

FCC RADIO TEST REPORT

FCC ID	:	HLZA24006		
Equipment	:	Tablet PC		
Brand Name	:	acer		
Model Name	:	A24006		
Marketing Name	:	Acer Iconia Tab A11, A11-11		
Applicant	:	Acer Incorporated		
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)		
Manufacturer	:	Acer Incorporated		
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)		
Standard	:	FCC Part 15 Subpart C §15.247		

The product was received on Sep. 18, 2024 and testing was performed from Sep. 26, 2024 to Nov. 05, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 27Issue Date: Nov. 13, 2024Report Version: 01

Table of Contents

Hist	tory of	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.6
	1.4	Applicable Standards	.6
2	Test (Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	.9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test I	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	
	3.4	20dB and 99% Bandwidth Measurement	14
	3.5	Output Power Measurement	15
	3.6	Conducted Band Edges Measurement	16
	3.7	Conducted Spurious Emission Measurement	17
	3.8	Radiated Band Edges and Spurious Emission Measurement	18
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	List o	f Measuring Equipment	25
5	Meas	urement Uncertainty	27
Арр	pendix	A. Conducted Test Results	
App	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission Test Data	

Appendix D. Duty Cycle Plots

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR491805A	01	Initial issue of report	Nov. 13, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Pass	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.14 dB under the limit at 43.58 MHz
3.9	15.207	AC Conducted Emission	Pass	10.88 dB under the limit at 0.48 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Avis Chuang

Report Producer: Wilda Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature					
General Specs					
Bluetooth, Wi-Fi 2.4GHz 802.11	lb/g/n/ax, Wi-Fi 5GHz 8	802.11a/n/ac/ax, and GNSS.			
Antenna Type					
WLAN: PIFA Antenna					
Bluetooth: PIFA Antenna					
GPS / BDS: PIFA Antenna					
Antenna information					
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	0.96			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

	SKU LIST						
Model	SKU1_4G+64G SKU2_4G+64G SKU3_4G+128G SKU4_4G+128G						
Memory	Gcai/4GB/	RYP/4G/	Gcai/4GB/	RYP/4G/			
Memory	GD84D32MJ0-42C2	RYPLX4XR2-4G	GD84D32MJ0-42C2	RYPLX4XR2-4G			
eMMC	Rayson/64GB/	Shichuangyi/64GB/	Rayson/128GB/RS70BT	Shichuangyi/128GB/			
eiviiviC	RS70B64G4S16G	E64GCYNT1ABE00	7G4S09F	E128CYNT2ABE00			

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

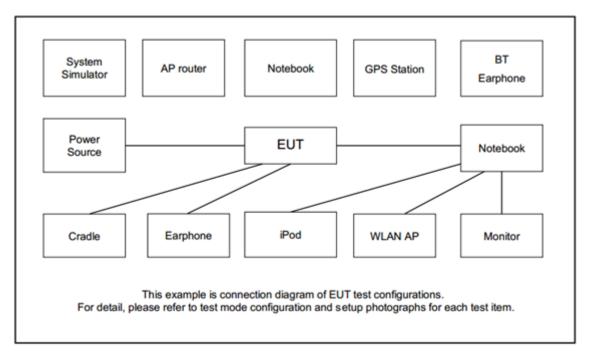
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.


b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth BR 1Mbps GFSK					
Radiated		Mode 1: CH00_2402 MHz				
Test Cases		Mode 2: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz					
AC Conducted	Mode 1 : WLAN (2.4GHz	z) Link + Bluetooth Link +	Earphone + USB Cable			
Emission	(Charging from AC Adapter) for SKU4_4G+128G					
Remark:						
1. For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest						
RF output power in the preliminary tests. The conducted spurious emissions and conducted						
band edge measurement for other data rates were not worse than 1Mbps, and no other						
. ,	equencies found in conducte	•				
2. For Radiated	Test Cases, the tests were p	performed with SKU4_4G+12	286.			

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	Netgear	RAXE500	PY320300508	N/A	Unshielded,1.8m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P : Unshielded, 1.2m DC O/P : Shielded, 1.8m
4.	Earphone + Mic	Samsung	Ecouteur	N/A	Unshielded 1.8m	N/A
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
6.	Earphone	SONY	MH750	N/A	Unshielded, 1.2m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Android Debug Bridge version 1.0.40" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

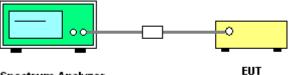
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

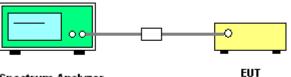
Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

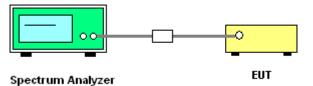
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

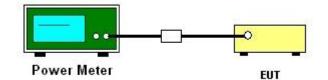
3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the

same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

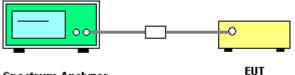
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

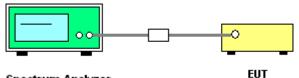
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

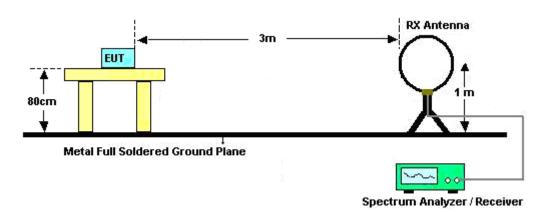
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

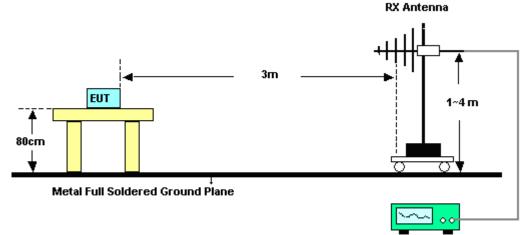
3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

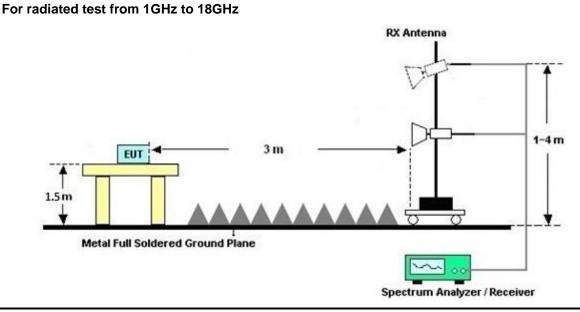
3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - $\begin{array}{ll} \mbox{(3)} & \mbox{For average measurement: use duty cycle correction factor method per 15.35(c).} \\ & \mbox{Duty cycle = On time/100 milliseconds} \\ & \mbox{On time = $N_1^*L_1 + N_2^*L_2 + ... + N_{n-1}^*LN_{n-1} + N_n^*L_n} \\ & \mbox{Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.} \end{array}$
 - Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.82dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

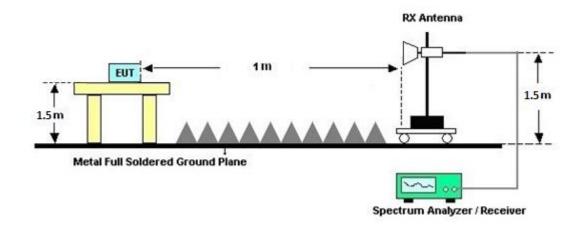


3.8.4 Test Setup


For radiated test below 30MHz

For radiated test from 30MHz to 1GHz

Spectrum Analyzer / Receiver



TEL : 886-3-327-0868 FAX : 886-3-327-0855 Report Template No.: BU5-FR15CBT Version 2.4

Page Number	: 20 of 27
Issue Date	: Nov. 13, 2024
Report Version	: 01

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

3.9 AC Conducted Emission Measurement

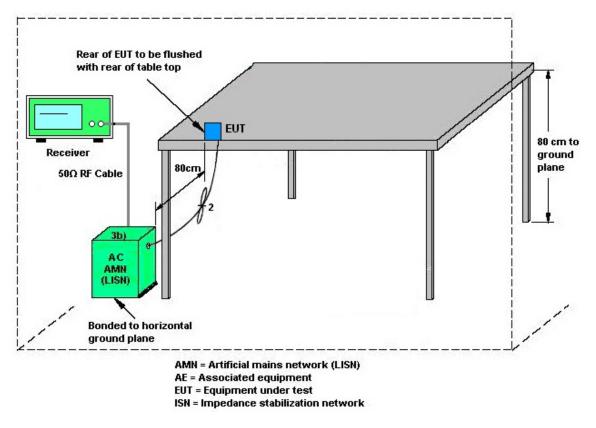
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

