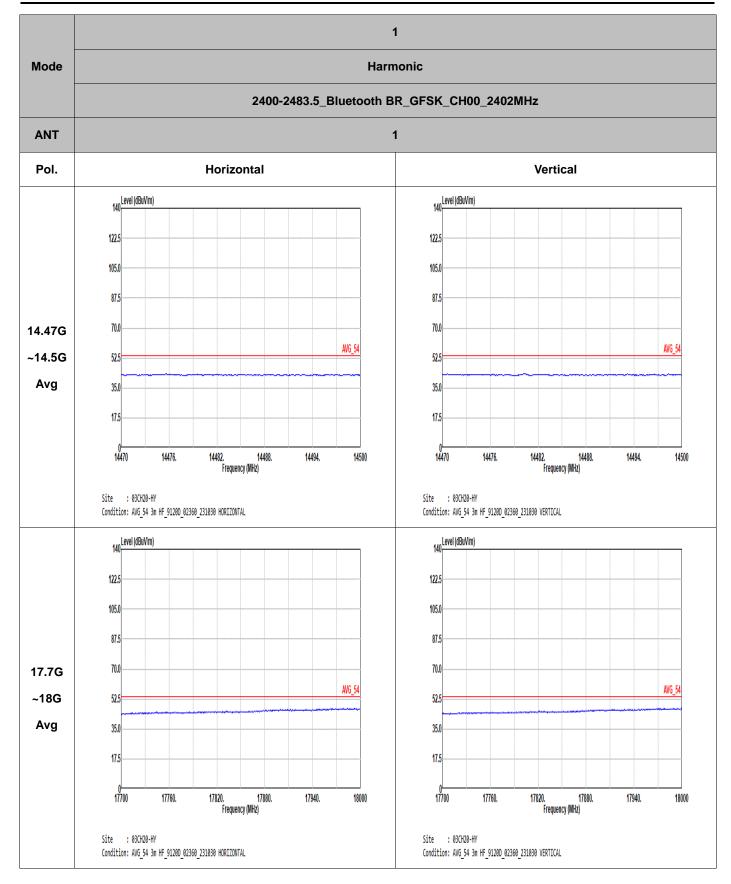
C1. Radiated Spurious Emission Test Modes

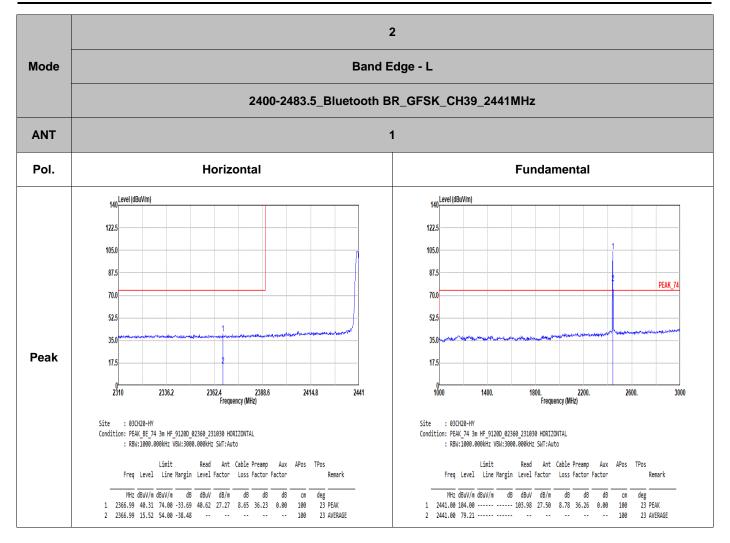

Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	00	2402	1Mbps	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	-
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	1Mbps	-	-
Mode 4	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	LF
Mode 23	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	SHF

