

TEST REPORT

Product Name : Rugged Tablet Computer

Model Number: TB170

FCC ID : HLETB170BTNL

Prepared for : Unitech Electronics Co., Ltd.

Address : 5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist.,

New Taipei City, Taiwan

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2205200174W00302R

Date(s) of Tests : December 25, 2020 to February 5, 2021

Date of issue : July 7, 2022

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	3
2 EUT TECHNICAL DESCRIPTION	4
3 SUMMARY OF TEST RESULT	5
4 TEST METHODOLOGY	6
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS	6
5 FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	
6 TEST SYSTEM UNCERTAINTY	9
7 SETUP OF EQUIPMENT UNDER TEST	10
7.1 RADIO FREQUENCY TEST SETUP 1	
8 TEST REQUIREMENTS	14
8.1 DTS 6DB BANDWIDTH	
8.7 ANTENNA APPLICATION	52

1 TEST RESULT CERTIFICATION

Applicant : Unitech Electronics Co., Ltd.

Address: 5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist., New Taipei City, Taiwan

Manufacturer : Unitech Electronics Co., Ltd.

Address: 5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist., New Taipei City, Taiwan

EUT : Rugged Tablet Computer

Model Name : TB170

Trademark : unitech

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2 , Subpart J FCC 47 CFR Part 15, Subpart C	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	December 25, 2020 to February 5, 2021
Prepared by	: K	Una yu
		Una Yu/Editor
Reviewer	:	Tue Wa SHENZHEN,
	_	Joe Xia/Supervisor
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Approved & Authorized Signe	r: _	
		Lisa Wang/Manager ESTING

2 EUT TECHNICAL DESCRIPTION

Product	Rugged Tablet Computer	
Model Number	TB170	
Device Type	Bluetooth with BLE mode	
Data Rate	1Mbps for GFSK modulation	
Modulation	GFSK	
Operating Frequency Range	2402-2480MHz	
Number of Channels	40 Channels for Bluetooth DTS;	
Transmit Power Max 2.35 dBm		
Antenna Type	PIFA Antenna	
Antenna Gain	3.1dBi	
Power supply	Battery: DC 7.6V internal rechargeable li-ion polymer battery Model: IP575399-2S Rating: DC 7.6V, 4800mAh, 36.5Wh Adapter 1: Model: ADP-65JH HB INPUT: 100-240V~1.5A 50-60Hz OUTPUT: DC 19V, 3.42A Adapter 2: Model: A18-065N3A INPUT: 100-240V~1.7A 50-60Hz OUTPUT: DC 19V, 3.42A, 65W	
Temperature Range	-20°C ~ +60°C	

Note: for more details, please refer to the user's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(2)	DTS (6dB) Bandwidth	PASS	
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	
15.247(e)	Maximum Power Spectral Density Level	PASS	
15.247(d)	Unwanted Emission Into Non-Restricted	PASS	
	Frequency Bands		
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS	
15.209	Bands (conducted)		
15.247(d)	Radiated Spurious Emission	PASS	
15.209			
15.207	Conducted Emission Test	PASS	
15.247(b)	Antenna Application	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits. NOTE3: This report only add adapter2 information and update model name, trademark, applicant and manufacturer information, all test data refer to report No.ES201225029W02.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: HLETB170BTNL filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 17, 2020	1 Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J10100000070	May 17, 2020	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	659	Sep 22, 2019	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	May 17, 2020	2 Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK2019051801	May 17, 2020	1 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	July 14, 2019	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 17, 2020	1 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1198	May 17, 2020	2 Year
Bilog Antenna	Schwarzbeck	VULB9163	660	July 16, 2019	2 Year
Cable	H+B	NmSm-05-C15052	N/A	May 17, 2020	1 Year
Cable	H+B	NmSm-2-C15201	N/A	May 17, 2020	1 Year
Cable	H+B	NmNm-7-C15702	N/A	May 17, 2020	1 Year
Cable	H+B	SAC-40G-1	414	May 17, 2020	1 Year
Cable	H+B	SUCOFLEX104	MY14871/4	May 17, 2020	
Cable	H+B	BLU18A-NmSm-650 0	D8501	May 17, 2020	1 Year
Band reject Filter(50dB)	WI/DE	WRCGV-2400(2400- 2485MHz)	2	May 17, 2020	1 Year