3.10.2 Antenna Anti-Replacement Construction

Unique (non-standard) antenna connector.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 23, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Feb. 22, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9k~30M	Mar. 06, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Mar. 05, 2025	Radiation (03CH13-HY)
Amplifier	SONOMA	310N	187282	9kHz~1GHz	Dec. 13, 2023	Oct. 18, 2024 ~ Nov. 05, 2024	Dec. 12, 2024	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	40103 & 07	30MHz~1GHz	Apr. 12, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Apr. 11, 2025	Radiation (03CH13-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290045	20MHz~8.4GHz	Apr. 17, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Apr. 16, 2025	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Aug. 15, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Aug. 14, 2025	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 15, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	May 14, 2025	Radiation (03CH13-HY)
Preamplifier	EM Electronics	EM01G18G	060803	1GHz~18GHz	Jan. 09, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jan. 08, 2025	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	May 27, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	May 26, 2025	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	1224	18GHz-40GHz	Jun. 24, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jun. 23, 2025	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Jan. 18, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jan. 17, 2025	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN4	1.53GHz Low Pass Filter	Jun. 13, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jun. 12, 2025	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 09, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jul. 08, 2025	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 08, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Mar. 07, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 07, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2, 804012/2	18GHz ~40GHz	Jan. 02, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jan. 01, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804616/2	30MHz~40GHz	Feb. 07, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Jul. 18, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Jul. 17, 2025	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP215159	N/A	Sep. 10, 2024	Oct. 18, 2024 ~ Nov. 05, 2024	Sep. 09, 2025	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 18, 2024 ~ Nov. 05, 2024	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Oct. 18, 2024 ~ Nov. 05, 2024	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Oct. 18, 2024 ~ Nov. 05, 2024	N/A	Radiation (03CH13-HY)
Software	Audix	N/A	RK-001124	N/A	N/A	Oct. 18, 2024 ~ Nov. 05, 2024	N/A	Radiation (03CH13-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 26, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 26, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Sep. 26, 2024	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Sep. 26, 2024	Mar. 13, 2025	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Sep. 26, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Sep. 26, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 20, 2024	Sep. 26, 2024	Feb. 19, 2025	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Oct. 31, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jun. 26, 2024	Oct. 31, 2024	Jun. 25, 2025	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jun. 25, 2024	Oct. 31, 2024	Jun. 24, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2024	Oct. 31, 2024	Aug. 22, 2025	Conducted (TH05-HY)
Switch Control Mainframe	Burgeon	ETF-058	EC1300484 (BOX3)	N/A	May 20, 2024	Oct. 31, 2024	May 19, 2025	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final_ version_24051 3	N/A	Conducted Other Test Item	N/A	Oct. 31, 2024	N/A	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	5.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 20 dB
of 95% (U = 2Uc(y))	6.30 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4 50 40
of 95% (U = 2Uc(y))	4.50 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.80 dB
of 95% (U = 2Uc(y))	4.00 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.10 dB
of 95% (U = 2Uc(y))	5. IV UB

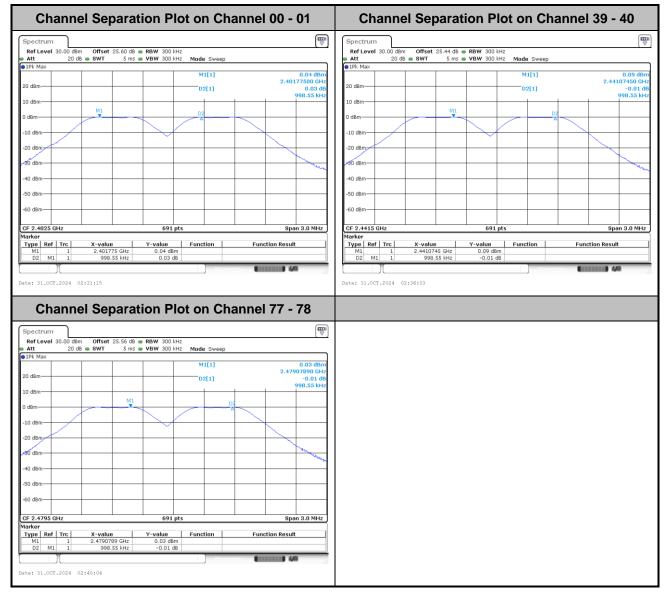
Report Number : FR491805A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Willy Chang	Temperature:	21~25	°C
Test Date:	2024/10/31	Relative Humidity:	51~54	%

			20dB	and 99	% Оссир		RESULT dwidth ar		a Channel Sepa	ration	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwio (MHz)	th S	ping Channel eparation easurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.941	0.841		0.999	0.6272	Pass	
DH	1Mbps	1	39	2441	0.941	0.842		0.999	0.6272	Pass	
DH	1Mbps	1	78	2480	0.942	0.842		0.999	0.6282	Pass	
2DH	2Mbps	1	0	2402	1.305	1.177		1.003	0.8700	Pass	
2DH	2Mbps	1	39	2441	1.305	1.178		1.003	0.8702	Pass	
2DH	2Mbps	1	78	2480	1.307	1.177		1.003	0.8716	Pass	
3DH	3Mbps	1	0	2402	1.273	1.164		1.003	0.8486	Pass	
3DH	3Mbps	1	39	2441	1.274	1.164		1.003	0.8492	Pass	
3DH	3Mbps	1	78	2480	1.273	1.165		1.003	0.8486	Pass	
							RESULT Dwell Tin				
М	od.		oping C umber		Hops Over Occupanc y Time (hops)	Package Transfer Time (msec)	Dwell Tim (sec)	ne Limits (sec)	Pass/Fail		
2D	H5		79		106.670	2.88	0.31	0.4	Pass		
2DH5	(AFH)		20		53.330	2.88	0.15	0.4	Pass		
L	()										
						Pea	RESULT k Power				
DH	CH. 0	NTX	(ak Power (dBm) 6.28	Powe (dE		Test Result Pass				
DH1	39 78	1		6.33 6.31	20. 20.	.97 .97	Pass Pass				
2DH1	0 39 78	1 1 1		5.86 5.91 5.88	20. 20. 20.	.97	Pass Pass Pass				
3DH1	0 39 78	1 1 1		5.70 5.83 5.73	20. 20. 20.	.97 .97	Pass Pass Pass				
I	10			0.10	20	<u>TEST</u>	RESULT	-			
							ige Powe porting (
DH		NTX	(age Pow (dBm)	(d	Factor B)					
DH1	0 39 78	1 1 1		3.32 4.18 3.98		33 33					
2DH1	0 39	1 1		2.99 3.05	5.	14 14					
	78	1		3.02		14					
	0	1		2.25	5.1						
3DH1	39	1		2.53	5.1						
L	78	1		2.44	5.1	21					
					N		RESULT. Hopping	<u>S DATA</u> a Freauenc	.v		
	ber of H (Channe 79		9	Adapti Freque Hoppin (Chanr 20	ncy ng	Limits (Channel) > 15	Pass	s/Fail			

