

Global United Technology Services Co., Ltd.

Report No.: GTSL2023080104F06

TEST REPORT

Applicant: Acer Incorporated

Address of Applicant: 8F, 88, Sec.1 Xintai 5th Rd. 221 Xizhi, New Taipei City,

Taiwan

Manufacturer: Acer Incorporated

Address of 8F, 88, Sec. 1 Xintai 5th Rd. 221 Xizhi, New Taipei City,

Manufacturer:

Factory: Guangxi Century Innovation Display Electronics Co.,Ltd

Address of Factory: No.3 standard workshop, Zhongguancun Electronic Industry

Park, No. 67 Lianchou Road, Nanning City, China

Equipment Under Test (EUT)

Product Name: Rollable smart device

Model No .: 32S1U Pro, 32S1U_PRO, V32D4U, 32S1U

Trade Mark: acer, AOPEN

FCC ID: HLZ-32S1UPRO

FCC CFR Title 47 Part 15 Subpart E Section 15.407 **Applicable standards:**

Date of sample receipt: July 20, 2023

Date of Test: July 20~31, 2023

Date of report issued: August 2, 2023

PASS * Test Result:

Robinson Luo **Laboratory Manager**

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description		
00	August 2, 2023	Original		

Prepared By:	Project Engineer	Date:	August 2, 2023
Check By:	Reviewer	Date:	August 2, 2023

GTS

Report No.: GTSL2023080104F06

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
Ĭ		
4	4 TEST SUMMARY	4
	4.1 MEASUREMENT UNCERTAINTY	4
5		
5		
	5.1 GENERAL DESCRIPTION OF EUT	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 Test Facility	
	5.5 TEST LOCATION	7
	5.6 ADDITIONAL INSTRUCTIONS	7
6	6 TEST INSTRUMENTS LIST	8
7		
	7.1 ANTENNA REQUIREMENT	
	7.2 CONDUCTED EMISSIONS	
	7.3 MAXIMUM CONDUCTED OUTPUT POWER	
	7.5 POWER SPECTRAL DENSITY	
	7.6 BAND EDGE	
	7.6.1 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Radiated Emission Method	
8	8 TEST SETUP PHOTO	31
9	9 FUT CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Maximum Conducted Output Power	FCC part 15.407(a)(3)	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e)	Pass
Power Spectral Density	FCC part 15.407(a)(3)	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Frequency Stability	FCC part 15.407(g)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz 3.44dB		(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Rollable smart device		
Model No.:	32S1U Pro, 32S1U_PRO, V32D4U, 32S1U		
Test Model No.:	32S1U Pro		
	s are identical in the same PCB layout, interior structure and electrical re appearance color and model name for commercial purpose.		
Test sample(s) ID:	GTSL2023080104-1		
Sample(s) Status:	Engineer sample		
S/N:	N/A		
Operation Frequency:	802.11a/802.11n/802.11ac/802.11ax @20M: 5745MHz ~ 5825MHz		
	802.11n/ 802.11ac/802.11ax @40M: 5755MHz ~ 5795MHz		
	802.11ac/802.11ax @80M: 5775MHz		
Channel numbers:	802.11a/802.11n/802.11ac/802.11ax @20M: 5		
	802.11n/ 802.11ac/802.11ax @40M: 2		
	802.11ac/802.11ax @80M: 1		
Support bandwidth:	20M, 40M, 80M		
Modulation technology:	OFDM(A)		
	MIMO: 802.11n/ac/ax		
	SISO: 802.11a		
Antenna Type:	IPEX		
Antenna gain:	3.84dBi		
Power supply:	AC adapter 1		
	Model No.: DA-120B19		
	INPUT: AC 100-240V, 50/60Hz, 2.0A Max		
	OUTPUT: DC 19.0V, 6.32A, 120.08W		
	AC adapter 2		
	Model No.: AY120EA-ZF190632M		
	INPUT: AC 100-240V, 50/60Hz, 2.0A Max		
	OUTPUT: DC 19.0V, 6.32A, 120.08W		
	Or DC 14.8V 10000mAh Li-ion polymer battery		