For other test items:

Tor other test items.					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Vector Signal Generater	Agilent	N5182B	My53050553	May 17, 2020	1 Year
Analog Signal Generator	Agilent	N5171B	My53050878	May 17, 2020	1 Year
Signal Analyzer	Agilent	N9010A	My53470879	May 17, 2020	1 Year
Power Analyzer	Agilent	PS-X10-200	N/A	May 17, 2020	1 Year
Wideband Radio Communication Tester	R&S	CMW500	1201.0002K50- 140822zk	May 17, 2020	1 Year
Test Accessories	Agilent	PS-X10-100	N/A	May 17, 2020	1 Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	May 17, 2020	1 Year
Blocking Box	Agilent	AD211	N/A	May 17, 2020	1 Year

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (Bluetooth 5.0 DTS:1Mbps and 2Mbps) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for Bluetooth 5.0 DTS:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	19	2440		•••	
1	2404	20	2442	37	2476	
2	2406	21	2444	38	2478	
39 2480						
Note: fc=2402MHz+k×1MHz k=1 to 39						

Test Frequency and channel for Bluetooth 5.0 DTS:

Lowest Frequency		Middle Frequency		Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	19	2440	39	2480

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L2291

The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

Site Location : Building 69, Majialong Industry Zone, Nanshan District, Shenzhen,

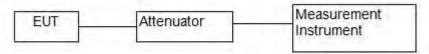
Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Parameter	Measurement Uncertainty
RF Output Power	±1.0%
Power Spectral Density	±0.9%
Duty Cycle and Tx-Sequence and Tx-Gap	±1.3%
Medium Utilisation Factor	±1.5%
Occupied Channel Bandwidth	±2.3%
Transmitter Unwanted Emission in the Out-of Band	±1.2%
Transmitter Unwanted Emissions in the Spurious Domain	±2.7%
Receiver Spurious Emissions	±2.7%
Temperature	±3.2%
Humidity	±2.5%

Measurement Uncertainty for a level of Confidence of 95%



7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

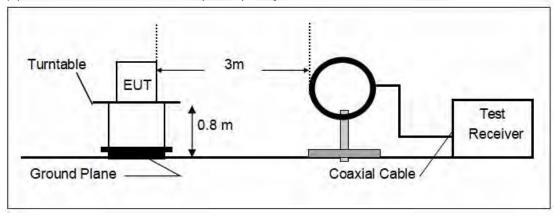
The Bluetooth 5.0 DTS component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

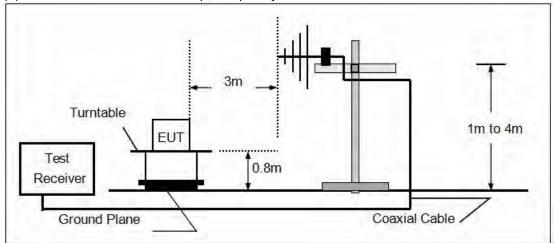
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

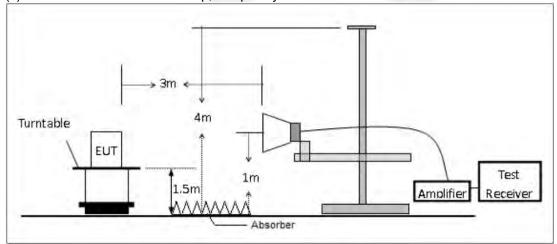

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:


The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

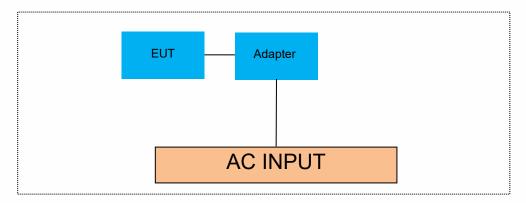


(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP


The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN. Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note

Notes:

- 1.All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS 6DB BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in Bluetooth 5.0 DTS mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.