Number of Hopping Frequency

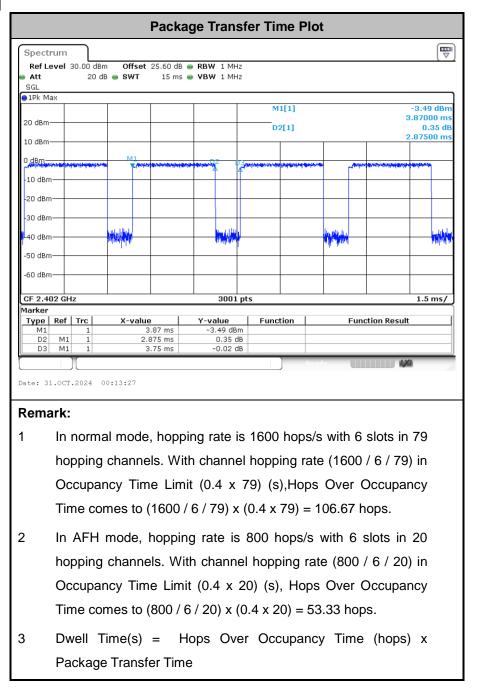


Hopping Channel Separation

<1Mbps>

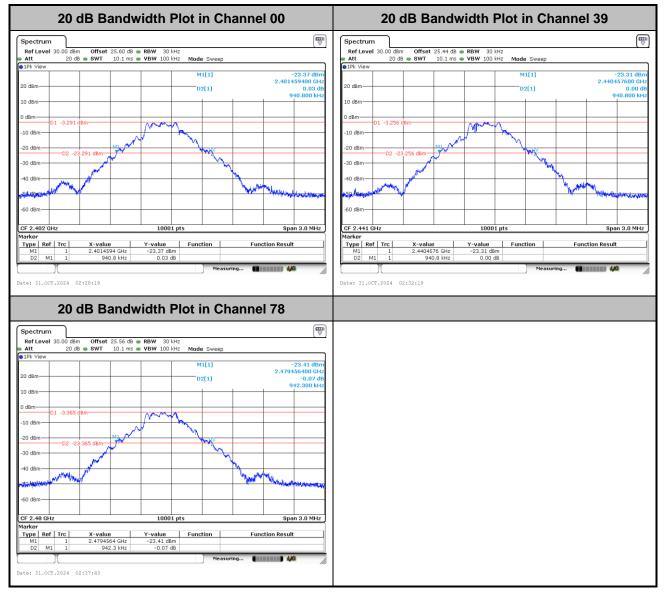
<2Mbps>

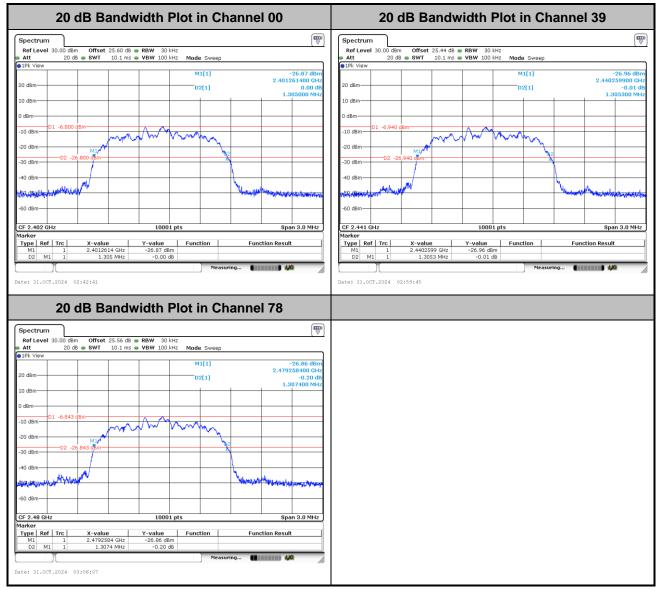
Channel Separ	ation Plot on Cha	innel 00 - 01	Channel Se	paration Plot on Cha	annel 39 - 40
pectrum			Spectrum		Ē
Ref Level 30.00 dBm Offset 25.60	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep		RefLevel 30.00 dBm Offset Att 20 dB SWT	t 25.44 dB RBW 300 kHz S ms VBW 300 kHz Mode Sweep	
1Pk Max			1Pk Max		
	M1[1]	-3.32 dBm 2.40177060 GHz		M1[1]	-3.36 dBr 2.44075760 GH
I dBm	D2[1]	-0.01 dB 1.00289 MHz	20 dBm	D2[1]	0.02 d 1.00289 MH
dBm			10 dBm		
8m <u>M1</u>	02		0 dBm	02	
dBm			-10 dBm		
dBm			-20 dBm		
dBm-			-30 dBm		
dBm			-40 dBm		
dBm			-50 dBm		
dBm			-60 dBm		
2.4025 GHz ker	691 pts	Span 3.0 MHz	CF 2.4415 GHz Marker	691 pts	Span 3.0 MH
De Ref Trc X-value M1 1 2.4017706 GHz	Y-value Function	Function Result	Type Ref Trc X-valu		Function Result
D2 M1 1 2.4017706 GH2				576 GHz -3.36 dBm 289 MHz 0.02 dB	
)[Measurin			Measuria	4/4
	ation Plot on Cha	unnel 77 - 78	Date: 31.0CT.2024 03:02:13		
Channel Separ	ation Plot on Cha		Date: 31.0CT.2024 03:02:13		
Channel Separ	dB 🖷 RBW 300 kHz	nnel 77 - 78 (\)	Date: 31.0CT.2024 03:02:13		
Channel Separ			Date: 31.0CT.2024 03:02:13		
Channel Separ	dB 🖷 RBW 300 kHz	-3.32 dBm	Date: 31.0CT.2024 03:02:13		
Channel Separ	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep	-3.32 dBm 2.47875760 GHz -0.02 dB	Date: 31.0CT.2024 03:02:13		
Channel Separ	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz	Date: 31.0CT.2024 03:02:13		
Channel Separ ectrum of Level 30.00 dBm Offset 25.56 tt 20 dB 8 WT k Max 1 dBm 1 dBm 1	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Date: 31.0CT.2024 03:02:13		
Channel Separ ectrum ft.evel 30.00 dBm offset 25.56 tt 20 dB • BWT 5 k Max 38m 4 dBm 4 4	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ ectrum 0 d8m offset 25.56 tt 20 d8 • 8 WT 5 k Max 1 d8m 41 d8m 41	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Date: 31.0CT.2024 03:02:13		
Channel Separ	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ ectrum of Level 30.00 dBm Offset 25.56 tt 20 dB 8 WT 5 k Max 300 400 9 9 dBm 400 400 400 400 dBm 401 401 400 400 dBm 400 400 400 400	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ ectrum offset 25.56 f Level 30.00 dBm offset 25.56 Max s Max s IBm s dBm sd dBm sd dBm sd dBm sd	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ ectrum 0ffset 25.56 ft evel 30.00 dBm Offset 25.56 with Max 20 dB @ SWT 5 dBm 44 44	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Dete: 31.0CT.2024 03:02:13		
Channel Separ ectrum 0ffset 25.56 ft evel 30.00 dBm Offset 25.56 with Max 20 dB @ SWT 5 dBm 44 44	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Date: 31.0CT.2024 03:02:13		
Channel Separ	dB • RBW 300 kHz ms • VBW 300 kHz Mode Sweep M1[1]	-3.32 dBm 2.47875760 GHz -0.02 dB	Date: 31.0CT.2024 03:02:13		
Channel Separ vectrum Offset 25.56 20 dB • SWT 5 Vectrum 0 dB • SWT 5 Vectrum 1 5 <	dB @ RBW 300 HHz ms @ VBW 300 HHz M1[1] D2	-3.32 dBm 2.4787560 GH2 -0.02 dB 1.00209 MH2	Date: 31.0CT.2024 03:02:13		
Channel Separ pectrum Str Level 30.00 dBm Offset 25.56 Max dBm dBm <	dB @ RBW 300 HHz ms @ VBW 300 HHz M1[1] D2[1] D	-3.32 dBm 2.4787560 GH2 -0.02 dB 1.00299 MH2	Dete: 31.0CT.2024 03:02:13		
Pectrum Offset 25.56 Att 20 d8 SWT 5 Pk Max 0 d8 SWT 5 d8m	dB @ RBW 300 HHz ms @ VBW 300 HHz M1[1] D2[1] D	-3.32 dBm 2.4787560 GH2 -0.02 dB 1.00209 MH2	Dete: 31.0CT.2024 03:02:13		



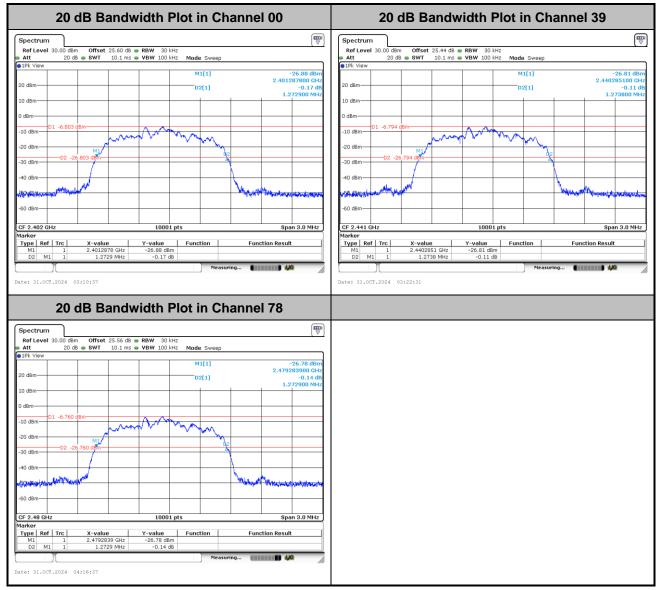
<3Mbps>

		nnel 00 - 01	Channel	Separation Plot on Ch	annel 39 - 40
Att 20 dB SWT 5 m IPk Max			Spectrum		
IPk Max	dB e RBW 300 kHz ms e VBW 300 kHz Mode Sweep			Offset 25.44 dB ● RBW 300 kHz SWT 5 ms ● VBW 300 kHz Mode Sweep	()
1 dBm			e 1Pk Max		
J dBm	M1[1]	-3.32 dBm 2.40176630 GHz	00.40-	M1[1]	-3.25 dBr 2.44096600 GH
	D2[1]	0.02 dB 1.00289 MHz	20 dBm	D2[1]	-0.03 d 1.00289 MH
0 dBm			10 dBm-		
dBm M1			0 dBm	M1 U2	
) dBm			-10 dBm		
dBm			-20 dBm		
I dBm					
			-30 dBm-		
dBm			-40 dBm-		
dBm			-50 dBm		
dBm			-60 dBm		
2.4025 GHz ker	691 pts	Span 3.0 MHz	CF 2.4415 GHz Marker	691 pts	Span 3.0 MH
pe Ref Trc X-value M1 1 2.4017663 GHz	-3.32 dBm	Function Result		Y-value Function 2.440966 GHz -3.25 dBm	Function Result
D2 M1 1 1.00289 MHz	0.02 dB		D2 M1 1	1.00289 MHz -0.03 dB	
	Measuring	4 /0		Measu	1990
ectrum	ation Plot on Cha				
tef Level 30.00 dBm Offset 25.56 d	dB 🖷 RBW 300 kHz	(🗸)			
Att 20 dB 👄 SWT 5 m Pk Max	ns 🖶 VBW 300 kHz 🛛 Mode Sweep				
	M1[1]	-3.24 dBm 2.47897030 GHz			
dBm	D2[1]	-0.08 dB 1.00289 MHz			
dBm					
Bm M1					
dBm - 1					
dBm					
dBm					
d8m					
dBm					
dBm					
dBm					
0 dBm	691 pts	Span 3.0 MHz			
d&m		Span 3.0 MHz			
dBm	Y-value Function				
M1 1 2.4789703 GHz	Y-value Function				