Remark:

- 1. Both two adapters were tested and found to compliance with the relevant requirement, only the worst data (adapter 1) report.
- 2. Antenna gain information provided by the customer
- 3. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165 5825MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Took obound	Frequency (MHz)				
Test channel	802.11 a/n/ac/ax @20M	802.11 n/ac/ax @40M	802.11ac/ax @80M		
Lowest channel	5745	5755			
Middle channel	5785		5775		
Highest channel	5825	5795			

5.2 Test mode

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	Mode	Data rate
802.11a	6Mbps	802.11n/ac(HT40)	13Mbps
802.11n/ac(HT20)	6.5Mbps	802.11ac(HT80)	29.3Mbps
802.11ax(HEW20)	8.6Mbps	802.11ax(HEW80)	36Mbps
802.11ax(HEW40)	17.2Mbps		

5.3 **Description of Support Units**

None

5.4 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.5 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

Test Software	Special test software provided by manufacturer For 802.11ax, special test command used
Power level setup	Default

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024		
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024		
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024		
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024		
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024		
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023		
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024		
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024		
15	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023		
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023		
17	FSV-Signal Analyzer (10Hz- 40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024		
18	Amplifier		LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024		
19	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20,2022	Dec.19,2023		
20	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024		

GTS

Report No.: GTSL2023080104F06

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024		
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024		
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024		
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024		
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024		
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024		
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024		

RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024

Ger	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024	

7 Test results and Measurement Data

7.1 Antenna requirement

15.203 requirement:

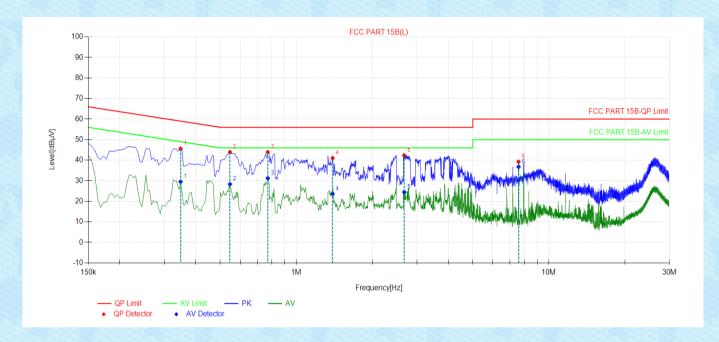
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna type is IPEX, reference to the appendix II for details

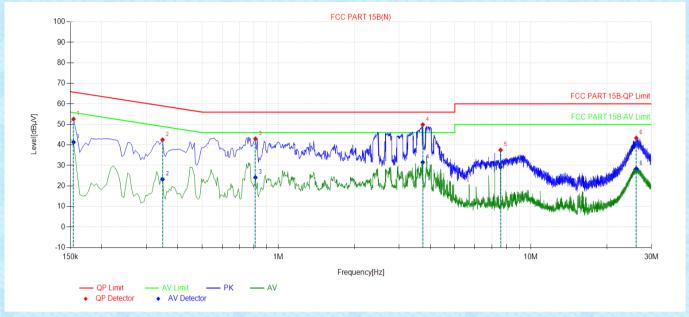
7.2 Conducted Emissions

T I D	500 B 445 0 D 45 005				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	Frequency range (MHz)		(dBuV)		
	0.15-0.5	Quasi-peak 66 to 56*	Aver	rage o 46*	
	0.15-0.5	56	4	The second secon	
	5-30	60	5		
	* Decreases with the logarithm				
Test setup:	BELT TYPICAL SYACING BUT BUT O B m DISTANCE GROUND PLANE				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hur	mid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				


Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Pre-scan all test modes, found worst case at ANT 1 802.11ac(VHT80) 5775MHz, and so only show the test result of it


Line:

