

FCC RADIO TEST REPORT

FCC ID	:	HLZA22002
Equipment	:	Tablet PC
Brand Name	:	acer
Model Name	:	A22002
Marketing Name	:	Iconia Tab A10;A10-11
Applicant	:	Acer Incorporated
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Manufacturer	:	Acer Incorporated
		8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan (R.O.C)
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Apr. 06, 2023 and testing was performed from Apr. 21, 2023 to May 22, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 27Issue Date: May 29, 2023Report Version: 02

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	v of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.5
	1.4	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	.9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	12
	3.3	Dwell Time Measurement	13
	3.4	20dB and 99% Bandwidth Measurement	14
	3.5	Output Power Measurement	15
	3.6	Conducted Band Edges Measurement	16
	3.7	Conducted Spurious Emission Measurement	17
	3.8	Radiated Band Edges and Spurious Emission Measurement	18
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	List o	of Measuring Equipment	25
5	Meas	urement Uncertainty	27
Арр	oendix	A. Conducted Test Results	
Арр	pendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR333113A	01	Initial issue of report	May 24, 2023
FR333113A	02	Revise Antenna information This report is an updated version, replacing the report issued on May 24, 2023.	May 29, 2023

: 3 of 27 : May 29, 2023 : 02

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.46 dB under the limit at 30.970 MHz
3.9	15.207	AC Conducted Emission	Pass	9.41 dB under the limit at 0.151 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Danny Lee Report Producer: Cindy Fang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature						
General Specs						
Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac,and GNSS .						
Antenna Type						
WLAN: PCB Antenna						
Bluetooth: PCB Antenna						
GPS / Glonass / BDS: PIFA Antenna						
Antenna information						
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	3.65				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH12-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

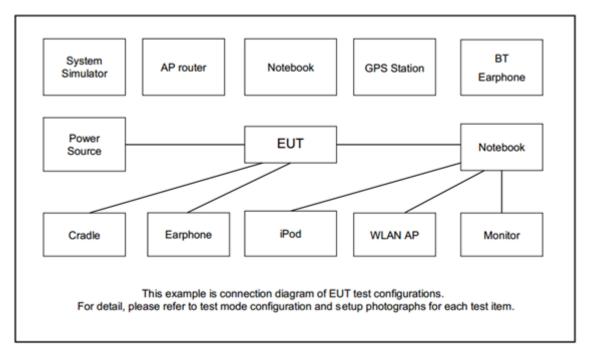
Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39		66	2468
2400-2483.5 MHz	13	2415	40		67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


	Summary table of Test Cases							
Test Item		Data Rate / Modulation						
Conducted	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK					
Conducted Test Cases	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz	Mode 4: CH00_2402 MHz Mode 5: CH39_2441 MHz Mode 6: CH78_2480 MHz	Mode 8: CH39_2441 MHz					
		Bluetooth BR 1Mbps GFS	<					
Radiated Test Cases		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz						
AC Conducted Emission	WLAN (2.4GHz) Link + H- e (Charging from AC Adapte WLAN (5GHz) Link + MPE arging from AC Adapter) WLAN (2.4GHz) Idle + Car Cable (Data Link with Notebo WLAN (5GHz) Idle + Came e (Data Link with Notebook)	er) G4 + Earphone + SD Card mera (Front) + Earphone + pok) ra (Rear) + Earphone + SD						
Remark:								
 For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission. 								
	ne worst case of Conducted Emission is mode 3; only the test data of it was reported.							

The following summary table is showing all test modes to demonstrate in compliance with the standard.

3. Data Link with Notebook means data application transferred mode between EUT and Notebook.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded,1.8m
2.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
4.	iPod Earphone	Apple	N/A	Verification	Unshielded,1.2m	N/A
5.	Earphone + Mic	Samsung	Ecouteur	N/A	Unshielded, 1.8 m	N/A
6.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0m	N/A

2.5 EUT Operation Test Setup

The RF test items, make the EUT (SW: sys_mssi_t_64_ab-userdebug 12 SP1A.210812.016 1681386744 releas-keys) get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

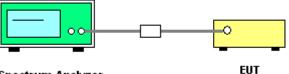
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

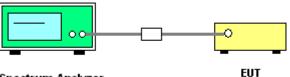
Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

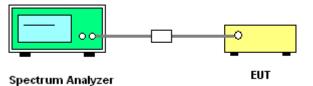
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

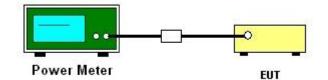
3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the

same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

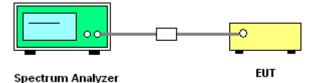
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

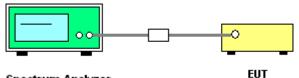
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

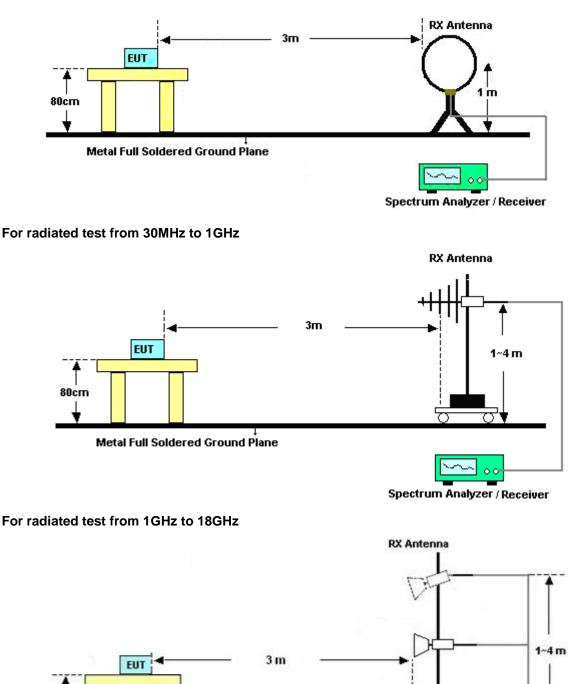
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

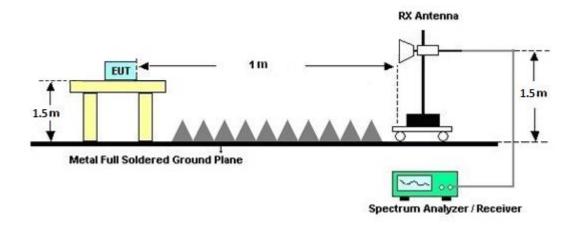
3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - $\begin{array}{ll} (3) & \mbox{For average measurement: use duty cycle correction factor method per 15.35(c).} \\ & \mbox{Duty cycle = On time/100 milliseconds} \\ & \mbox{On time = } N_1^*L_1 + N_2^*L_2 + ... + N_{n-1}^*LN_{n-1} + N_n^*L_n \\ & \mbox{Where } N_1 \mbox{ is number of type 1 pulses, } L_1 \mbox{ is length of type 1 pulses, etc.} \end{array}$
 - Average Emission Level = Peak Emission Level + 20*log (Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated test below 30MHz