Dwell Time

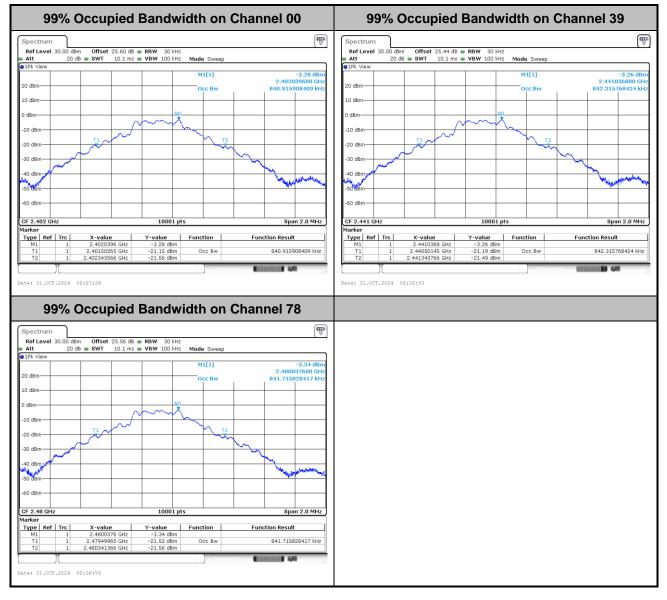

20dB Bandwidth

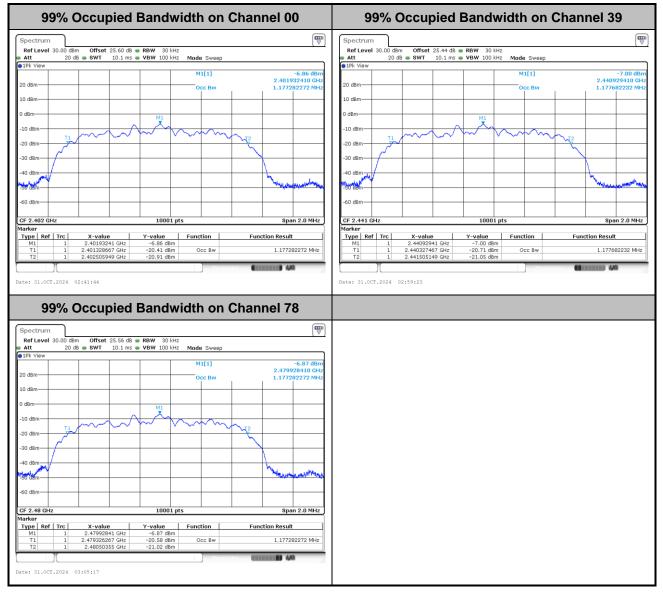
<1Mbps>



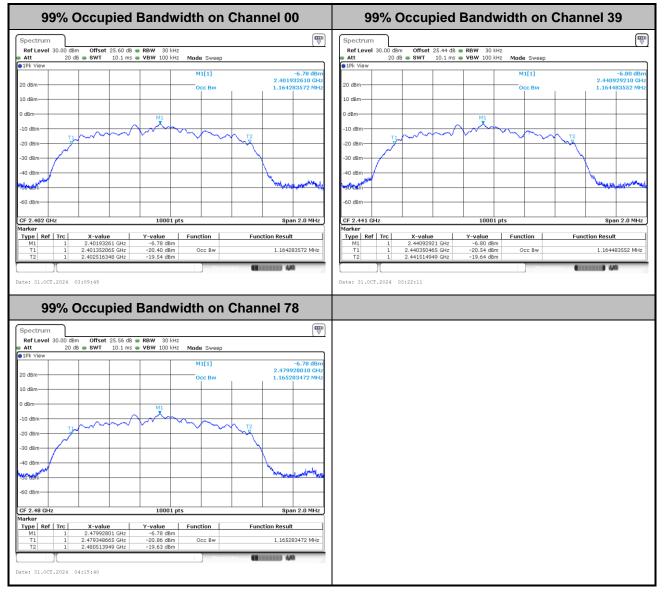
<2Mbps>

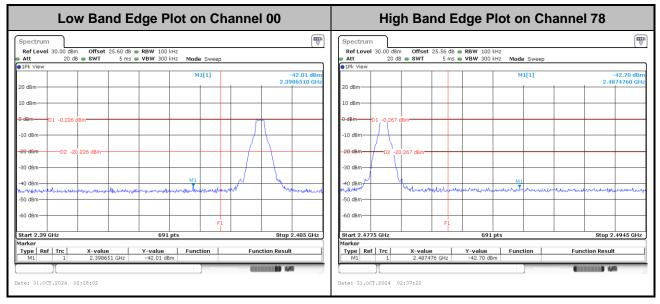
<3Mbps>

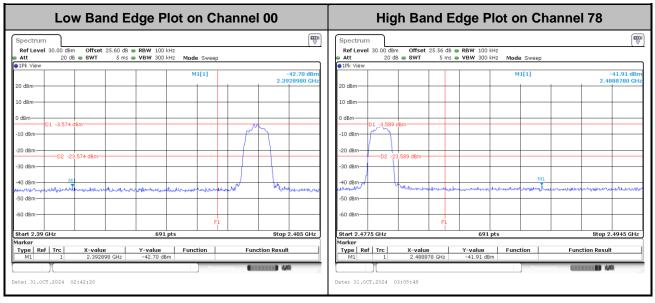




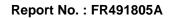
99% Occupied Bandwidth

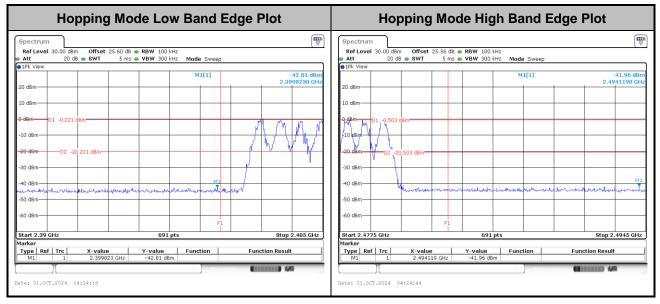

<1Mbps>

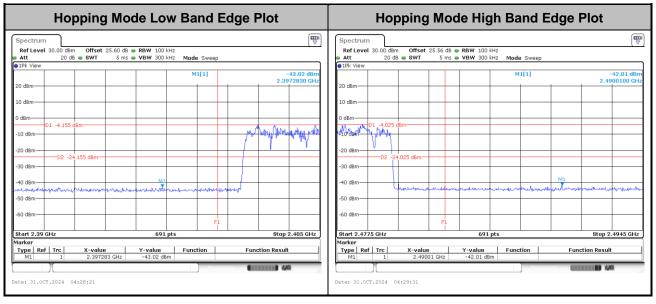




Band Edges

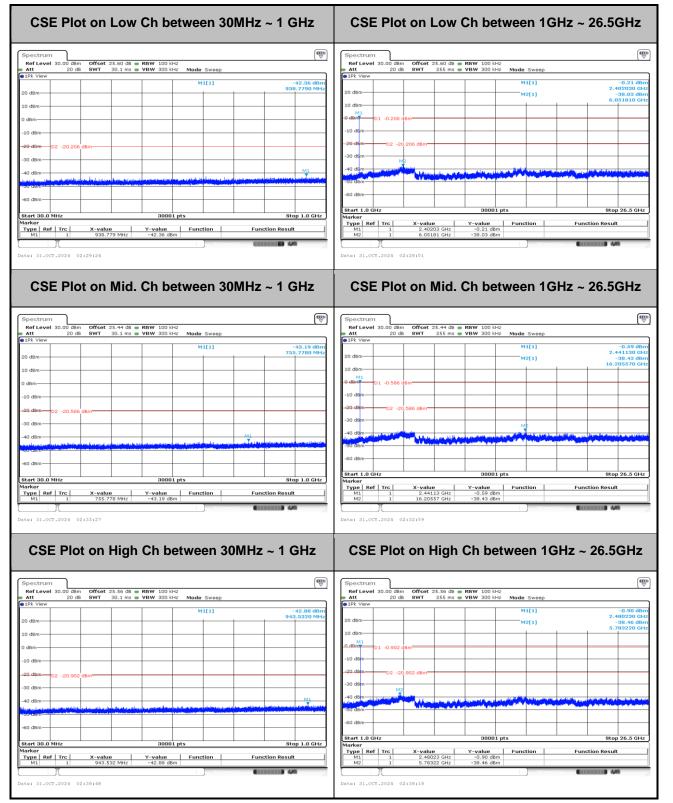

<1Mbps>


Low Band F	Edge Plot on Chan	nel 00	High Band Edge Plot on Channel 78
Spectrum Ref Level 30.00 dBm Offset 25.60 d	18 • RBW 100 kHz		Spectrum Image: Spectrum Ref Level 30.00 dBm Offset 25.55 dB • RBW 100 kHz
	ns 👄 VBW 300 kHz 🛛 Mode Sweep		Att 20 dB SWT 5 ms VBW 300 kHz Mode Sweep
1Pk View			●1Pk View
20 dBm	M1[1]	-42.86 dBm 2.3962190 GHz	20 dBm
20 0000			20 0811
10 dBm			10 dBm
0 dBm			0 dBm-
-10 dBm		- m	-10 dBm
-20 dBm D2 -23,430 dBm			-20 dBm
-30 dBm			-30 dBm
-40 dBm	M1		-40 dBm -
-40 UBIN	unture many war we war war war	Wirmunahann	- A BIN N March
-50 dBm			-50 dBm
-60 dBm			-60 dBm-
	F1		F1
Start 2.39 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz 691 pts Stop 2.4945 GHz
Marker Type Ref Trc X-value	Y-value Function	Function Result	Marker Type Ref Trc X-value Y-value Function Function Result
M1 1 2.396219 GHz	-42.86 dBm	r uncoun result	M1 1 2.489469 GHz -41.87 dBm
	Measuring	4/0	Measuring
ate: 31.0CT.2024 03:10:20		110	Date: 31.0CT.2024 04:16:10
ACC. 01100112023 00110120			PROM ATTACTORS ATTACTA