Final	Final Data List								
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dΒμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	Туре
1	0.348	45.55	59.01	13.46	29.51	49.01	19.50	PASS	E.
2	0.546	43.93	56.00	12.07	28.35	46.00	17.65	PASS	L
3	0.771	43.93	56.00	12.07	31.22	46.00	14.78	PASS	L
4	1.392	40.99	56.00	15.01	23.64	46.00	22.36	PASS	L
5	2.6745	42.34	56.00	13.66	24.49	46.00	21.51	PASS	L
6	7.5885	39.23	60.00	20.77	36.79	50.00	13.21	PASS	L

Neutral:

Final	Final Data List								
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	Туре
1	0.1545	52.61	65.75	13.14	41.32	55.75	14.43	PASS	N
2	0.348	42.52	59.01	16.49	23.27	49.01	25.74	PASS	N
3	0.8115	43.01	56.00	12.99	24.13	46.00	21.87	PASS	N
4	3.732	49.90	56.00	6.10	31.54	46.00	14.46	PASS	N
5	7.5885	37.52	60.00	22.48	29.26	50.00	20.74	PASS	N
6	26.16	43.34	60.00	16.66	28.48	50.00	21.52	PASS	N

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Maximum Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)		
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Limit:	30dBm		
Duty Cycle set up:	RBW=VBW=8MHz		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 Channel Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)			
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)		
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Limit:	30dBm/500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.6 Band edge

7.6.1 Radiated Emission Method

7.6.1 Radiated Emission Met	nou				
Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	9kHz to 40GHz	, only worse cas	se is reporte	d	
Test site:	Measurement D	Distance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above 4CII-	Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	RMS
Limit:	more above or at 25 MHz above below the band MHz above or be	below the band re or below the be edge increasing	edge incread band edge, g linearly to edge, and fr	asing linearl and from 2 a level of 1 om 5 MHz	Hz at 75 MHz or ly to 10 dBm/MHz 5 MHz above or 5.6 dBm/MHz at 5 above or below the Iz at the band
Test setup:	Tum Table	< 3m :	Test Antenna-	eamplifier	Илипининининини
Test Procedure:	the ground a determine the 2. The EUT was antenna, white tower. 3. The antennate ground to destrict horizontal and measuremer. 4. For each sus and then the and the rotathe maximum. 5. The test-recest Specified Base. 6. If the emission the limit specified Base of the EUT was have 10dB may peak or aver sheet.	t a 3 meter came e position of the set 3 meters a che was mounted termine the maximum that	ber. The take highest race way from the don the top from one nations of the taken of taken of the taken of the taken of taken of the taken of taken	ole was rotadiation. The interference of a variable of the field of the field one antennatives arranged that from 1 in the field of the	r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find unction and 10dB lower than and the peak values sions that did not using peak, quasi-

	Report No.: GTSL2023080104F06
	And found the X axis positioning which it is worse case, only the test
	worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. All antennas and modulation type were tested and passed, only worst condition(ANT 1) report
- 5. According to KDB 789033 D02v02r01 section G) 1) d), for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

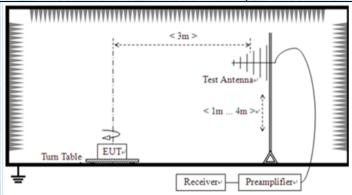
E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Measurement data:

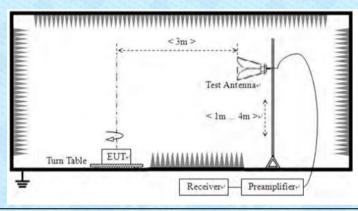
			IEE	E 802.11ac	HT20			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
5650	53.59	34.16	8.41	53.44	42.72	68.2	-25.48	Horizontal
5700	56.15	34.28	8.45	53.42	45.46	105.2	-59.74	Horizontal
5720	57.84	34.33	8.47	53.41	47.23	110.8	-63.57	Horizontal
5725	54.78	34.34	8.47	53.41	44.18	122.2	-78.02	Horizontal
5850	55.78	34.64	8.57	53.36	45.63	122.2	-76.57	Horizontal
5855	54.14	34.65	8.57	53.36	44	110.8	-66.8	Horizontal
5875	55.16	34.7	8.59	53.35	45.1	105.2	-60.1	Horizontal
5925	55.09	34.82	8.63	53.33	45.21	68.2	-22.99	Horizontal
5650	53.32	34.16	8.41	53.44	42.45	68.2	-25.75	Vertical
5700	55.62	34.28	8.45	53.42	44.93	105.2	-60.27	Vertical
5720	56.58	34.33	8.47	53.41	45.97	110.8	-64.83	Vertical
5725	56.88	34.34	8.47	53.41	46.28	122.2	-75.92	Vertical
5850	53.54	34.64	8.57	53.36	43.39	122.2	-78.81	Vertical
5855	54.68	34.65	8.57	53.36	44.54	110.8	-66.26	Vertical
5875	54.79	34.7	8.59	53.35	44.73	105.2	-60.47	Vertical
5925	56.58	34.82	8.63	53.33	46.7	68.2	-21.5	Vertical