Metal Full Soldered Ground Plane

1.5m

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

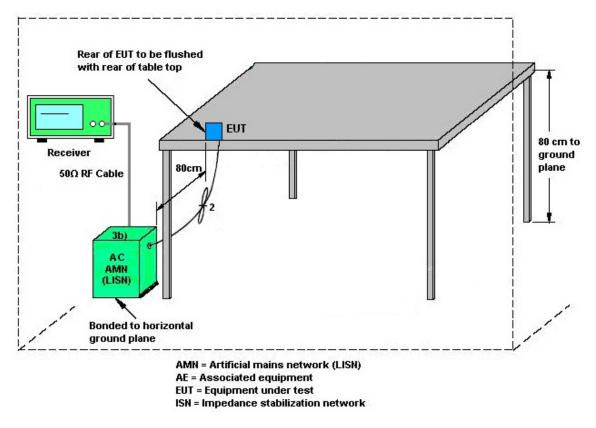
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	May 10, 2023~ May 22, 2023	Sep. 19, 2023	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	37059 & 01	30MHz~1GHz	Nov. 10, 2022	May 10, 2023~ May 22, 2023	Nov. 09, 2023	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1GHz~18GHz	Aug. 09, 2022	May 10, 2023~ May 22, 2023	Aug. 08, 2023	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2022	May 10, 2023~ May 22, 2023	Nov. 23, 2023	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 21, 2023	May 10, 2023~ May 22, 2023	Mar. 20, 2024	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5GHz	May 24, 2022	May 10, 2023~ May 22, 2023	May 23, 2023	Radiation (03CH12-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-100M-18 G-56-01-A70	EC1900249	1GHz-18GHz	Dec. 21, 2022	May 10, 2023~ May 22, 2023	Dec. 20, 2023	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 07, 2022	May 10, 2023~ May 22, 2023	Dec. 06, 2023	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Jan. 10, 2023	May 10, 2023~ May 22, 2023	Jan. 09, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-12 SS	SN2	1.2GHz Low Pass Filter	Mar. 13, 2023	May 10, 2023~ May 22, 2023	Mar. 12, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN2	3GHz High Pass Filter	Jul. 11, 2022	May 10, 2023~ May 22, 2023	Jul. 10, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	May 10, 2023~ May 22, 2023	Mar. 14, 2024	Radiation (03CH12-HY)
RF Cable	TUYUE	RG142D-NmB NCm-3000	H0620	9kHz~30MHz	Mar. 14, 2023	May 10, 2023~ May 22, 2023	Mar. 13, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 20, 2022	May 10, 2023~ May 22, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/4	30MHz~18GHz	Dec. 20, 2022	May 10, 2023~ May 22, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Dec. 20, 2022	May 10, 2023~ May 22, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Dec. 20, 2022	May 10, 2023~ May 22, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	May 10, 2023~ May 22, 2023	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 10, 2023~ May 22, 2023	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	May 10, 2023~ May 22, 2023	N/A	Radiation (03CH12-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Apr. 21, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Apr. 21, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 01, 2022	Apr. 21, 2023	Oct. 31, 2023	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	Apr. 21, 2023	Mar. 14, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 05, 2023	Apr. 21, 2023	Mar. 04, 2024	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 13, 2023	Apr. 21, 2023	Mar. 12, 2024	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 06, 2022	Apr. 21, 2023	Oct. 05, 2023	Conduction (CO07-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Aug. 08, 2022	Apr. 27, 2023~ May 20, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Aug. 08, 2022	Apr. 27, 2023~ May 20, 2023	Aug. 07, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Apr. 27, 2023~ May 20, 2023	Aug. 02, 2023	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.46 dB
of 95% (U = 2Uc(y))	5.40 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6 40 dP
of 95% (U = 2Uc(y))	6.40 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	1 10 dP
of 95% (U = 2Uc(y))	4.40 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.60 dB
of 95% (U = 2Uc(y))	4.00 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20 dB
of 95% (U = 2Uc(y))	5.20 UB

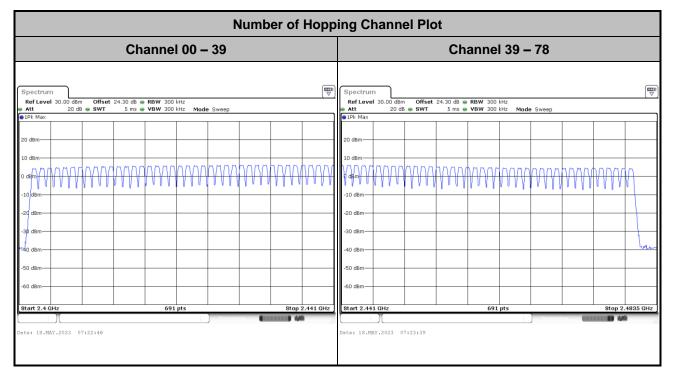
Report Number : FR333113A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu, James Li	Temperature:	21~25	°C
Test Date:	2023/4/27~2023/5/20	Relative Humidity:	51~54	%

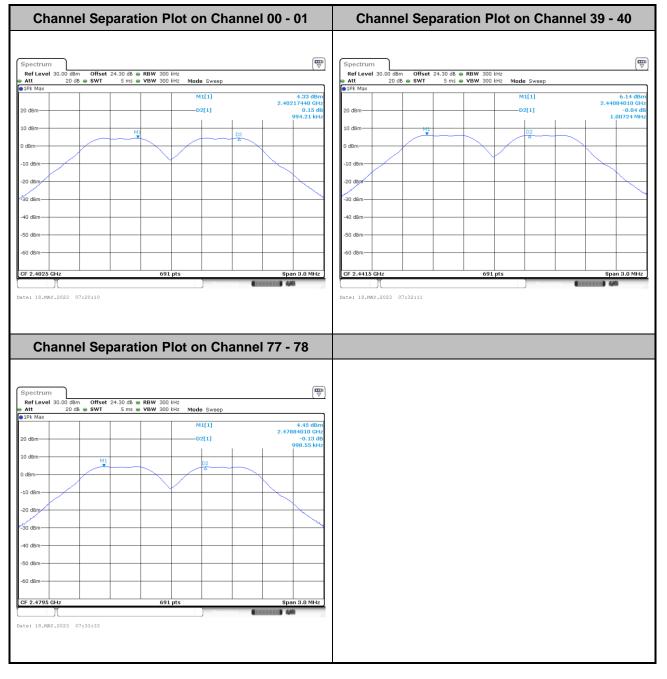
<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation										
Mod.	Data Rate	NTX		Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	0.735	0.859	0.994	0.4899	Pass	
DH	1Mbps	1	39	2441	0.813	0.857	1.007	0.5420	Pass	
DH	1Mbps	1	78	2480	0.809	0.857	0.999	0.5391	Pass	
2DH	2Mbps	1	0	2402	1.113	1.049	0.990	0.7420	Pass	
2DH	2Mbps	1	39	2441	1.113	1.049	0.999	0.7420	Pass	
2DH	2Mbps	1	78	2480	1.113	1.049	0.994	0.7420	Pass	
3DH	3Mbps	1	0	2402	1.165	1.085	1.003	0.7768	Pass	
3DH	3Mbps	1	39	2441	1.161	1.085	0.990	0.7739	Pass	
3DH	3Mbps	1	78	2480	1.165	1.083	0.990	0.7768	Pass	

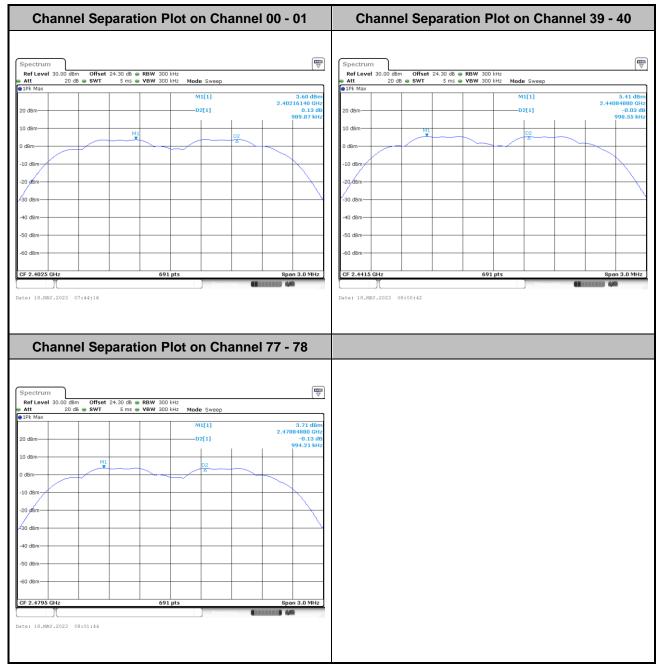
				RESULTS Well Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)	•	Dwell Time (sec)	Limits (sec)	Pass/Fail
DH5	79	106.670	2.88	0.31	0.4	Pass
DH5 (AFH)	20	53.330	2.88	0.15	0.4	Pass


					T RESUL eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	5.40	30.00	Pass
DH1	39	1	6.97	30.00	Pass
	78	1	5.66	30.00	Pass
	0	1	4.78	20.97	Pass
2DH1	39	1	6.31	20.97	Pass
	78	1	5.00	20.97	Pass
	0	1	4.76	20.97	Pass
3DH1	39	1	6.32	20.97	Pass
	78	1	5.04	20.97	Pass