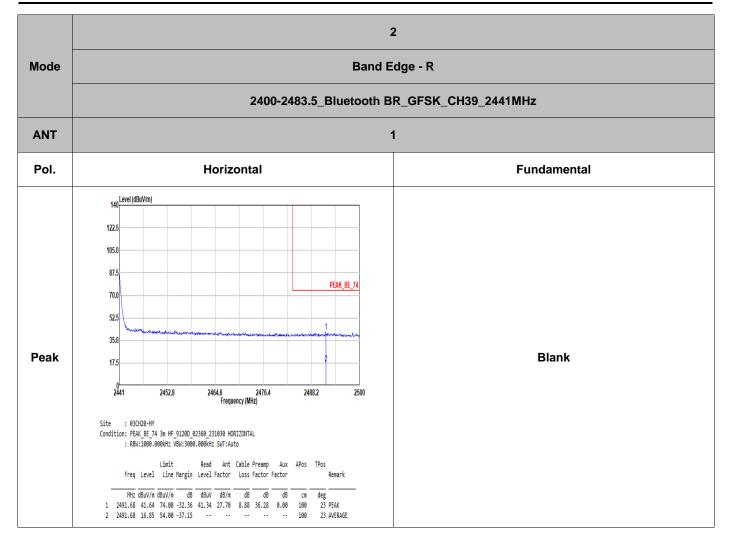

C2. Summary of each worse mode

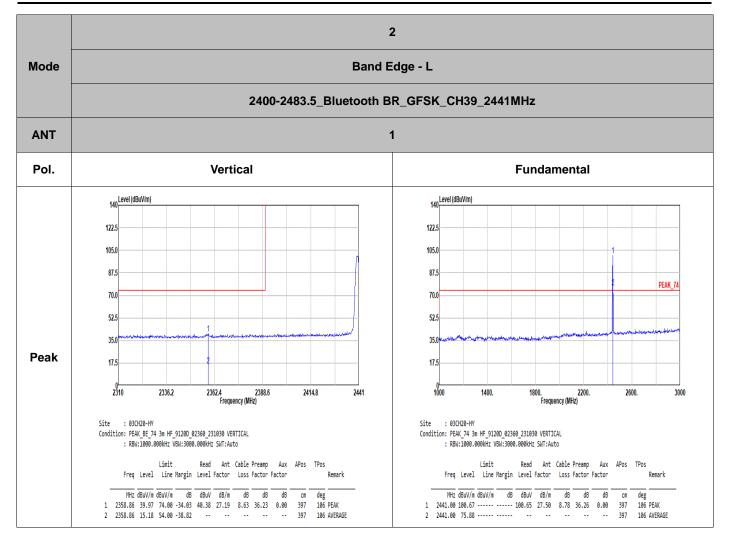
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
1	Bluetooth BR_GFSK	00	2388.20	40.67	74.00	-33.33	Н	Peak	Pass	-	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	51.56	74.00	-22.44	Н	Peak	Pass	-	Harmonic
	Bluetooth BR_GFSK	39	2491.68	41.64	74.00	-32.36	Н	Peak	Pass	-	Band Edge
2	Bluetooth BR_GFSK	39	4882.00	52.13	74.00	-21.87	Н	Peak	Pass	-	Harmonic
	Bluetooth BR_GFSK	78	2483.52	44.66	74.00	-29.34	Н	Peak	Pass	-	Band Edge
3	Bluetooth BR_GFSK	78	4960.00	50.26	74.00	-23.74	Н	Peak	Pass	-	Harmonic
4	LF	39	45.52	33.69	40.00	-6.31	V	Peak	Pass	-	LF
23	SHF	39	24867.00	42.40	74.00	-31.60	Н	Peak	Pass	-	SHF