			IEE	E 802.11ac	HT40			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
5650	57.56	34.16	8.41	53.44	46.69	68.2	-21.51	Horizontal
5700	57.24	34.28	8.45	53.42	46.55	105.2	-58.65	Horizontal
5720	53.18	34.33	8.47	53.41	42.57	110.8	-68.23	Horizontal
5725	53.02	34.34	8.47	53.41	42.42	122.2	-79.78	Horizontal
5850	53.27	34.64	8.57	53.36	43.12	122.2	-79.08	Horizontal
5855	54.54	34.65	8.57	53.36	44.4	110.8	-66.4	Horizontal
5875	56.71	34.7	8.59	53.35	46.65	105.2	-58.55	Horizontal
5925	55.77	34.82	8.63	53.33	45.89	68.2	-22.31	Horizontal
5650	57.92	34.16	8.41	53.44	47.05	68.2	-21.15	Vertical
5700	54.84	34.28	8.45	53.42	44.15	105.2	-61.05	Vertical
5720	54.66	34.33	8.47	53.41	44.05	110.8	-66.75	Vertical
5725	58.24	34.34	8.47	53.41	47.64	122.2	-74.56	Vertical
5850	56.42	34.64	8.57	53.36	46.27	122.2	-75.93	Vertical
5855	56.16	34.65	8.57	53.36	46.02	110.8	-64.78	Vertical
5875	54.44	34.7	8.59	53.35	44.38	105.2	-60.82	Vertical
5925	53.38	34.82	8.63	53.33	43.5	68.2	-24.7	Vertical

			IEE	E 802.11ac	HT80			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
5650	56.32	34.16	8.41	53.44	45.45	68.2	-22.75	Horizontal
5700	54.56	34.28	8.45	53.42	43.87	105.2	-61.33	Horizontal
5720	54.34	34.33	8.47	53.41	43.73	110.8	-67.07	Horizontal
5725	58.78	34.34	8.47	53.41	48.18	122.2	-74.02	Horizontal
5850	58.68	34.64	8.57	53.36	48.53	122.2	-73.67	Horizontal
5855	55.29	34.65	8.57	53.36	45.15	110.8	-65.65	Horizontal
5875	55.78	34.7	8.59	53.35	45.72	105.2	-59.48	Horizontal
5925	55.72	34.82	8.63	53.33	45.84	68.2	-22.36	Horizontal
5650	55.37	34.16	8.41	53.44	44.5	68.2	-23.7	Vertical
5700	58.5	34.28	8.45	53.42	47.81	105.2	-57.39	Vertical
5720	55.31	34.33	8.47	53.41	44.7	110.8	-66.1	Vertical
5725	57.82	34.34	8.47	53.41	47.22	122.2	-74.98	Vertical
5850	56.48	34.64	8.57	53.36	46.33	122.2	-75.87	Vertical
5855	57.45	34.65	8.57	53.36	47.31	110.8	-63.49	Vertical
5875	58.62	34.7	8.59	53.35	48.56	105.2	-56.64	Vertical
5925	56.87	34.82	8.63	53.33	46.99	68.2	-21.21	Vertical