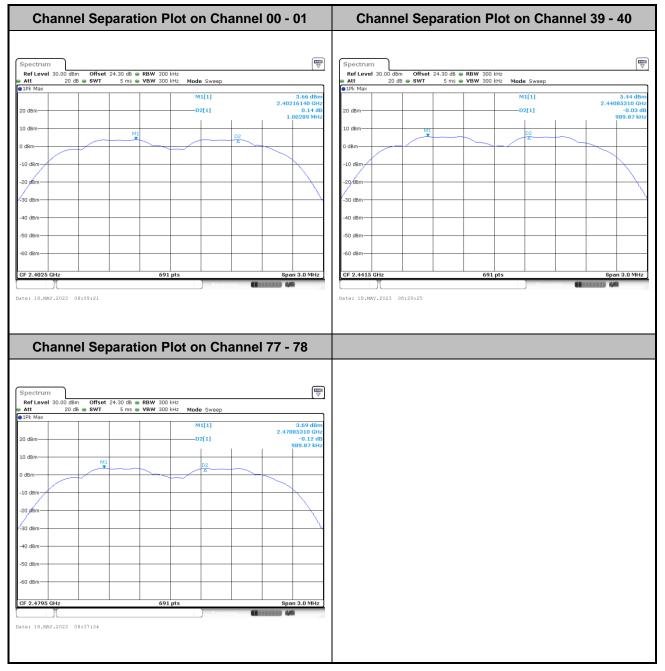
				Ave	ST RESULTS DATA erage Power Table (Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	4.60	5.22	
DH1	39	1	6.49	5.22	
	78	1	5.07	5.22	
	0	1	2.91	5.13	
2DH1	39	1	4.57	5.13	
	78	1	3.29	5.13	
	0	1	2.81	5.13	
3DH1	39	1	4.58	5.13	
	78	1	3.35	5.13	

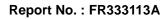
		<u>TEST RE</u> Number of He	SULTS DA	
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