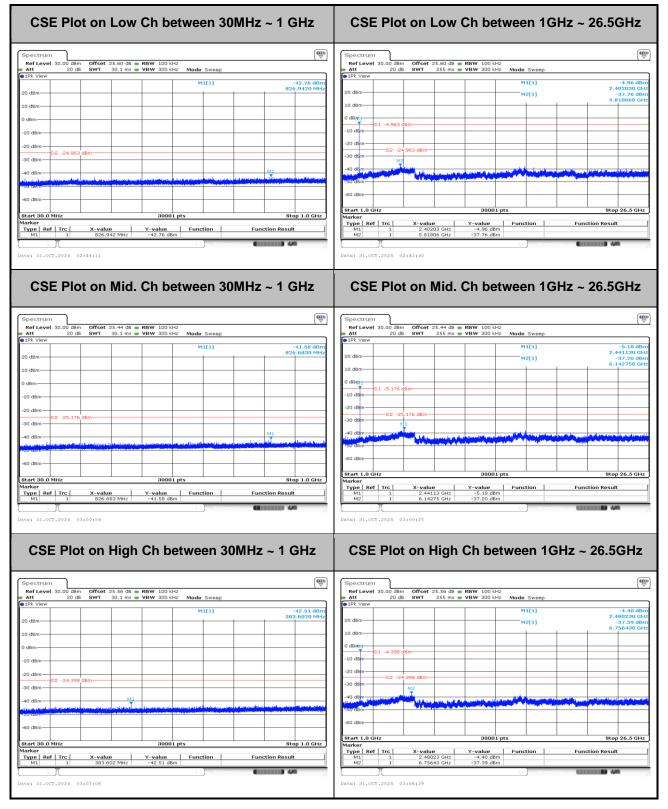


Hopping Mode Band Edges

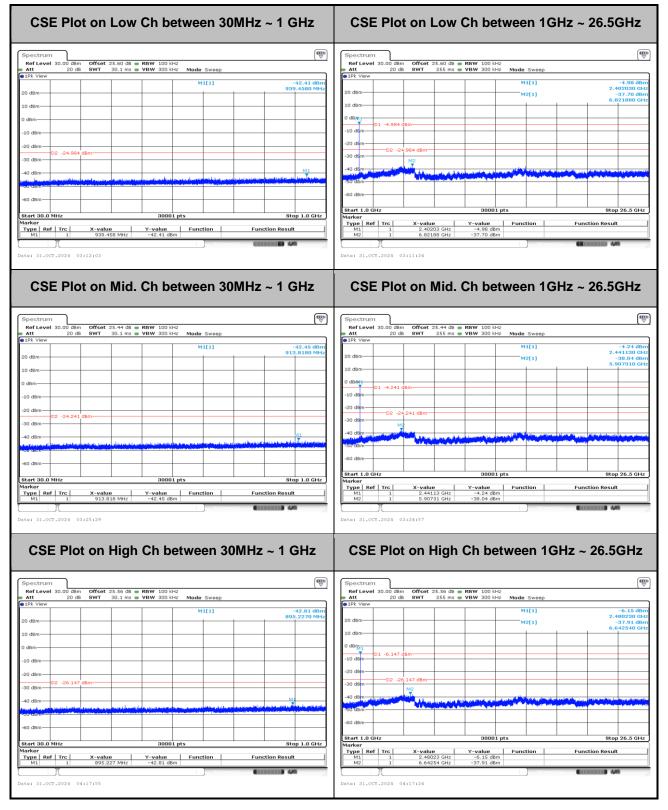
<1Mbps>

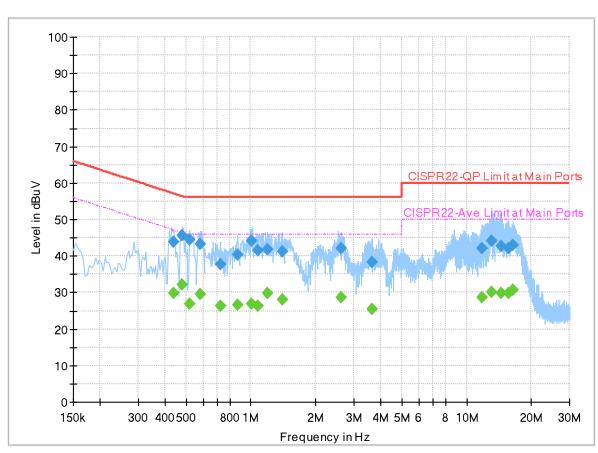


Hopping	Mode Low Band E	dge Plot	Hopping Mode High Band Edge Plo	ot
	25.60 dB 🖷 RBW 100 kHz		Spectrum Ref Level 30.00 dBm Offset 25.55 dB • RBW 100 kHz	
Att 20 dB SWT	5 ms 🖶 VBW 300 kHz 🛛 Mode Sweep		Att 20 dB SWT 5 ms VBW 300 kHz Mode Sweep	
1Pk View	M1[1]	-41.95 dBm 2.3972180 GHz		-42.73 dBm 2.4936760 GHz
10 dBm			10 dBm	
0 dBm		with mar worth mark	0 dBm 01 -3.375 dBm 0 d	
-20 dBmD2 -23.382 dBm			-20 dem	
-40 dBm	MI.	unh	40 dBm	M1
-50 dBm	FI		-50 d8m	
Start 2.39 GHz	691 pts	Stop 2.405 GHz	Start 2.4775 GHz 691 pts 8	top 2.4945 GHz
Marker Type Ref Trc X-value M1 1 2.39721		Function Result	Marker Type Ref Trc X-value Y-value Function Function F M1 1 2.493676 GHz -42.73 dBm -42.73	tesult
Date: 31.0CT.2024 04:31:36	Measuri	ne (#######) 4/9	Date: 31.007.2024 04:32:18	B 449
20001 21100112024 04131130			DROAT OTLOGIA ALAGETAN	



Conducted Spurious Emission


<1Mbps>



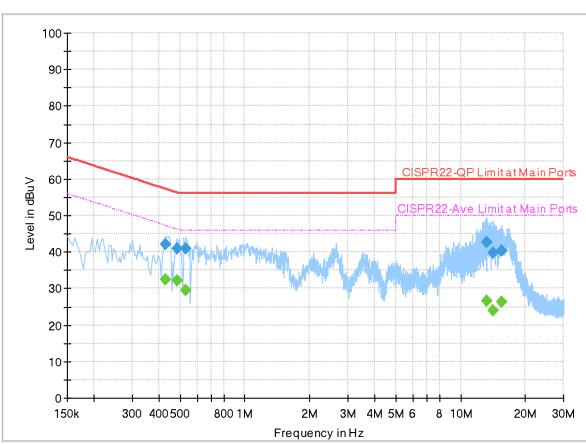
Appendix B. AC Conducted Emission Test Results

Toot Engineer		Temperature :	23.5~27.3 ℃
Test Engineer :		Relative Humidity :	48~62.2%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 491805 Mode 1 120Vac/60Hz Line

Full Spectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	PE	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.438000		29.69	47.10	17.41	L1	FLO	19.9
0.438000	43.97		57.10	13.13	L1	FLO	19.9
0.478000		32.12	46.37	14.25	L1	FLO	19.9
0.478000	45.49		56.37	10.88	L1	FLO	19.9
0.522000		26.82	46.00	19.18	L1	FLO	19.9
0.522000	44.55		56.00	11.45	L1	FLO	19.9
0.582000		29.54	46.00	16.46	L1	FLO	19.9
0.582000	43.31		56.00	12.69	L1	FLO	19.9
0.722000		26.34	46.00	19.66	L1	FLO	19.9
0.722000	37.86		56.00	18.14	L1	FLO	19.9
0.870000		26.53	46.00	19.47	L1	FLO	19.9
0.870000	40.23		56.00	15.77	L1	FLO	19.9
1.010000		26.89	46.00	19.11	L1	FLO	19.9
1.010000	44.06		56.00	11.94	L1	FLO	19.9
1.082000		26.29	46.00	19.71	L1	FLO	19.9
1.082000	41.48		56.00	14.52	L1	FLO	19.9
1.190000		29.88	46.00	16.12	L1	FLO	19.9
1.190000	41.86		56.00	14.14	L1	FLO	19.9
1.402000		27.99	46.00	18.01	L1	FLO	19.9