7.7 Spurious Emission


7.7.1 Radiated Emission Method

7.7.1 Nadiated Lilission Method										
FCC Part15 C S	Section 15.209, F	Part 15E Se	ection 15.40	07(b)(4)						
ANSI C63.10:20	013									
9kHz to 40GHz										
Measurement D	istance: 3m									
Frequency	Detector	RBW	VBW	Value						
9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value						
150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value						
30MHz-1GHz	Quasi-peak	300KHz	Quasi-peak Value							
Above 1CH-	Peak	1MHz	3MHz	Peak Value						
Above 1GHZ	AV	1MHz	3MHz	Average Value						
Eroguaney (MHz)	Field strongth (microy	olts/motor)	Monguromo	ant distance (motors)						
	•	oits/meter)	Measureme	300						
0.490-1.705	24000/F(kHz)			30						
1.705-30.0	30			30						
30-88				3						
				3						
				3						
measurements the frequency MHz. Radiated	s employing a 0 bands 9-90 kH d emission limit	CISPR quaz, 110-490 s in these	asi-peak d 0 kHz and three ban	etector except for above 1000						
For radiated e	missions from 9	9kHz to 30)MHz							
Test Antenna Receivered For radiated emissions from 30MHz to1GHz										
	FCC Part15 C S ANSI C63.10:20 9kHz to 40GHz Measurement D Frequency 9kHz-150KHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Note: For Duty cycle < 98%, a Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 The emission measurements the frequency MHz. Radiated measurements For radiated e	FCC Part15 C Section 15.209, R ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector 9kHz-150KHz Quasi-peak 150kHz- 30MHz 30MHz-1GHz Quasi-peak Above 1GHz AV Note: For Duty cycle ≥ 98%, average detector Frequency (MHz) Field strength (microv 0.009-0.490 2400/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in measurements employing a 0the frequency bands 9-90 kH MHz. Radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and for radiated emissions from second control of the fired templooping and sec	FCC Part15 C Section 15.209, Part 15E Section 15.2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector RBW 9kHz-150KHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Note: For Duty cycle ≥ 98%, average detector set as below 1500 2400/F(kHz) 0.009-0.490 2400/F(kHz) 0.009-0.490 2400/F(kHz) 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 The emission limits shown in the above measurements employing a CISPR quather frequency bands 9-90 kHz, 110-490 MHz. Radiated emission limits in these measurements employing an average of the frequency bands 9-90 kHz, 110-490 MHz. Radiated emissions from 9kHz to 300 For radiated emissions from 9kHz to 300	FCC Part15 C Section 15.209, Part 15E Section 15.40 ANSI C63.10:2013 9kHz to 40GHz Measurement Distance: 3m Frequency Detector RBW VBW 9kHz-150KHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz AV 1MHz 3MHz Note: For Duty cycle ≥ 98%, average detector set as cycle < 98%, average detector set as below: VBW ≥ Frequency (MHz) Field strength (microvolts/meter) Measurement (0.099-0.490 2400/F(kHz) (0.490-1.705 24000/F(kHz) (

For radiated emissions above 1GHz

Test Procedure:

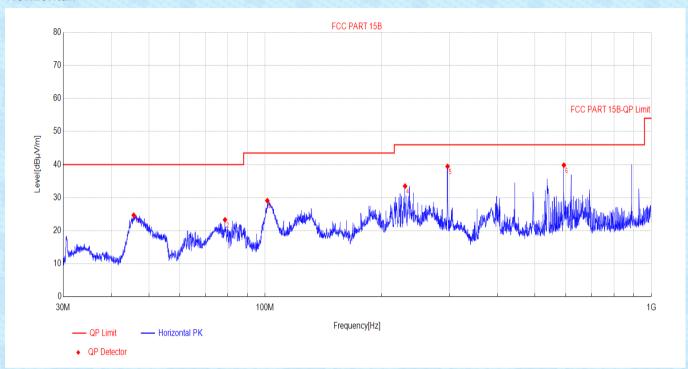
- 1. The EUT was placed on the top of a rotating table (0.1m for below 1GHz and above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
- 7. The radiation measurements are performed in X, Y, Z axis positioning.