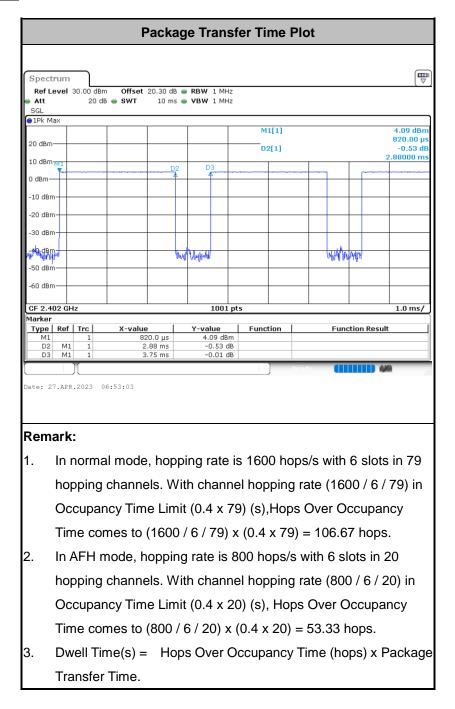

Number of Hopping Frequency

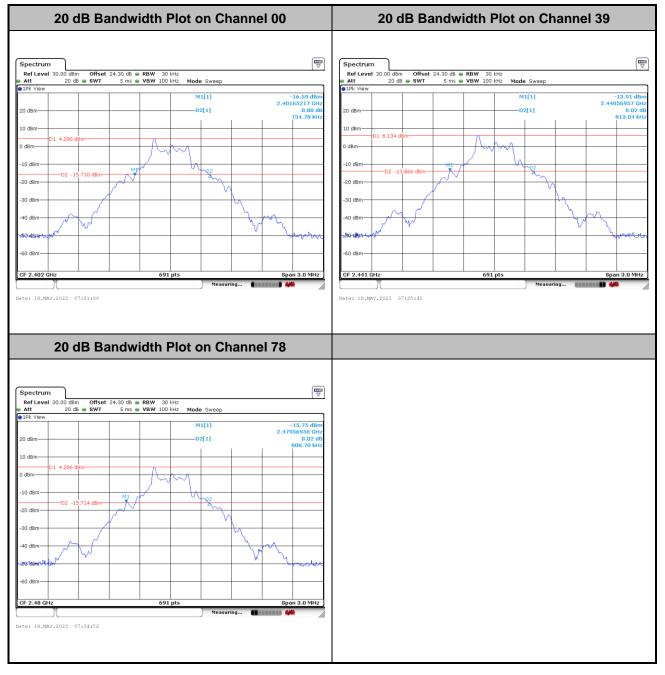

Hopping Channel Separation

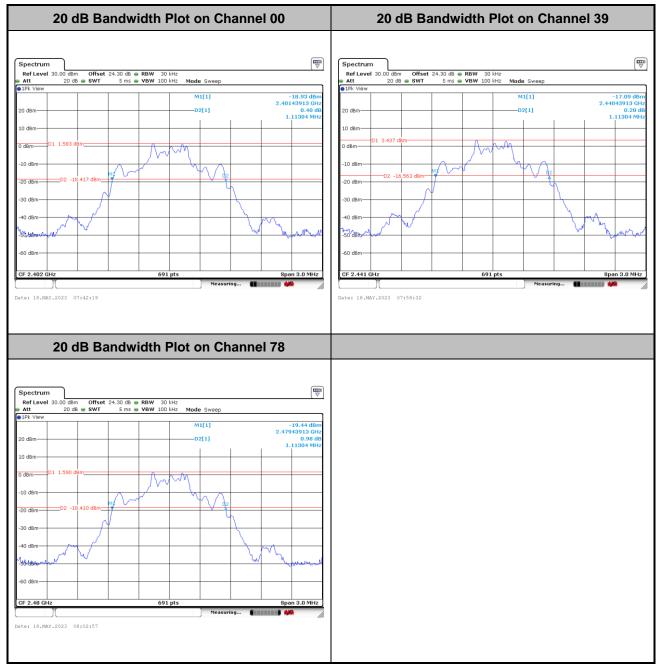
<1Mbps>



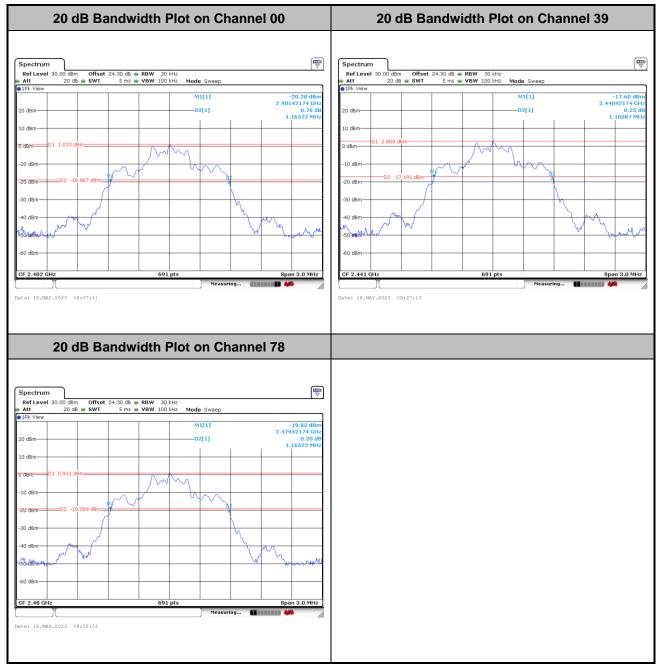

<2Mbps>


<3Mbps>

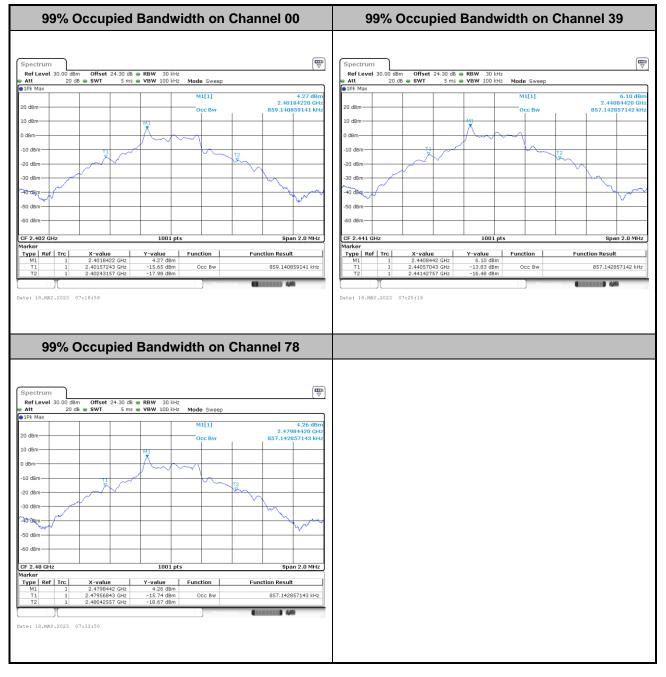

Dwell Time

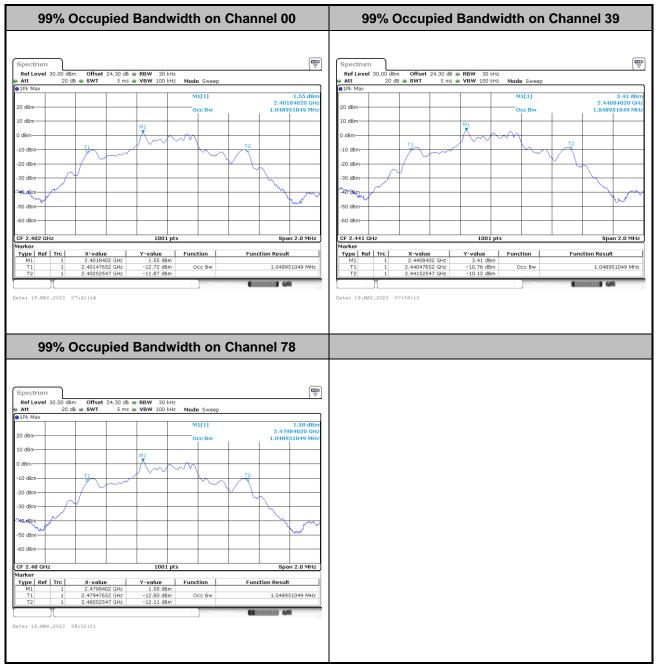

20dB Bandwidth

<1Mbps>

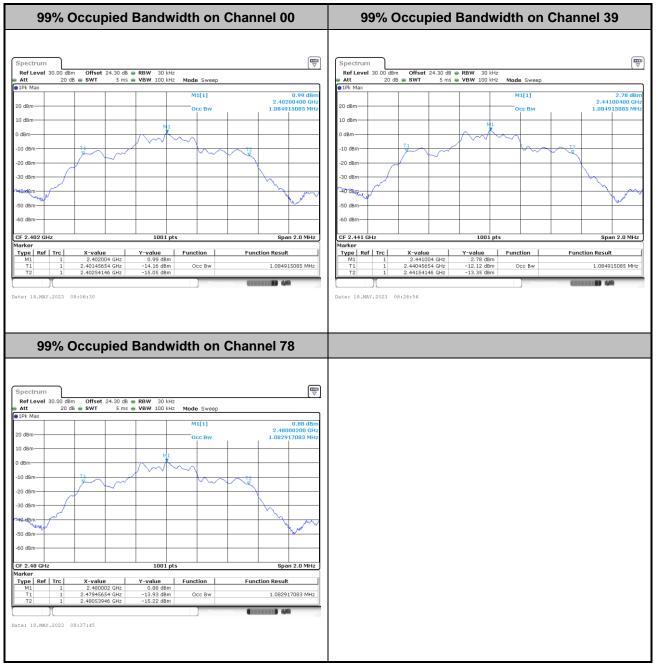


<2Mbps>


<3Mbps>

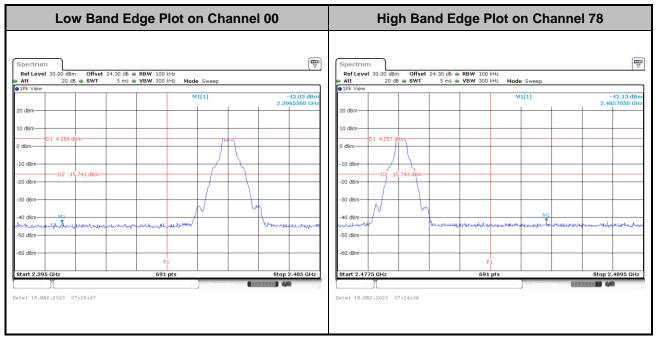

99% Occupied Bandwidth

<1Mbps>



<2Mbps>

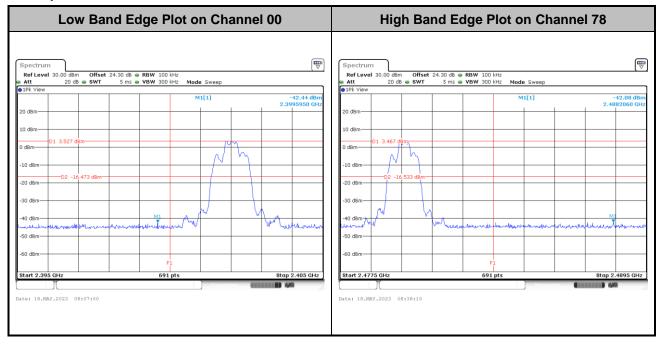
<3Mbps>



Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

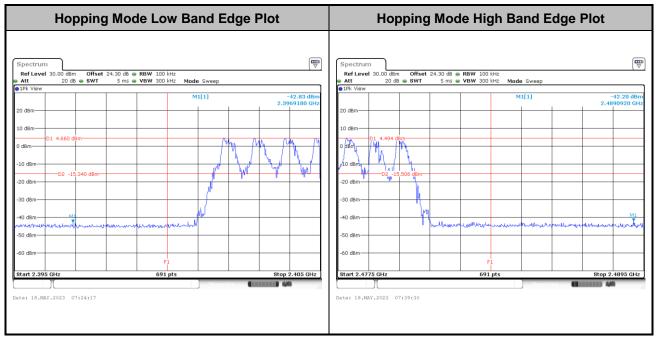
Band Edges

<1Mbps>



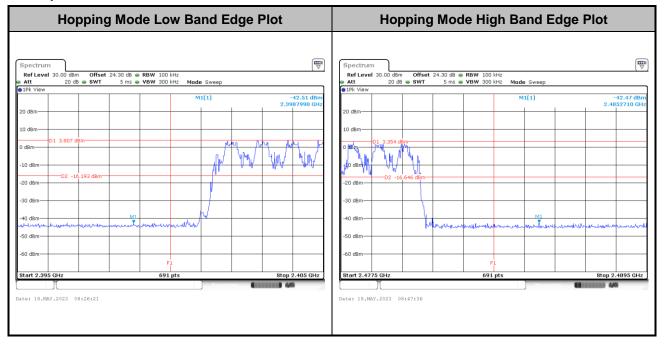
<2Mbps>

Low Band	Edge Plot on	Channel 00	High Ba	nd Edge Plot on	Channel 78
	dB = RBW 100 kHz ms = VBW 300 kHz Mode Sv M1[1]		Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT PIPk View 20 dBm	24.30 dB • RBW 100 kHz 5 ms • VBW 300 kHz Mode 5w M1[1]	•
10 dBm 01 3.451 dBm 01 3.451 dBm 01 3.451 dBm 01 3.451 dBm 02 -16.549 dBm 02 -16.549 dBm 02 -16.549 dBm 04 -10	munumunu		10 dBm 01 3.460 dBm 0 dBm 0 dBm 02 -16,540 dBm -20 dBm		
-60 dBm	691 pts	Stop 2.405 CHz	-60 dBm	691 pts	Stop 2.4895 GHz