1.402000	41.34		56.00	14.66	L1	FLO	19.9
2.610000		28.80	46.00	17.20	L1	FLO	20.0
2.610000	42.10		56.00	13.90	L1	FLO	20.0
3.658000		25.58	46.00	20.42	L1	FLO	20.0
3.658000	38.35		56.00	17.65	L1	FLO	20.0
11.810000		28.76	50.00	21.24	L1	FLO	20.1
11.810000	42.23		60.00	17.77	L1	FLO	20.1
13.122000		30.14	50.00	19.86	L1	FLO	20.1
13.122000	44.08		60.00	15.92	L1	FLO	20.1
14.430000		29.72	50.00	20.28	L1	FLO	20.1
14.430000	42.62		60.00	17.38	L1	FLO	20.1
15.634000		29.88	50.00	20.12	L1	FLO	20.1
15.634000	42.05		60.00	17.95	L1	FLO	20.1
16.370000		30.70	50.00	19.30	L1	FLO	20.1
16.370000	42.93		60.00	17.07	L1	FLO	20.1

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 491805 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

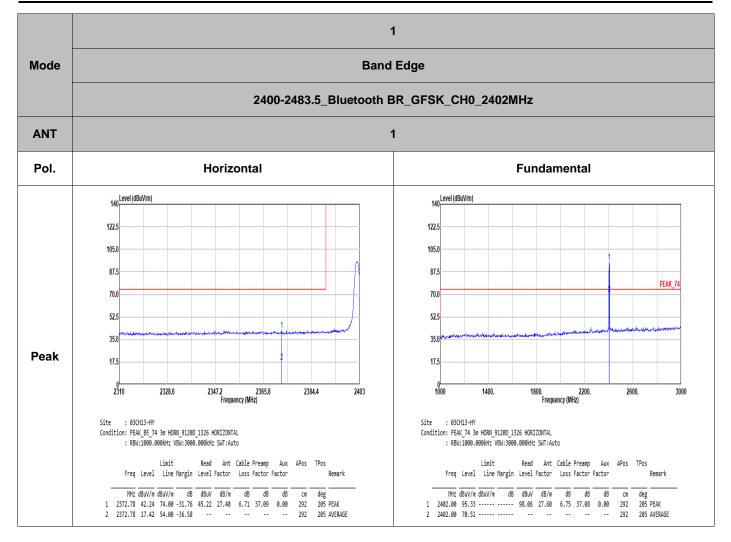
Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
· · ·	(ubuv)	· · /	· /	· · /			• •
0.430000		32.54	47.25	14.71	Ν	FLO	19.9
0.430000	42.25		57.25	15.00	Ν	FLO	19.9
0.486000		32.28	46.24	13.96	Ν	FLO	19.9
0.486000	40.90		56.24	15.34	Ν	FLO	19.9
0.534000		29.51	46.00	16.49	Ν	FLO	19.9
0.534000	41.00		56.00	15.00	Ν	FLO	19.9
13.258000		26.50	50.00	23.50	Ν	FLO	20.1
13.258000	42.56		60.00	17.44	Ν	FLO	20.1
14.074000		24.09	50.00	25.91	Ν	FLO	20.1
14.074000	39.71		60.00	20.29	Ν	FLO	20.1
15.406000		26.19	50.00	23.81	Ν	FLO	20.2
15.406000	40.26		60.00	19.74	Ν	FLO	20.2

Appendix C. Radiated Spurious Emission Test Data

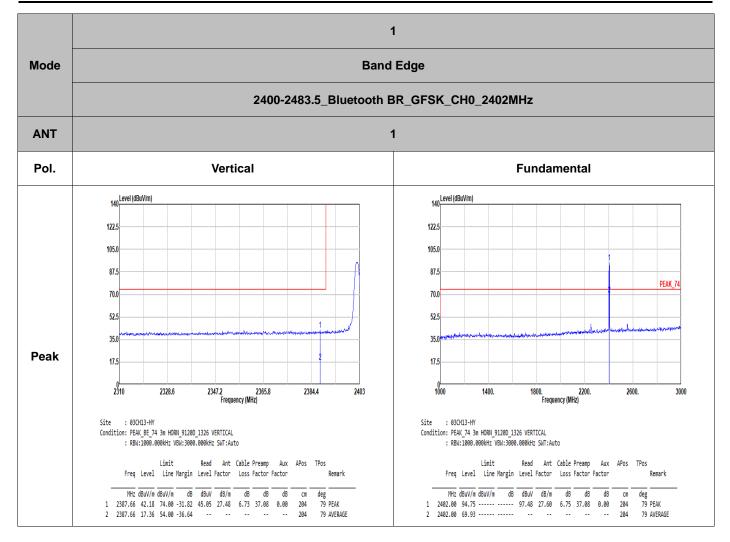
Toot Engineer		Temperature :	18~26 ℃
rest Engineer.	Jacky Hung and White Hou	Relative Humidity :	50~70%

Note symbol

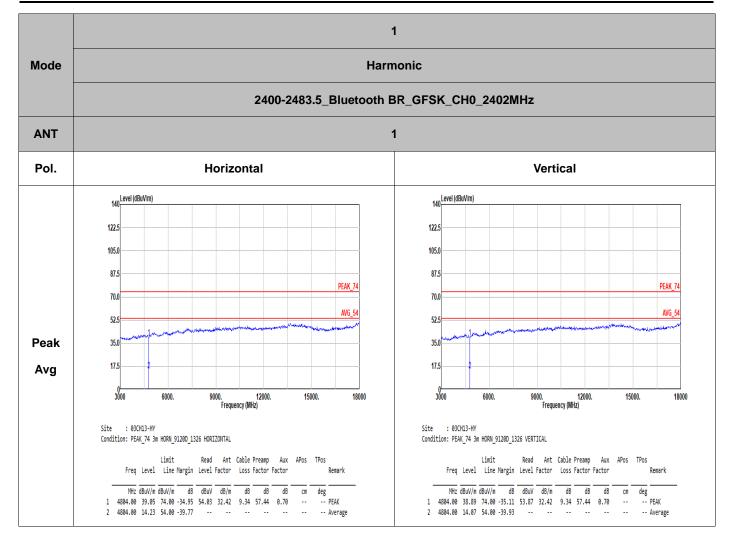
-L	Low channel location
-R	High channel location

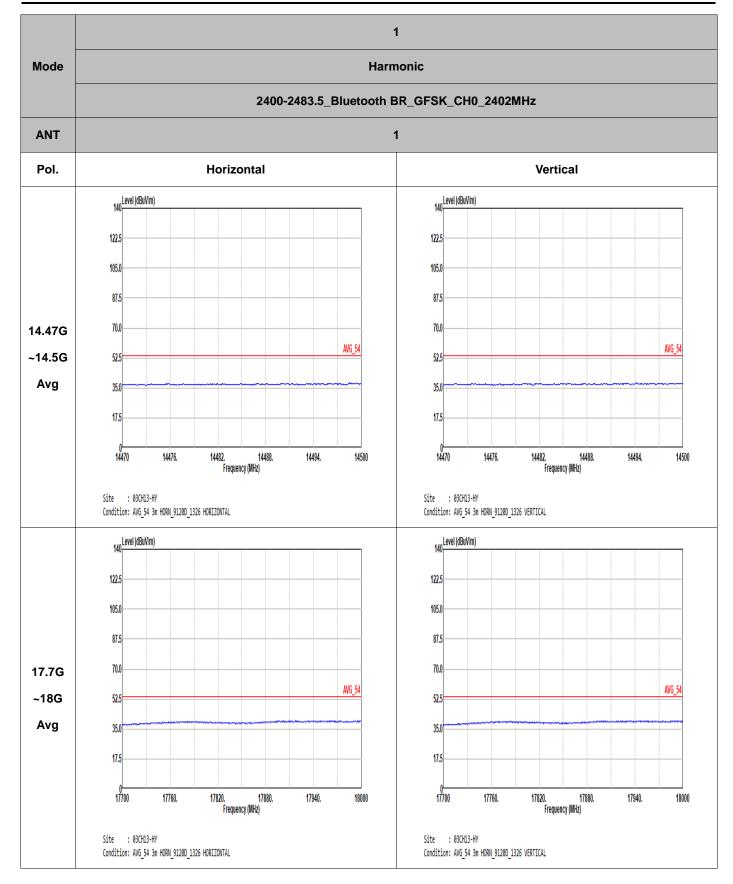

C1. Radiated Spurious Emission Test Modes

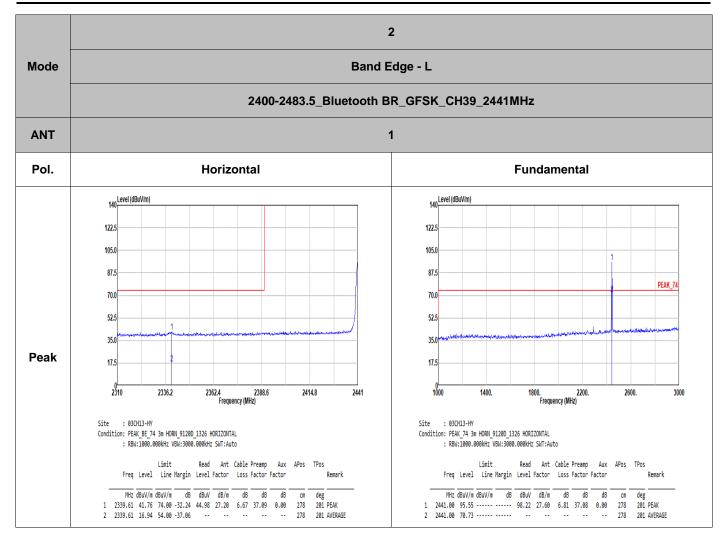
Mode	Band	Antenna	Modulation	Channel	Frequency	Data	RU	Remark
wode	(MHz)	Antenna	Modulation	Channel	Frequency	Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	0	2402	1Mbps	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	-
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	1Mbps	-	-
Mode 4	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	LF
Mode 5	2400-2483.5	1	Bluetooth BR_GFSK	39	2441	1Mbps	-	SHF