				Report N	lo.: GTSL2023	080104F06		
		And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.						
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	ection 5.2 fo	r details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass	Pass						

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

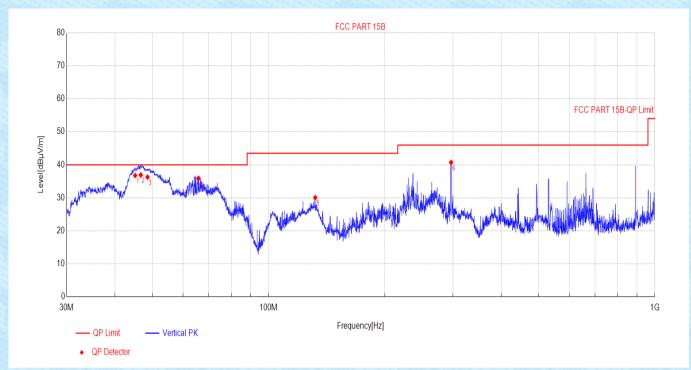
Measurement Data:


9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Pre-scan all test modes, found worst case at 802.11ac(VHT80) 5775MHz, and so only show the test result of it **Horizontal:**



Final	Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdic t
1	45.69	-16.40	24.69	40.00	15.31	200	347	Horizontal	PASS
2	78.7388	-20.46	23.29	40.00	16.71	200	295	Horizontal	PASS
3	101.346	-18.86	29.08	43.50	14.42	200	347	Horizontal	PASS
4	230.384	-16.37	33.48	46.00	12.52	100	18	Horizontal	PASS
5	296.793	-14.39	39.45	46.00	6.55	100	135	Horizontal	PASS
6	593.647	-8.18	39.82	46.00	6.18	100	176	Horizontal	PASS

GTS

Report No.: GTSL2023080104F06

Vertical:

Final	Data List								
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity	Verdic t
1	45.1328	-16.50	36.76	40.00	3.24	100	146	Vertical	PASS
2	46.6612	-16.21	36.92	40.00	3.08	100	71	Vertical	PASS
3	48.5808	-15.85	36.29	40.00	3.71	100	117	Vertical	PASS
4	65.8478	-18.29	35.89	40.00	4.11	100	193	Vertical	PASS
5	132.055	-20.05	30.05	43.50	13.45	100	53	Vertical	PASS
6	296.793	-14.39	40.72	46.00	5.28	100	210	Vertical	PASS

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1GHz:

Report No.: GTSL2023080104F06

	802.11	1ac(HT20)				Tes	t Frequency: 5	5745MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
11490	53.88	39.2	12.47	53.	35	52.2	68.2	-16	Horizontal
17235	52.08	39.81	15.56	51.	68	55.77	68.2	-12.43	Horizontal
11490	53.45	39.2	12.47	53.	35	51.77	68.2	-16.43	Vertical
17235	54.65	39.81	15.56	51.	68	58.34	68.2	-9.86	Vertical
11490	47.27	39.2	12.47	53.	35	45.59	54	-8.41	Horizontal
17235	44.87	39.81	15.56	51.	68	48.56	54	-5.44	Horizontal
11490	47.34	39.2	12.47	53.	35	45.66	54	-8.34	Vertical
17235	47.32	39.81	15.56	51.	68	51.01	54	-2.99	Vertical

	802.11	1ac(HT20)				Tes	t Frequency: 5	5785MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fac	amp ctor B)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
11570	53.6	39.53	12.51	53.	37	52.27	68.2	-15.93	Horizontal
17355	52.41	40.12	15.61	51.	62	56.52	68.2	-11.68	Horizontal
11570	55.04	39.53	12.51	53.	37	53.71	68.2	-14.49	Vertical
17355	52.48	40.12	15.61	51.	62	56.59	68.2	-11.61	Vertical
11570	47.91	39.53	12.51	53.	37	46.58	54	-7.42	Horizontal
17355	47.3	40.12	15.61	51.	62	51.41	54	-2.59	Horizontal
11570	45.9	39.53	12.51	53.	37	44.57	54	-9.43	Vertical
17355	44.9	40.12	15.61	51.	62	49.01	54	-4.99	Vertical