<3Mbps>

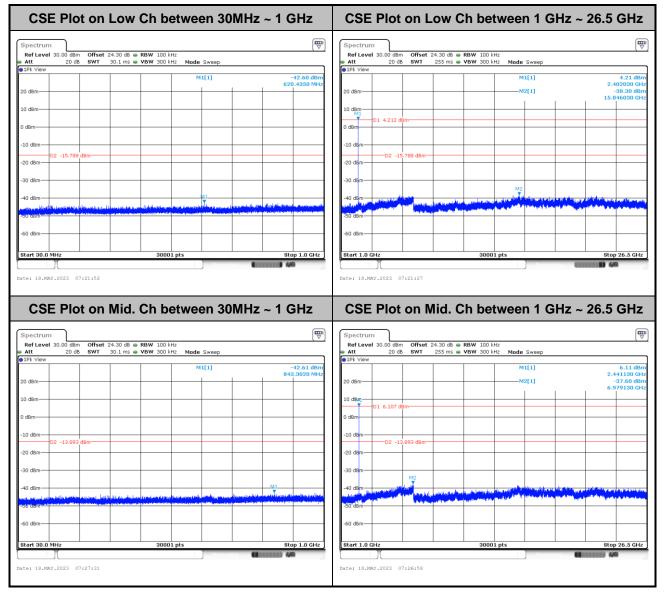
Hopping Mode Band Edges

<1Mbps>



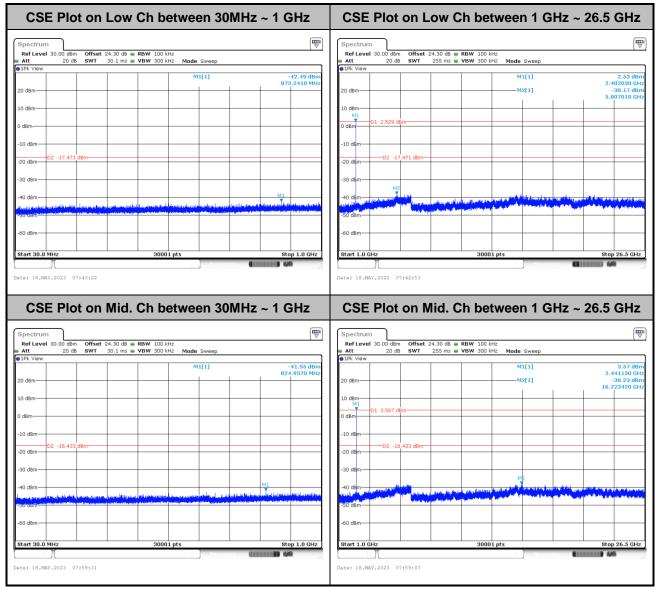
<2Mbps>

Hopping	Mode Low B	and Edge	e Plot		Hoppin	g Mode	e High B	and E	dge I	Plot	
Spectrum Offset 24. Ref Level 30.00 dBm Offset 24. Att 20 dB SWT 20 dBm 20 dBm SWT	30 dB • RBW 100 kHz 5 ms • VBW 300 kHz Mi	Dde Sweep M1[1]	Spectrum Ref Level 3 Att 1Pk View 20 dBm	30.00 dBm Offse 20 dB SWT	at 24.30 dB ● R 5 ms ● V	BW 300 kHz Mc	de Sweep M1[1]			(▼ 42.63 dBn 64180 GH	
-50 dBm	And an analysis			-20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1, 3.332 dBm	A construction of the cons	Miterolakiji Perkuvlaje		MJ ehrstnade	مهدارم مرادية	Magazera
-60 dBm	691 pts	Neasuring.	Stop 2.405 GHz	-60 dBm	i GHz .2023 08:04:43		F1 691 pts	Neasur	•	Stop 2.	4895 GHz


<3Mbps>

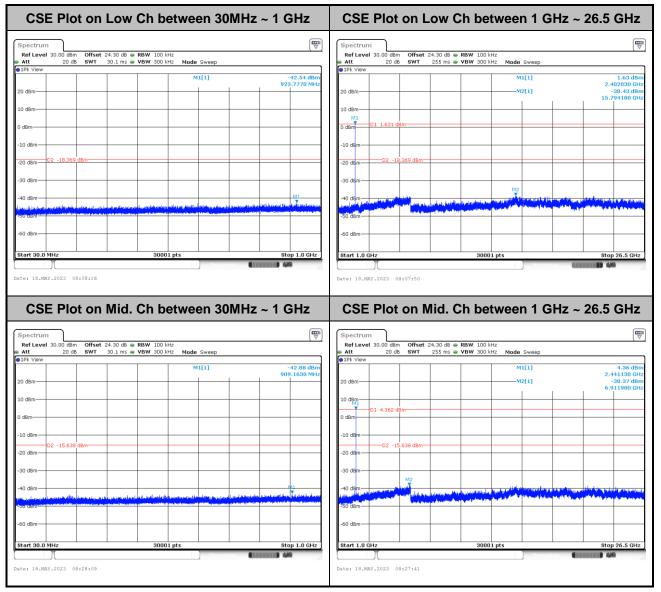
Conducted Spurious Emission

<1Mbps>



CSE Plot on I		etween Joh	112~10		USL	Plot on H		Derme		12 ~ 20.	
pectrum					Spectrum RefLevel 30.00 dBm Offset 24.30 dB • RBW 100 kHz Att 20 dB SWT 255 ms • VBW 300 kHz Mode Sweep						
	4.30 dB 👄 RBW 100 kH 30.1 ms 👄 VBW 300 kH										
LPk View					• 1Pk View						
	M1[1] -42.83 dBm 751.4460 MHz								M1[1]		4.17 dB 2.480230 Gi
) dBm					20 dBm				-M2[1]		-37.44 dB
) dBm					10 dBm						
dBm					0 dBm	D1 4.173 dBm					
0 dBm					-10 dBm						
0 dBm					-20 dBm	D2 -15.827 dBm-					
0 dBm					-30 dBm						
0 dBm			ма		-40 dBm-	M2 Y		de a constante de la constante		a ^{bill} ari _{a ser} anda ^b atanga	La b. Attender.
		data yan ya kutu da <mark>b</mark> hara ta ya ki kutu da ak	Legis II de allans parte de	an Manada ka sa di Kabar Manada ka sa para sa sa sa	-50 dBm-				And Descend Strengton		ALL REALL
0 d8m					-60 dBm						
art 30.0 MHz	30001	1 pts	Sto	p 1.0 GHz	Start 1.0 (Hz		30001 pts	Moacuring	St	op 26.5 GH
e: 18.MAY.2023 07:36:06				111		Y.2023 07:35:29					

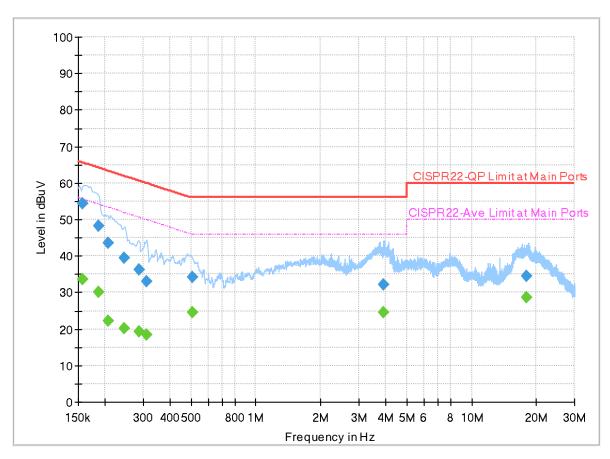
<2Mbps>



CSE Plot on H	igh Ch betweer	n 30MHz ~ 1 GHz	CSE Plot on Hi	gh Ch between 1	GHz ~ 26.5 GHz
	30 dB ● RBW 100 kHz .1 ms ● VBW 300 kHz Mode Sw			5.30 dB ● RBW 100 kHz 255 ms ● VBW 300 kHz Mode Swee	(₩ ♥
		704.1340 MHz	and a state of the		0.02.08m 2.480230.04z 38.70.04sm 6.033110.04z
-60 dBm	30001 pts	Stop 1.0 GHz	St/dsm -60 dBm -60 dBm -60 dBm Start 1.0 GHz - Date: 18.MAY.2023 08:03:25 -	30001 pts	Stop 26.5 GHz

<3Mbps>

CSE Plot on H	igh Ch bety	ween 30MH	lz ~ 1 GHz	CSE Plo	ot on Hig	gh Ch be	etween 1 (GHz ~ 2	26.5 GHz		
	30 dB 🖷 RBW 100 kHz .1 ms 🖶 VBW 300 kHz	Mode Sweep		Spectrum RefLevel 30.00 dBm Offset 24.30 dB • RBW 100 kHz • Att 20 dB SWT 255 ms • VBW 300 kHz • Provide Sweep							
20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm			-42.69 dBm 995.0370 MHz	20 dBm 10 dBm 10 dBm 10 dBm -20 dBm -20 dBm -40 dBm	-19.149 dBm		M1[1] M2[1] M2[1]		0.85 dfm 2.460230 GH 37.45 dfm 6.708730 GH		
-11 January Lange and Angel				-50 dBm							
Start 30.0 MHz	30001 pts	Measuring	Stop 1.0 GHz	Start 1.0 GHz	08:39:02	300	01 pts	eina	Stop 26.5 GHz		