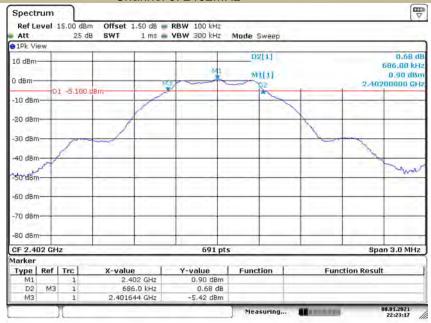
Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

Test Results

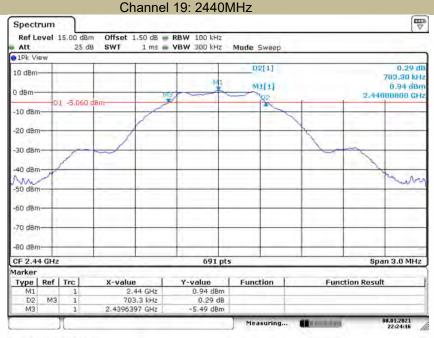
Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (kHz)	Limit (kHz)	Verdict
	0	2402	686.0	>500	PASS
BLE (1M)	19	2440	703.3	>500	PASS
(1101)	39	2480	703.3	>500	PASS


Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (kHz)	Limit (kHz)	Verdict
	0	2402	1154.8	>500	PASS
BLE (2M)	19	2440	1146.2	>500	PASS
(2101)	39	2480	1233.0	>500	PASS

BLE 1M

DTS (6dB) Bandwidth Bluetooth 5.0 DTS


Channel 0: 2402MHz

Date: 8.JAN.2021 22:23:17

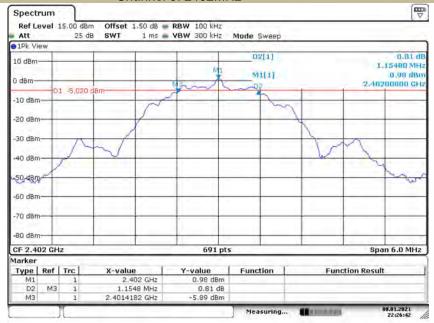
Test Model

DTS (6dB) Bandwidth Bluetooth 5.0 DTS

Date: 8.JAN.2021 22:24:16

DTS (6dB) Bandwidth Bluetooth 5.0 DTS Channel 39: 2480MHz

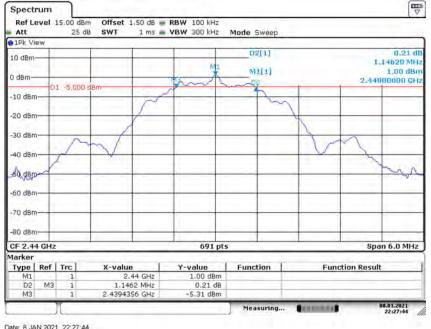
Date: 8 JAN 2021 22:25:10



BLE 2M

DTS (6dB) Bandwidth Bluetooth 5.0 DTS

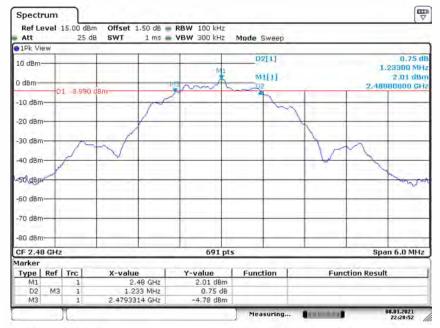
Channel 0: 2402MHz



Date: 8.JAN.2021 22:26:42

Test Model

DTS (6dB) Bandwidth Bluetooth 5.0 DTS


Channel 19: 2440MHz

Date: 8 JAN 2021 22:27:44

DTS (6dB) Bandwidth Bluetooth 5.0 DTS Channel 39: 2480MHz

Date: 8.JAN 2021 22:28:52

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

■ According to FCC Part15.247(b)(3)

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. For smart system, Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Set the RBW \geq DTS bandwidth(about 1MHz).

Set VBW = 3*RBW(about 3MHz)

Set the span ≥3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

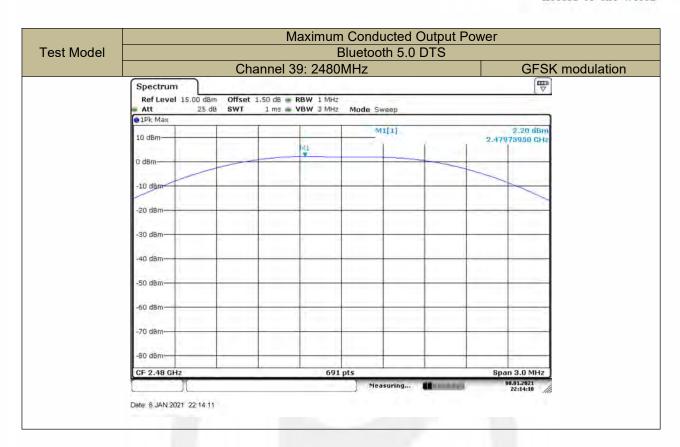
■ According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