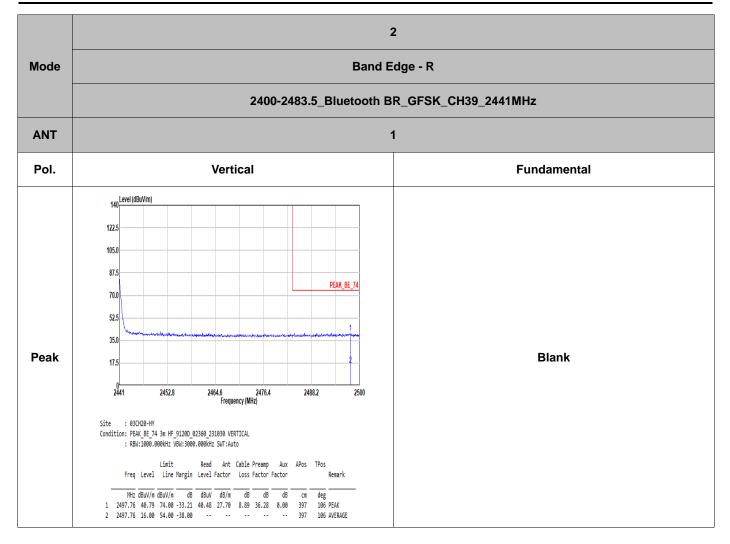


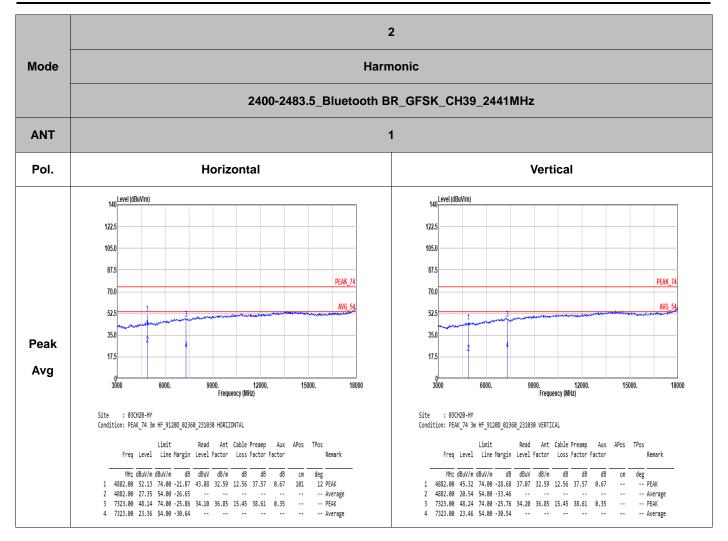


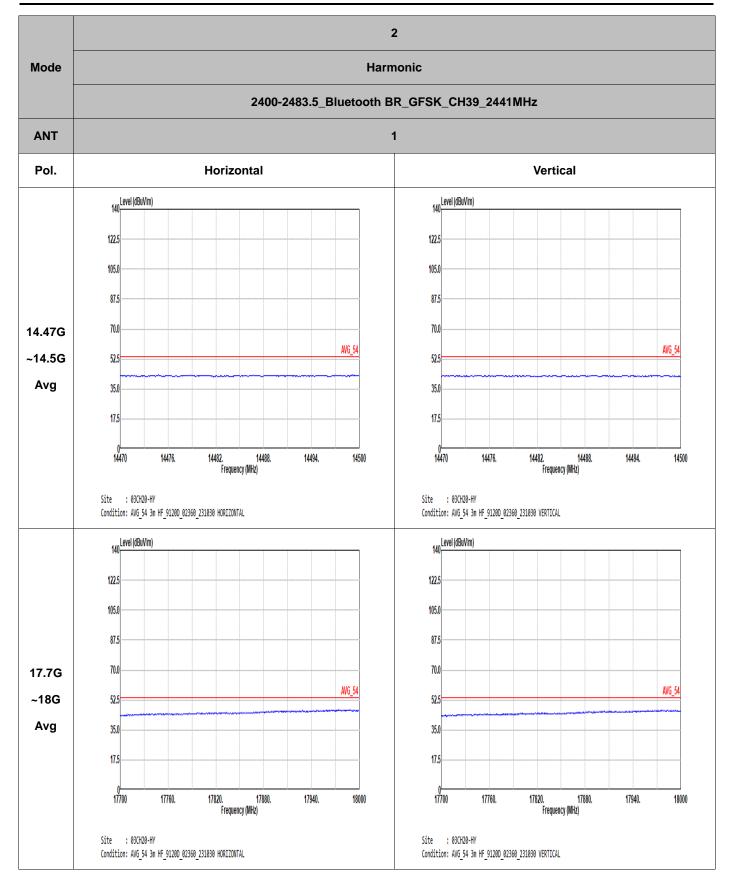


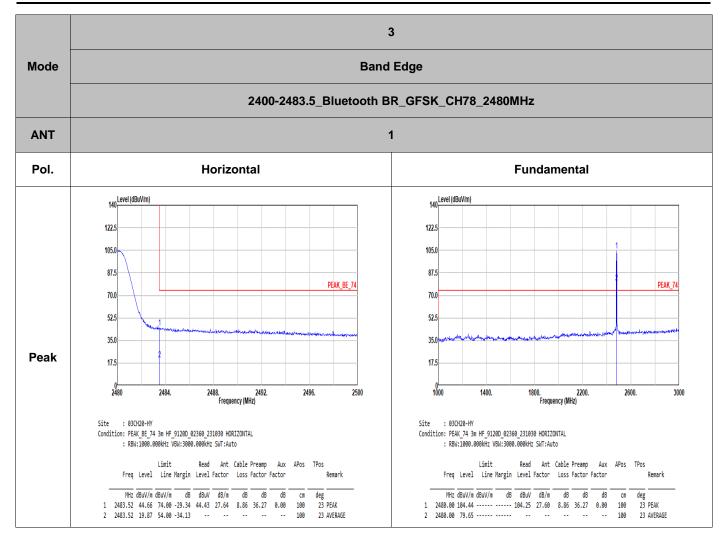


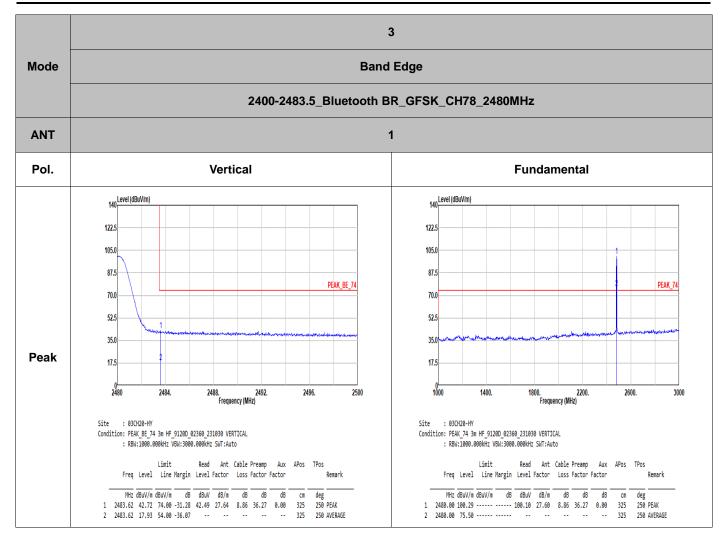


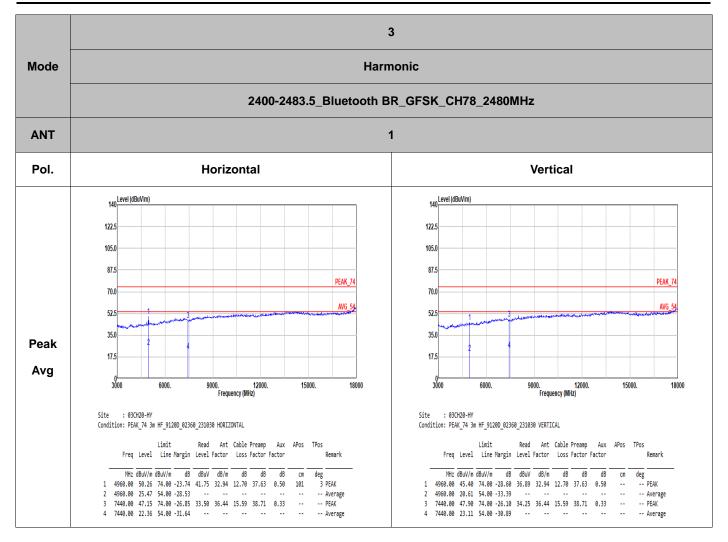


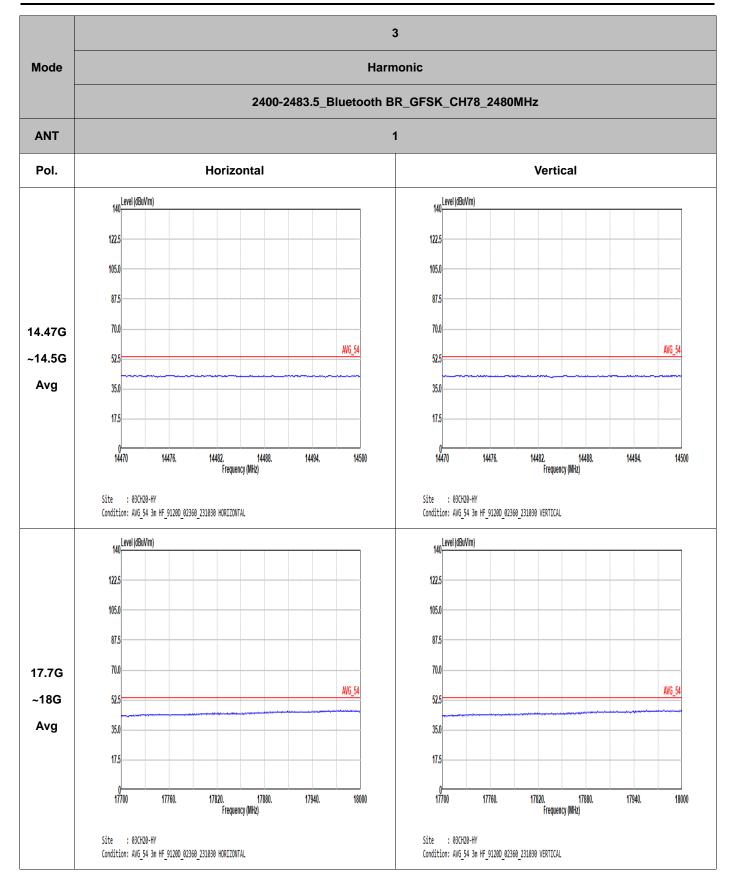


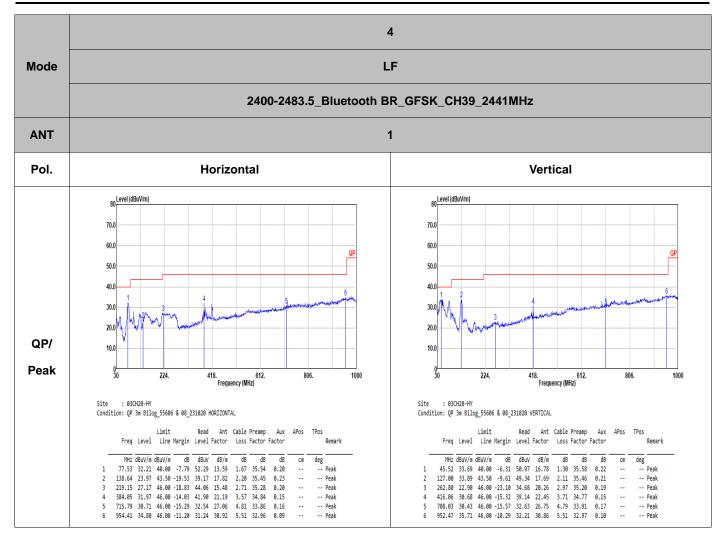


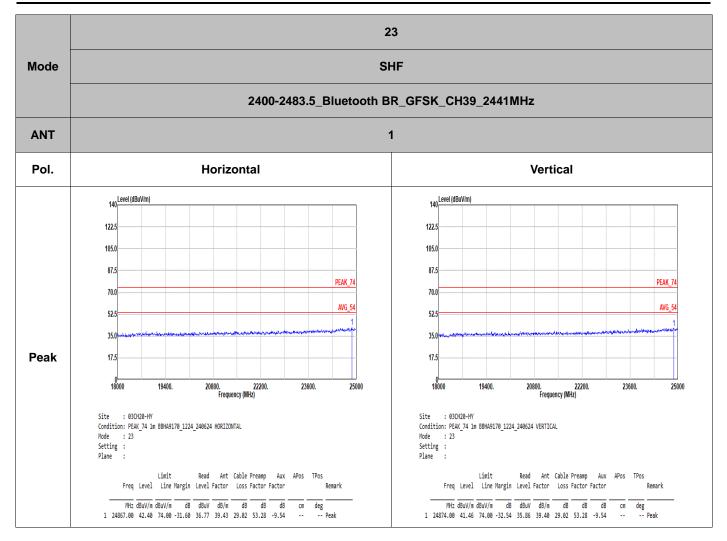












Appendix D. Duty Cycle Plots

DH5 of	n time (One P	ulse) Plot on Cl	nannel 78	on time	(Count Pulses)	Plot on Cha	nnel 78	3