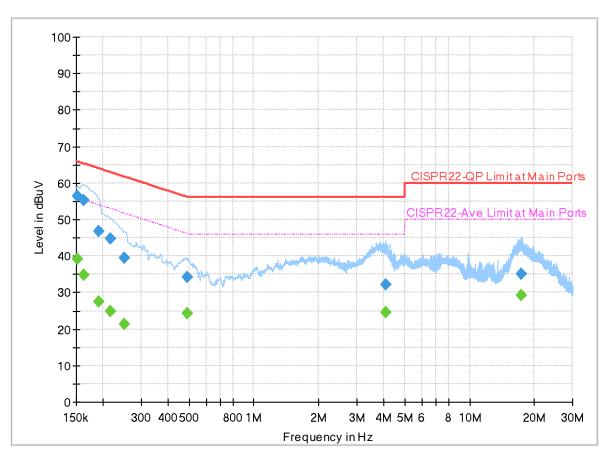


Appendix B. AC Conducted Emission Test Results

Test Engineer :	т	emperature :	20.2~23.0 ℃
	R	Relative Humidity :	65.8~72.4%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 333113 Mode 3 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750		33.77	55.63	21.86	L1	OFF	19.9
0.156750	54.24		65.63	11.39	L1	OFF	19.9
0.186000		30.06	54.21	24.15	L1	OFF	19.9
0.186000	48.12		64.21	16.09	L1	OFF	19.9
0.207240		22.29	53.32	31.03	L1	OFF	20.0
0.207240	43.50		63.32	19.82	L1	OFF	20.0
0.244500		20.21	51.94	31.73	L1	OFF	20.0
0.244500	39.60		61.94	22.34	L1	OFF	20.0
0.286260		19.43	50.63	31.20	L1	OFF	20.0
0.286260	36.28		60.63	24.35	L1	OFF	20.0
0.311730		18.40	49.92	31.52	L1	OFF	20.0
0.311730	33.15		59.92	26.77	L1	OFF	20.0
0.506130		24.45	46.00	21.55	L1	OFF	20.0
0.506130	34.27		56.00	21.73	L1	OFF	20.0
3.891750		24.44	46.00	21.56	L1	OFF	20.0
3.891750	32.10		56.00	23.90	L1	OFF	20.0
18.033090		28.68	50.00	21.32	L1	OFF	20.2
18.033090	34.40		60.00	25.60	L1	OFF	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 333113 Mode 3 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.151215		39.24	55.93	16.69	N	OFF	20.0
0.151215	56.52		65.93	9.41	Ν	OFF	20.0
0.163140		34.67	55.30	20.63	Ν	OFF	20.0
0.163140	55.38		65.30	9.92	Ν	OFF	20.0
0.190590		27.50	54.01	26.51	Ν	OFF	20.0
0.190590	46.72		64.01	17.29	Ν	OFF	20.0
0.215250		24.93	53.00	28.07	Ν	OFF	20.0
0.215250	44.63		63.00	18.37	Ν	OFF	20.0
0.250530		21.42	51.74	30.32	Ν	OFF	20.0
0.250530	39.47		61.74	22.27	Ν	OFF	20.0
0.491730		24.28	46.14	21.86	Ν	OFF	20.0
0.491730	34.16		56.14	21.98	Ν	OFF	20.0
4.076790		24.45	46.00	21.55	Ν	OFF	20.0
4.076790	32.04		56.00	23.96	Ν	OFF	20.0
17.346300		29.11	50.00	20.89	Ν	OFF	20.2
17.346300	35.19		60.00	24.81	Ν	OFF	20.2

Appendix C. Radiated Spurious Emission

Test Engineer :	Jesse Fan.Tim Lee and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.8	45.29	-28.71	74	44.71	27.34	6.73	33.49	114	133	Ρ	Н
		2389.8	20.5	-33.5	54	-	-	-	-	-	-	А	Н
	*	2402	98.8	-	-	98.14	27.41	6.75	33.5	114	133	Р	н
	*	2402	74.01	-	-	-	-	-	-	-	-	А	Н
вт													Н
CH00													Н
2402MHz		2323.965	44.74	-29.26	74	44.49	27.1	6.61	33.46	313	34	Ρ	V
		2323.965	19.95	-34.05	54	-	-	-	-	-	-	А	V
	*	2402	96.11	-	-	95.45	27.41	6.75	33.5	313	34	Ρ	V
	*	2402	71.32	-	-	-	-	-	-	-	-	А	V
													V
													V
		2389.1	45.33	-28.67	74	44.76	27.33	6.73	33.49	112	136	Ρ	Н
		2389.1	20.54	-33.46	54	-	-	-	-	-	-	А	Н
	*	2441	99.07	-	-	98.12	27.65	6.82	33.52	112	136	Ρ	Н
	*	2441	74.28	-	-	-	-	-	-	-	-	А	Н
		2486.98	46.19	-27.81	74	44.98	27.85	6.9	33.54	112	136	Р	Н
BT		2486.98	21.4	-32.6	54	-	-	-	-	-	-	А	Н
CH 39 2441MHz		2351.02	45.84	-28.16	74	45.54	27.11	6.66	33.47	345	35	Ρ	V
2441111172		2351.02	21.05	-32.95	54	-	-	-	-	-	-	А	V
	*	2441	97.02	-	-	96.07	27.65	6.82	33.52	345	35	Р	V
	*	2441	72.23	-	-	-	-	-	-	-	-	А	V
		2488.66	47.2	-26.8	74	45.98	27.85	6.91	33.54	345	35	Р	V
		2488.66	22.41	-31.59	54	-	-	-	-	-	-	А	V

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	95.39	-	-	94.22	27.82	6.89	33.54	111	155	Р	Н
	*	2480	70.6	-	-	-	-	-	-	-	-	А	Н
		2487.72	46.8	-27.2	74	45.59	27.85	6.9	33.54	111	155	Р	Н
		2487.72	22.01	-31.99	54	-	-	-	-	-	-	А	Н
DT													Н
BT CH 78													Н
2480MHz	*	2480	95.34	-	-	94.17	27.82	6.89	33.54	333	31	Р	V
240011112	*	2480	70.55	-	-	-	-	-	-	-	-	А	V
		2497.56	45.99	-28.01	74	44.73	27.89	6.92	33.55	333	31	Р	V
		2497.56	21.2	-32.8	54	-	-	-	-	-	-	А	V
													V
													V
	1. Nc	other spurious	s found.										
Remark													

2.4GHz 2400~2483.5MHz

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	40.75	-33.25	74	64.39	32.32	10.87	66.83	-	-	Р	Н
		4804	15.96	-38.04	54	-	-	-	-	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 00													Н
2402MHz		4804	41.47	-32.53	74	65.11	32.32	10.87	66.83	-	-	Р	V
		4804	16.68	-37.32	54	-	-	-	-	-	-	A	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4882	41.32	-32.68	74	64.35	32.66	11.03	66.72	-	-	P	Н
		4882	16.53	-37.47	54	-	-	-	-	-	-	А	н
		7323	45.08	-28.92	74	59.98	36.95	13.55	65.4	-	-	Р	н
		7323	20.29	-33.71	54	-	-	-	-	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
вт													Н
CH 39													Н
2441MHz		4882	41.39	-32.61	74	64.42	32.66	11.03	66.72	-	-	Р	V
		4882	16.6	-37.4	54	-	-	-	-	-	-	Α	V
		7323	45.36	-28.64	74	60.26	36.95	13.55	65.4	-	-	Р	V
		7323	20.57	-33.43	54	-	-	-	-	-	-	Α	V
													V
													V
													V
												<u> </u>	V
												<u> </u>	V
												<u> </u>	V
												<u> </u>	V
													V

Report No. : FR333113A

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4960	42.25	-31.75	74	64.69	32.98	11.19	66.61	-	-	Р	Н
		4960	17.46	-36.54	54	-	-	-	-	-	-	Α	Н
		7440	44.98	-29.02	74	60.36	36.44	13.72	65.54	-	-	Ρ	Н
		7440	20.19	-33.81	54	-	-	-	-	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
DT													Н
ВТ СН 78													Н
2480MHz		4960	43.01	-30.99	74	65.45	32.98	11.19	66.61	-	-	Р	V
24000012		4960	18.22	-35.78	54	-	-	-	-	-	-	А	V
		7440	45.47	-28.53	74	60.85	36.44	13.72	65.54	-	-	Р	V
		7440	20.68	-33.32	54	-	-	-	-	-	-	А	V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.	_				_			_	_	_
Remark	2. A	Il results are PA	SS against F	Peak and	l Average lim	it line.							
	3. TI	he emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	oor only.											

Emission above 18GHz

					2.4GHz		,						
BT	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant	Table	Į	Pol.
		(Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(110.0)
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		24248	40.46	-33.54	74	41.67	38.9	12.94	53.05	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													Н
2.4GHz													Н
ВТ		24424	40.21	-33.79	74	41.15	39.04	13.04	53.02	-	_	Р	V
SHF													V
													V
													v
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. All	results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	l as "-" m	eans no susp	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

2.4GHz BT (SHF)

Emission below 1GHz

вт	Note	Frequency	Loval	Morgin		Read		Path	Broomp	Ant	Table	Peak	Pal
ы	Note	Frequency	Level	Margin	Linit	Level	Antenna Factor	Loss	Preamp Factor	Ant Pos	Pos	Avg.	POI.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		174.53	28.42	-15.08	43.5	40.89	15.4	1.87	29.74	-	-	Ρ	Н
		307.42	29.46	-16.54	46	36.99	19.35	2.58	29.46	-	-	Ρ	Н
		499.48	34.36	-11.64	46	36.13	23.99	3.3	29.06	-	-	Ρ	Н
		839.95	35.5	-10.5	46	30.69	29.1	4.29	28.58	-	-	Ρ	Н
		888.45	36.92	-9.08	46	31.72	29.17	4.54	28.51	-	-	Ρ	Н
		901.06	36.87	-9.13	46	31.44	29.3	4.6	28.47	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT													Н
LF		30.97	33.54	-6.46	40	38.16	24.52	0.61	29.75	-	-	Р	V
		48.43	27.92	-12.08	40	41.42	15.34	0.98	29.82	-	-	Р	V
		166.77	28.41	-15.09	43.5	40.13	16.12	1.85	29.69	-	-	Р	V
		302.57	30.83	-15.17	46	38.43	19.3	2.57	29.47	-	-	Р	V
		839.95	35.68	-10.32	46	30.87	29.1	4.29	28.58	-	-	Р	V
		947.62	36.57	-9.43	46	29.17	31	4.65	28.25	-	-	Р	V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA											
		e emission pos				pected em	ission foun	d and em	ission leve	el has a	t least 60	dB mai	gin
	ag	ainst limit or er	nission is no	ise floor	only.								