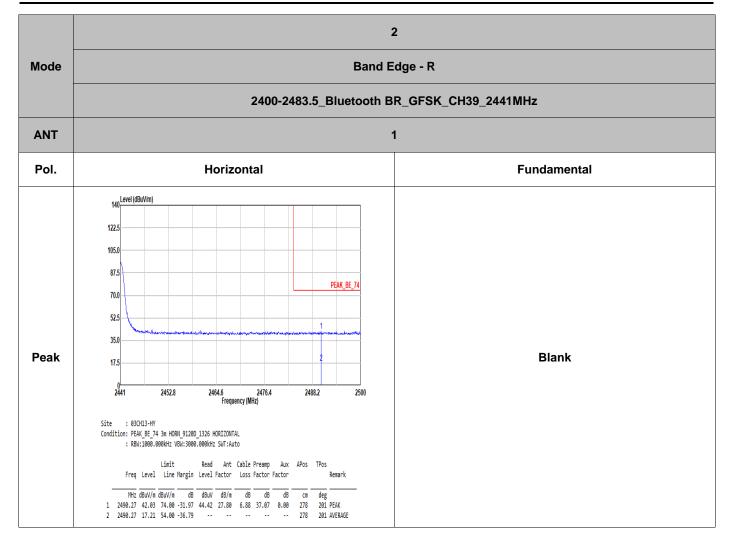

C2. Summary of each worse mode

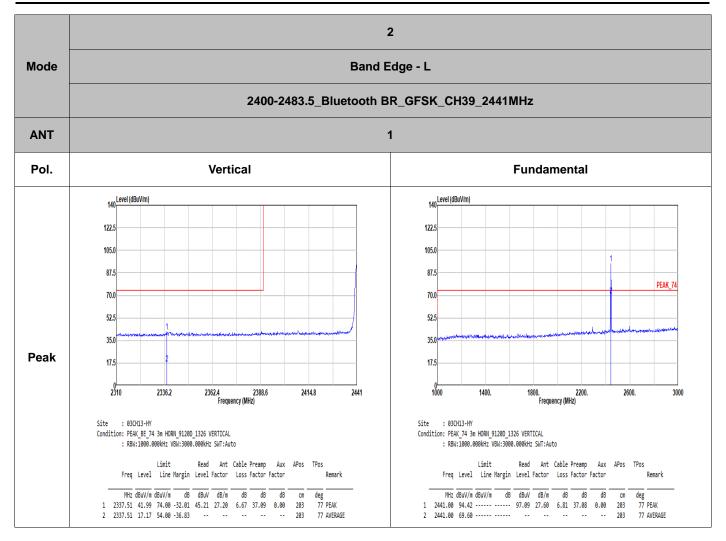
Mode	Modulation	Ch.	Freq.	Level	Limit	Margin	Pol.	Peak	Result	RU	Remark
Mode	Modulation	Cn.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	F01.	Avg.	Result	RU	Remark
1	Bluetooth BR_GFSK	0	2372.78	42.24	74.00	-31.76	Н	Peak	Pass	-	Band Edge
	Bluetooth BR_GFSK	0	4804.00	39.05	74.00	-34.95	Н	Peak	Pass	-	Harmonic
2	Bluetooth BR_GFSK	39	2485.43	42.56	74.00	-31.44	V	Peak	Pass	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	45.47	74.00	-28.53	Н	Peak	Pass	-	Harmonic
3	Bluetooth BR_GFSK	78	2483.68	44.02	74.00	-29.98	Н	Peak	Pass	-	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	44.82	74.00	-29.18	Н	Peak	Pass	-	Harmonic
4	LF	39	43.58	33.86	40.00	-6.14	V	Peak	Pass	-	LF
5	SHF	39	24783.00	47.30	74.00	-26.70	V	Peak	Pass	-	SHF