GTS

Report No.: GTSL2023080104F06

	802.11	1ac(HT20)				Tes	Frequency: 5	825MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
11650	57.88	39.56	12.55	53	3.4	56.59	68.2	-11.61	Horizontal
17475	53.4	40.44	15.66	51.	56	57.94	68.2	-10.26	Horizontal
11650	52.76	39.56	12.55	53	3.4	51.47	68.2	-16.73	Vertical
17475	56.61	40.44	15.66	51.	56	61.15	68.2	-7.05	Vertical
11650	47.46	39.56	12.55	53	3.4	46.17	54	-7.83	Horizontal
17475	44.82	40.44	15.66	51.	56	49.36	54	-4.64	Horizontal
11650	44.06	39.56	12.55	53	3.4	42.77	54	-11.23	Vertical
17475	44.14	40.44	15.66	51.	56	48.68	54	-5.32	Vertical

	802.1	1ac(HT40)			Tes	t Frequency: 5	5755MHz	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
11510	52.34	39.5	12.48	53.35	50.97	68.2	-17.23	Horizontal
17265	56.21	39.89	15.58	51.67	60.01	68.2	-8.19	Horizontal
11510	57.98	39.5	12.48	53.35	56.61	68.2	-11.59	Vertical
17265	55.92	39.89	15.58	51.67	59.72	68.2	-8.48	Vertical
11510	47.44	39.5	12.48	53.35	46.07	54	-7.93	Horizontal
17265	44.69	39.89	15.58	51.67	48.49	54	-5.51	Horizontal
11510	47.33	39.5	12.48	53.35	45.96	54	-8.04	Vertical
17265	45.85	39.89	15.58	51.67	49.65	54	-4.35	Vertical

	802.11	1ac(HT40)				Tes	Frequency: 5	Limit		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Limit		
11590	57.46	39.54	12.52	53.	38	56.14	68.2	-12.06	Horizontal	
17385	54.94	40.2	15.62	51.	61	59.15	68.2	-9.05	Horizontal	
11590	56.54	39.54	12.52	53.	38	55.22	68.2	-12.98	Vertical	
17385	57.85	40.2	15.62	51.	61	62.06	68.2	-6.14	Vertical	
11590	46.5	39.54	12.52	53.	38	45.18	54	-8.82	Horizontal	
17385	46.1	40.2	15.62	51.	61	50.31	54	-3.69	Horizontal	
11590	43.92	39.54	12.52	53.	38	42.6	54	-11.4	Vertical	
17385	45.46	40.2	15.62	51.	61	49.67	54	-4.33	Vertical	

802.11ac(HT80)					Test Frequency: 5775MHz				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
11550	55.1	39.52	12.5	53.	.37	53.75	68.2	-14.45	Horizontal
17325	56.04	40.05	15.6	51.	64	60.05	68.2	-8.15	Horizontal
11550	52.69	39.52	12.5	53.	37	51.34	68.2	-16.86	Vertical
17325	53.86	40.05	15.6	51.	64	57.87	68.2	-10.33	Vertical
11550	43.28	39.52	12.5	53.	37	41.93	54	-12.07	Horizontal
17325	47.43	40.05	15.6	51.	64	51.44	54	-2.56	Horizontal
11550	47.84	39.52	12.5	53.	37	46.49	54	-7.51	Vertical
17325	43.15	40.05	15.6	51.	64	47.16	54	-6.84	Vertical

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. Both 2 antennas and all modulation type were tested and compliance, only worst condition(ANT 1) report.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)						
Test Method:	ANSI C63.10:2013, FCC Part 2.1055						
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified						
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.						
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector					
Test Instruments:	Refer to section 6 for details						
Test mode:	: Refer to section 5.2 for details						
Test results:	Pass						

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----END-----