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт												
CH 00	2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
2402MHz												

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

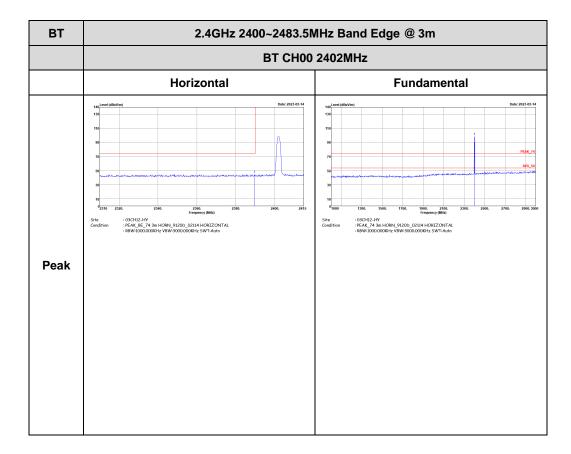
Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

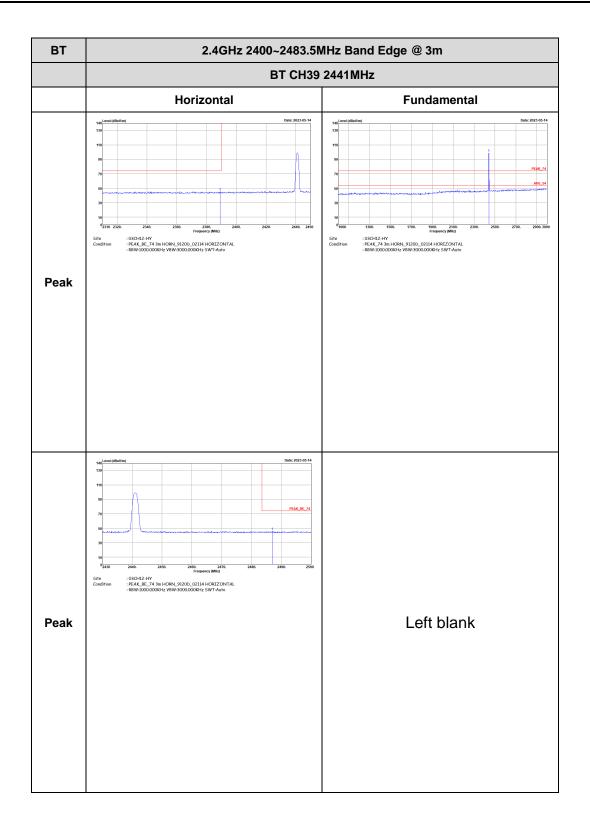
Peak measured complies with the limit line, so test result is "PASS".

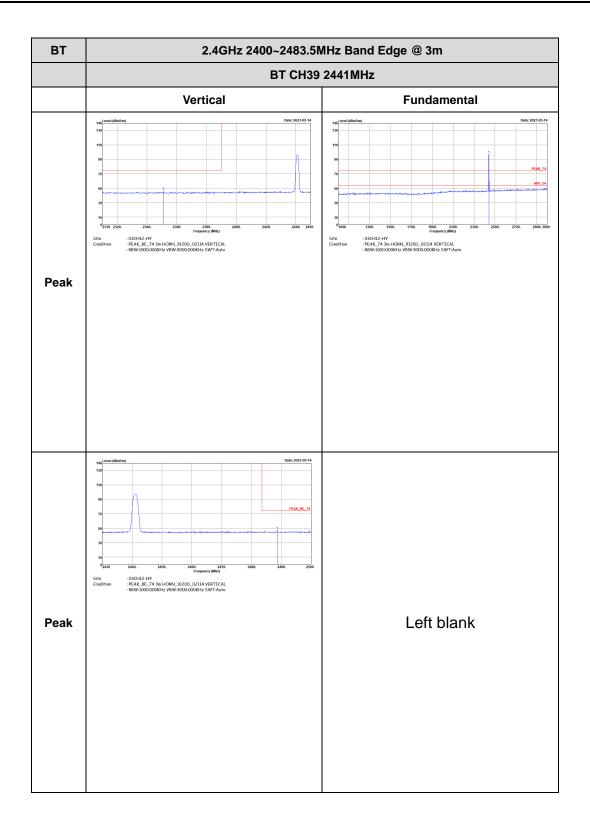


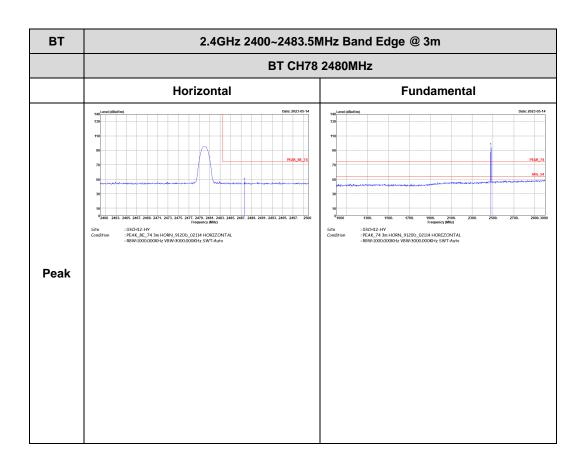
Appendix D. Radiated Spurious Emission Plots

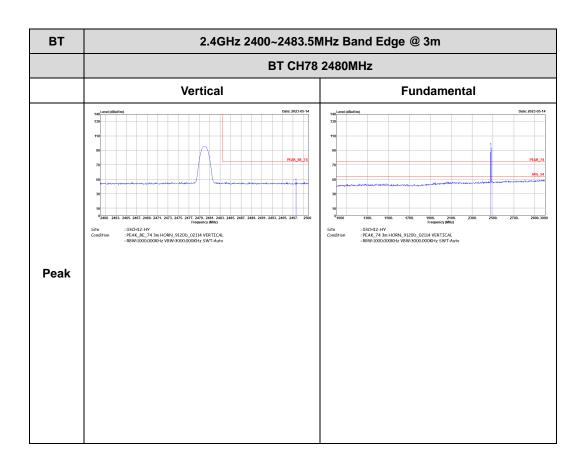

Test Engineer -		Temperature :	20~25°C
Test Engineer :	Jesse Fan,Tim Lee and Wilson Wu	Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

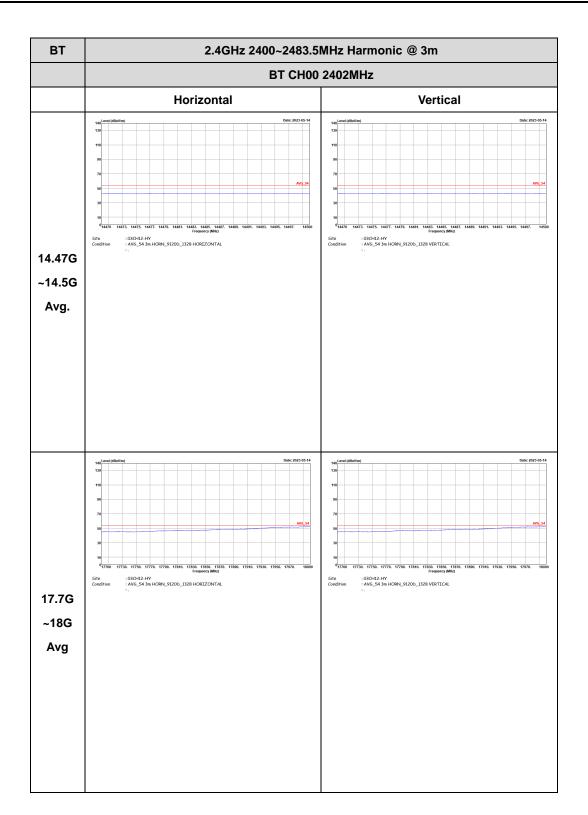

BT (Band Edge @ 3m)