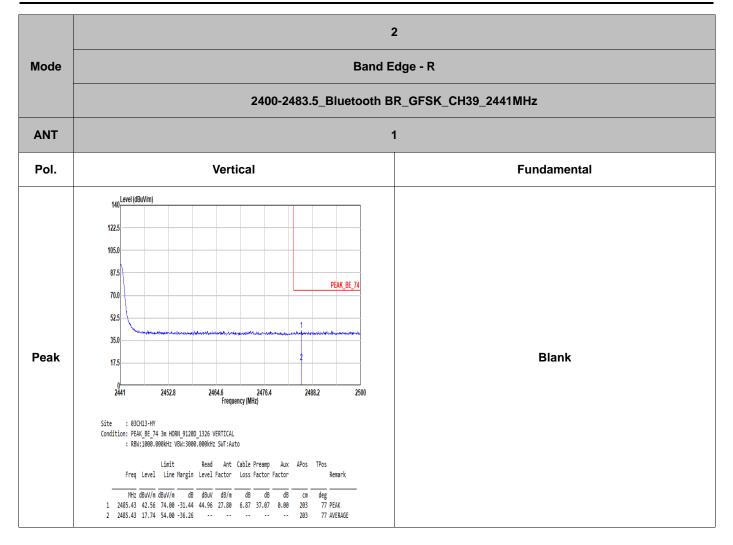


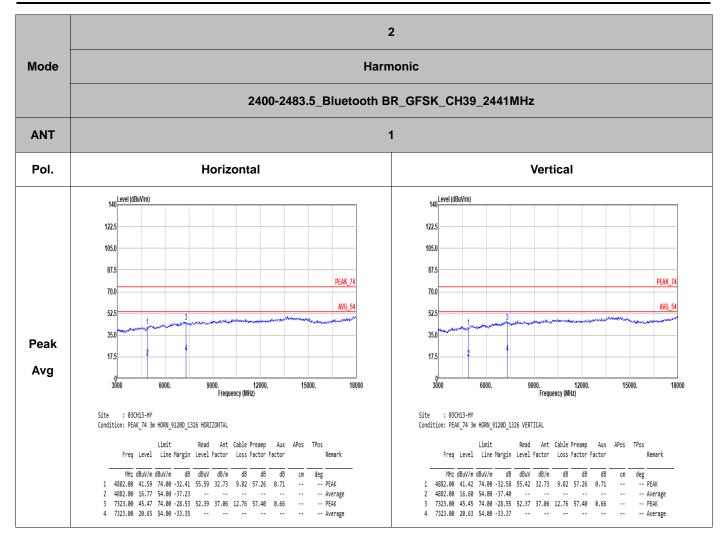


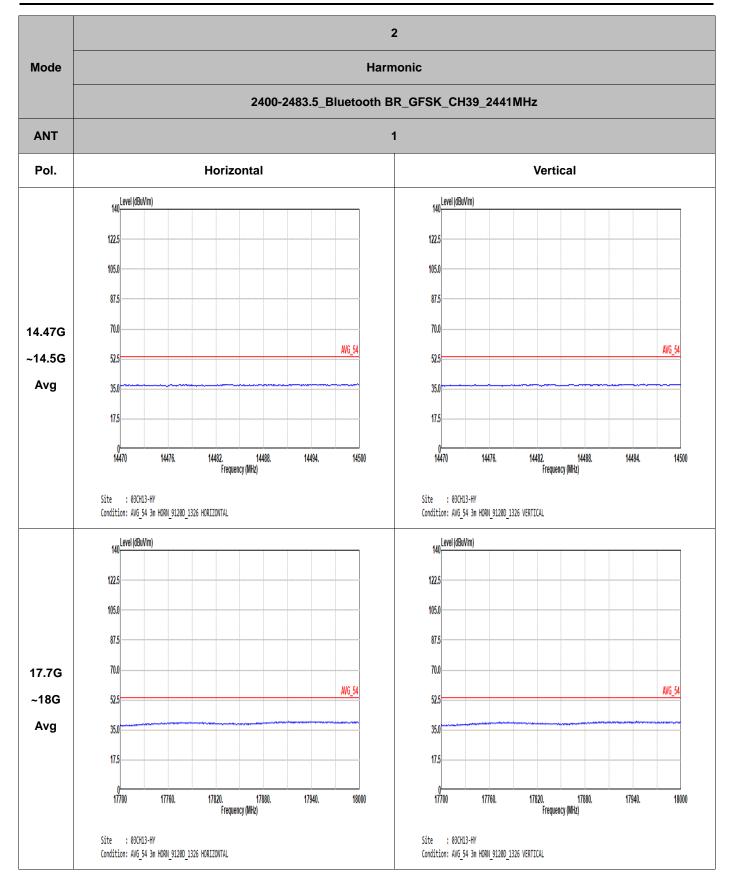


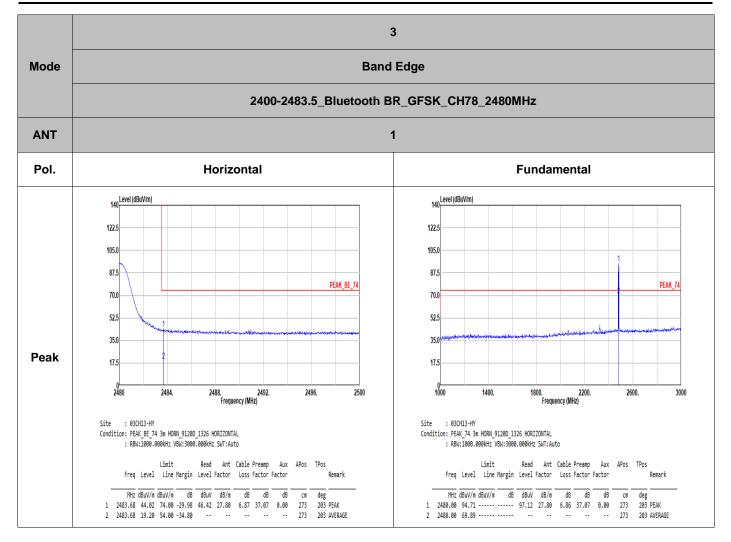


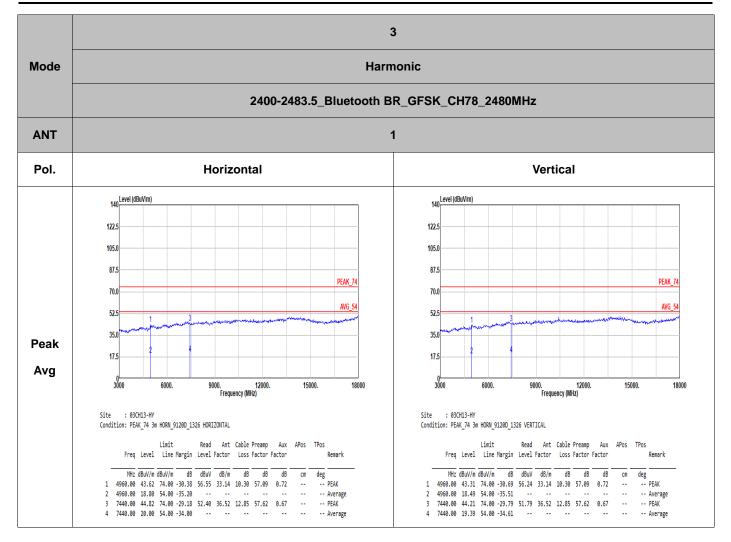


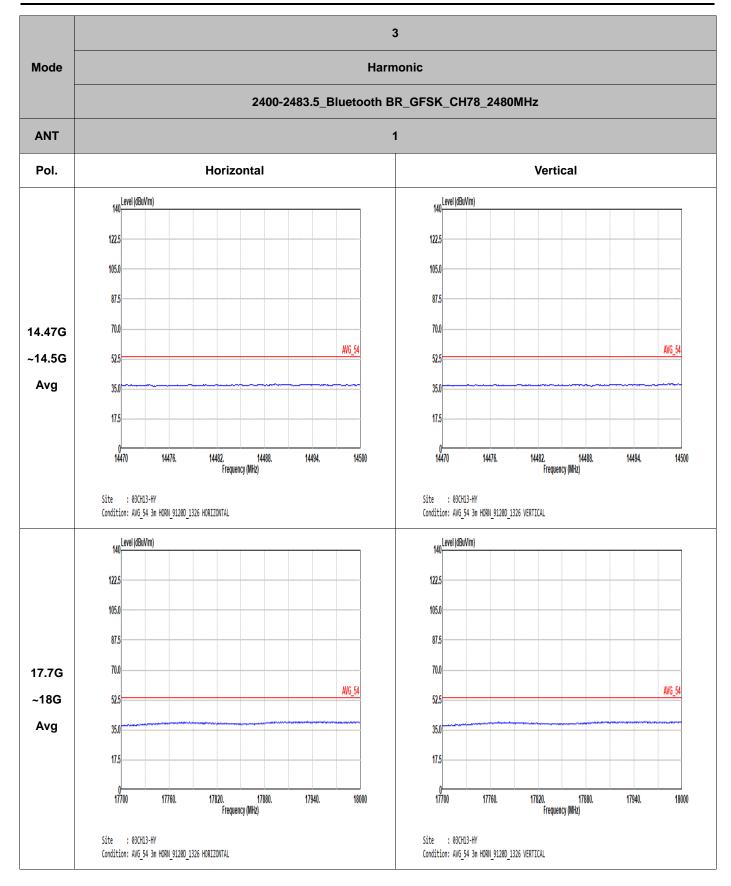


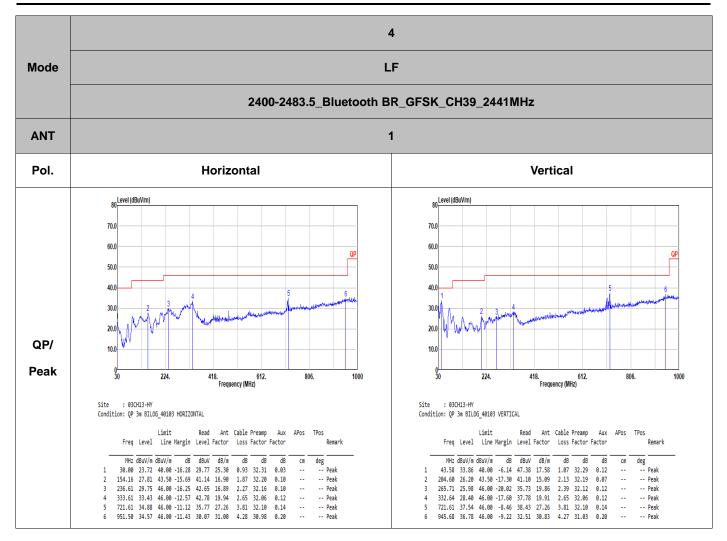


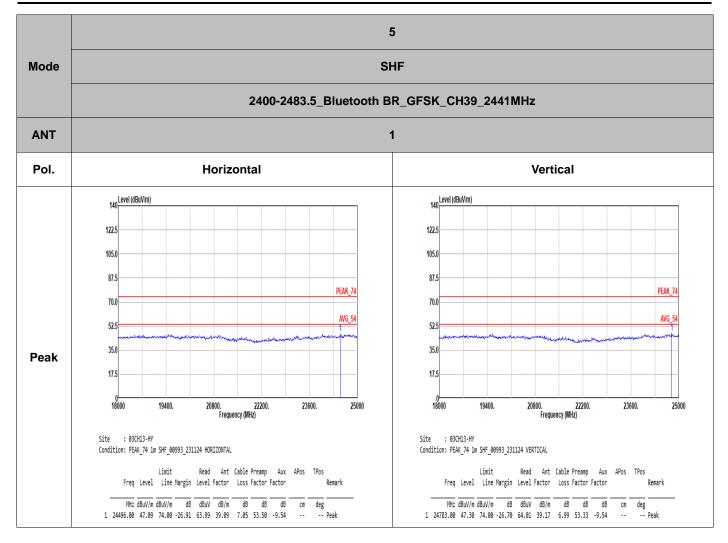












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on	Channel 78	on time (Count Pulses) Plot on Channel	78
Leysight Spectrum Analyzer - Swept SA SENGE_INIT A_ALION OFF 11.5 W AL IFF 30 a 0C SENGE_INIT A_ALION OFF 11.5 Marker A 1.72000 ms PNO: Fast Trig: Free Run Federat.com Free Run Federat.com Aften: 20 dB	2:28 PM Ney 01, 2024 TRACE 12.3.4.50 Det PPPPP Select Marker,	RL RF 50 Ω DC SENSE/NT ALIGN OFF 1156-36 FM Nev 01, 2024 Marker 1 47.5000 ms Free Trig: Free Run #Avg Type: RMS Trice: Trig: Free Run Trice: Tr	Peak Search
Mkr	4 1.780 ms 96.25 dBµV	Мкг1 47.50 ms 10 dB/div Ref 116.99 dBµV 96.71 dBµV	Peak Criteria►
	Normal	na) 107	Peak Table ►
50	Delta		Continuous Peak Search
27.0 Upwndight U	Fixed⊳	d⊳ Ø 0	
	Span 0 Hz ms (1001 pts) Off		Pk-Pk Search
1 Δ2 1 t (Δ) 2.870 ms (Δ) 0.02 dB 2 N 1 t 1.780 ms (Φ) 9.62 dB(μ) 3 Δ4 1 t 1.780 ms (Φ) -0.01 dB 4 N 1 t 1.780 ms (Φ) -0.01 dB 5 - - - - -	Properties►	 2 0 Strangenteretrevelender entregtigender schladeter influenteretrevelender informationenteretrevelender sont sont sont sont sont sont sont sont	Min Search
	More 1 of 2		More 2 of 2
11		Res BW 1.0 MHz Sweep 100.0 ms (1001 pts) use jstatus	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.87 / 100 = 5.74 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.82 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.87 ms x 20 channels = 57.4 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.4 ms] = 2 hops Thus, the maximum possible ON time:

2.87 ms x 2 = 5.74 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.74 \text{ ms}/100 \text{ ms}) = -24.82 \text{ dB}$