Spectrum Analyzer 1 Swept SA KEYSIGHT RL Gouping: DC Align: Off	Corr CCorr Ga Freq Ref. Int (S) IF (g Track: Off P N N N N	Marker Varker Marker Marker Marker Marker Marker Marker 3	Coupling DC Con	it Z. 50 Ω. If Atten: 20 dB PNO: Fast (Corr q Ref. Int (S) IF Gen. Low Sig Track: Off	Ing: Free Run WWWWWW PNNNNN	Marker Select Marker Marker 1	• 🔆
1 Spectrum v Scale/Div 10 dB Log 107	Ref Level 116.99 dBµV	ΔMkr3 3.750 m -0.01 di	3.75000 ms Marker Mode Peak Search	1 Spectrum v Scale/Div 10 dB Log	Ref Level 116.99 dBµV	Mkr1 10.00 ms 104.15 dΒμV	10.0000 ms Peak Search	Peak Search
97.0 87.0 77.0	X2	1Δ2 3Δ4	Normal Pk Search Config Detta (Δ) Properties	107 1 97 0			Next Peak	Pk Search Config Properties
67.0 57.0 47.0	مرد بیلو ار	antonating.	Fixed Marker Function	87.0			Next Pk Left	Marker Function
27.0 Center 2.480000000 GHz Res BW 1.0 MHz	#Video BW 1.0 MHz	Span 0 H Sweep 10.0 ms (1001 pts		57.0			Minimum Peak Pk-Pk Search	Marker→ Counter
5 Marker Table v Mode Trace Scale		nction Function Width Function Value	On Off Marker Settings	47.0	dentehistaaliga toisoonaadootsaladaasiyaadaa	graamahaan fiinta ay maharana an	Marker Delta MkrCF	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Δ) 2.880 ms (Δ) -0.6041 dB 4.150 ms 87.09 dBµV (Δ) 3.750 ms (Δ)-0.01323 dB 4.150 ms 87.09 dBµV		Diagram All Markers Off	27.0			Mkr→Ref Lvi Continuous Peak	
	? Sep 14, 2024		Couple Markers On Off	Center 2.48000000 GHz Res BW 1.0 MHz	#Video BW 1.0 MHz	Span 0 H: Sweep 100 ms (1001 pts		
	5:10:44 PM				12:53 PM 9	 🖬 🖬 🖂 🖂		

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$