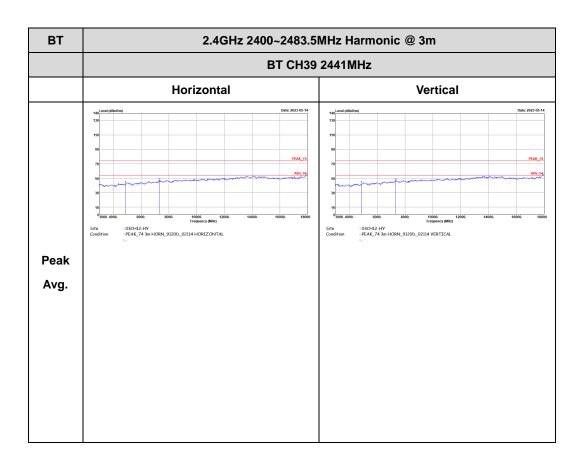


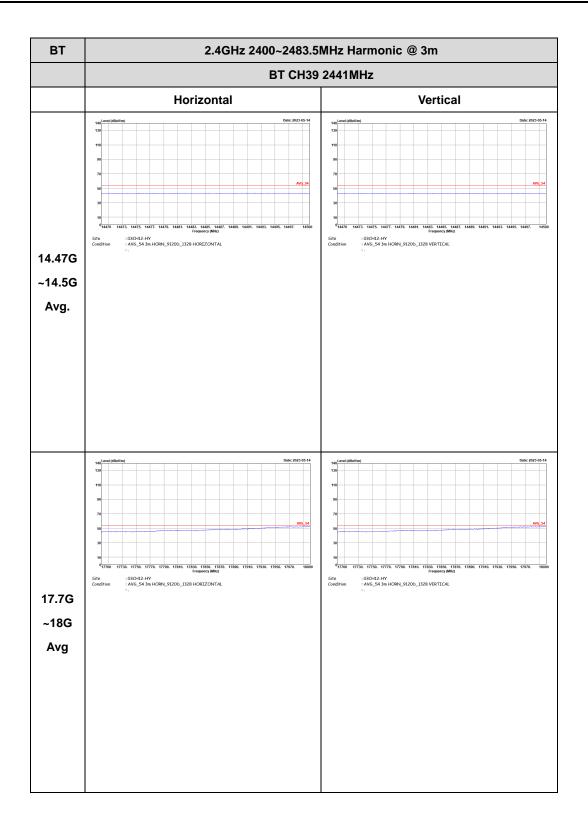


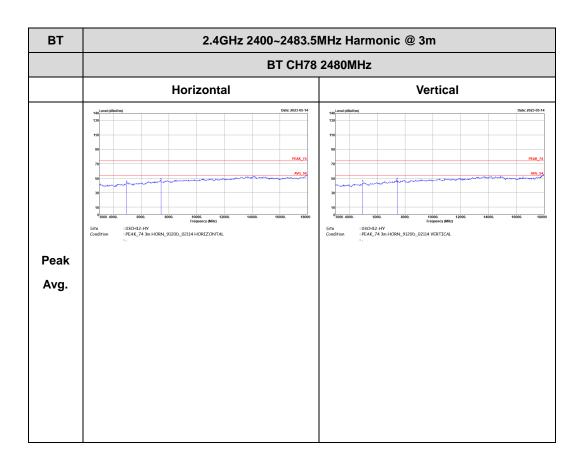


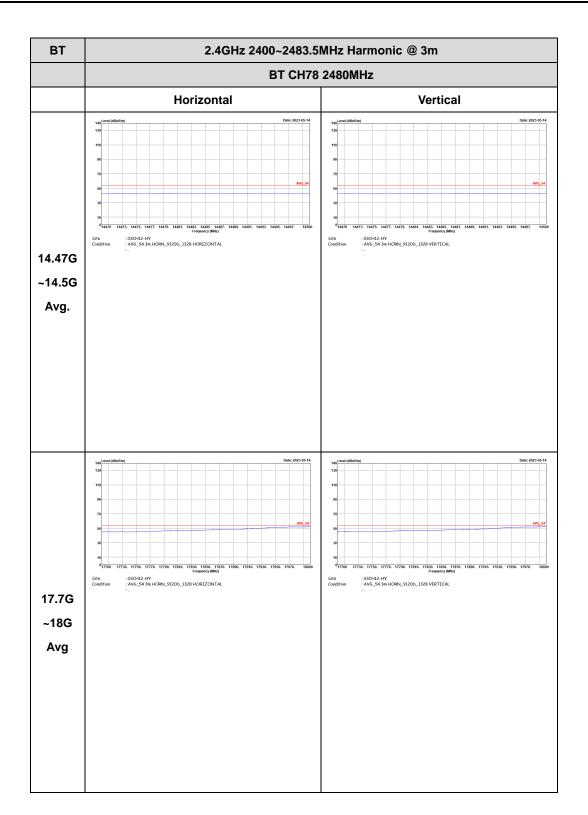


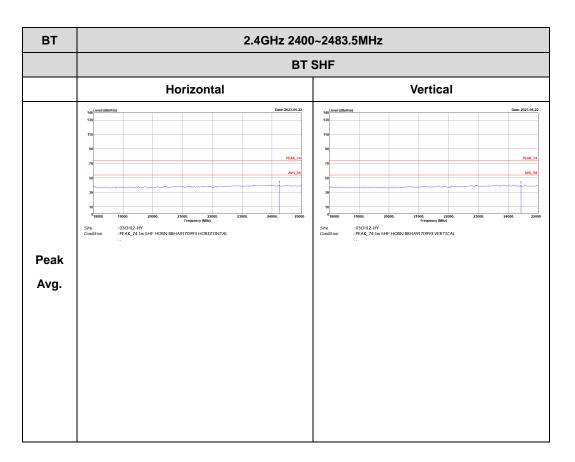
2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)

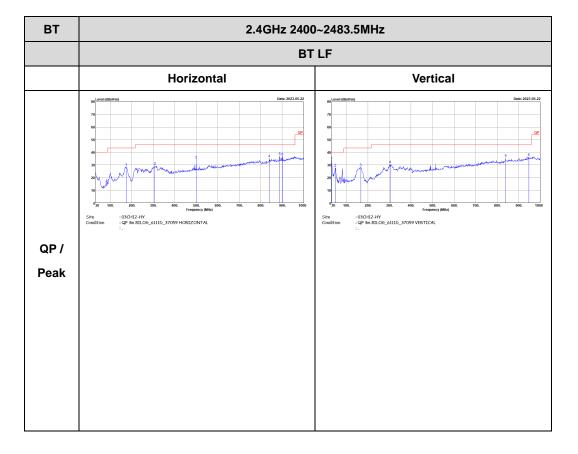








Emission above 18GHz



2.4GHz BT (SHF @ 1m)

Emission below 1GHz

Appendix E. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Char	nnel 39	on time (Count Pulses) Plot on Channel	39
Image: Spectrum Analyzer SweptSA Structure Spectrum Analyzer SweptSA Image: RL 6F 50.0 C A_ALION OFF 07/220544 Hazy14 Image: RL 6F 50.0 C Trig: Free Run Max Topic: RMS Trace: Run Image: RL Free Run Free Run Trig: Free Run C Trig: Free Run	4 S 6 Marker	Marker 1 See to C Scheint Allon OF 07/26/33 AM May 14, 2023 F Marker 1 64,7000 ms PNO: Fast F Trig: Free Run #Avg Type: RMS Trace ID 24 S of F	Peak Search
10 dB/div Ref 106.99 dB/uV 88.48 dB		In delidiv Ref 106.99 dBµV Mkr1 64.70 ms 10 delidiv Ref 106.99 dBµV 88.52 dBµV	Next Peak
	Normal		Next Pk Right
	Delta	80 70	Next Pk Left
20 00000000000000000000000000000000000	Fixed▶		Marker Delta
Center 2.44 1000000 GHz Span 0 Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001		20 million har a hartakan wang baryo kan kanin ang kanin kanin ang kanin	Mkr→CF
MMR MODE THC SCI. X Y FUnction Function<	∽ Properties►		Mkr→RefLvi
	More 1 of 2	Center 2.441000000 GHz Span 0 Hz	More 1 of 2
11	•	Constraint and the constraint of the constr	

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$