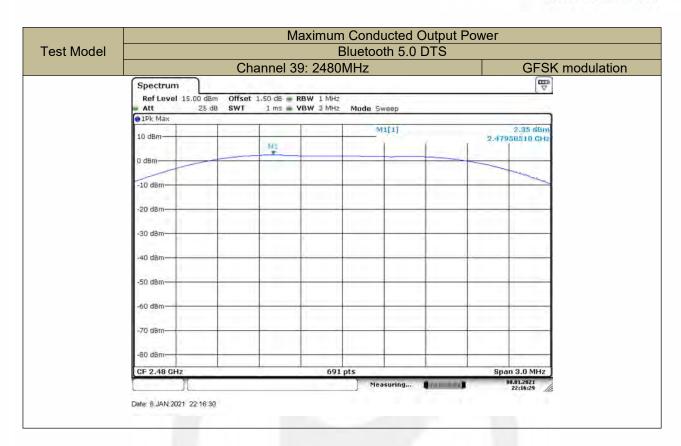
Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
BLE	0	2402	1.08	30	PASS
(1M)	19	2440	1.08	30	PASS
('''')	39	2480	2.20	30	PASS


Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
BLE	0	2402	1.10	30	PASS
(2M)	19	2440	1.11	30	PASS
(2141)	39	2480	2.35	30	PASS

BLE 1M



BLE 2M

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance The transmitter output (antenna port) was connected to the spectrum analyzer

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz Set the VBW to: 10 kHz. Set Detector = peak.

Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

8.3.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
51.5	0	2402	-14.08	<8	PASS
BLE (1M)	19	2440	-13.98	<8	PASS
(1101)	39	2480	-13.39	<8	PASS
Note: N/A					

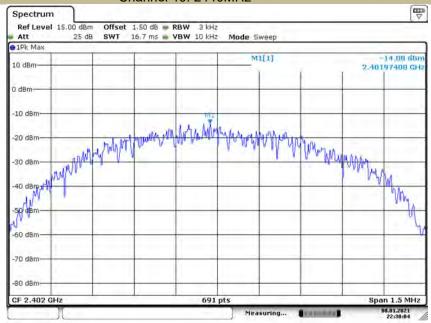
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
5	0	2402	-16.89	<8	PASS
BLE (2M)	19	2440	-16.71	<8	PASS
(2101)	39	2480	-15.75	<8	PASS
Note: N/A					

Span 1.5 MHz 08.01.2021 22:30:04

BLE 1M

Channel 0: 2402MHz Spectrum ₩ Ref Level 15.00 dB Offset 1.50 dB - RBW 3 kHz Att 25 dB SWT 16.7 ms . VBW 10 kHz Mode Sweep • 1Pk Max M1[1] -14,88 dBn 2,40197400 GH 10 dBm 0 dBm -10 dBn -20 dBr

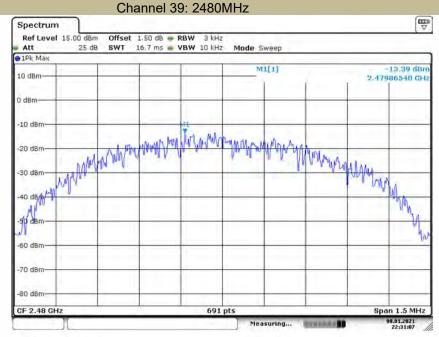
691 pts


Date: 8.JAN.2021 22:30:03

CF 2.402 GHz

-60 dBn

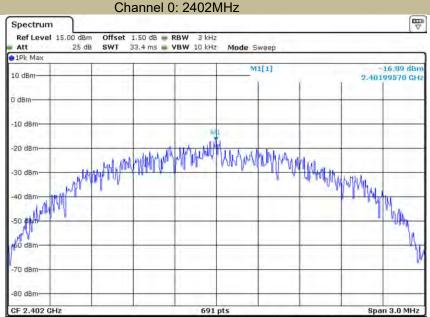
Test Model


Power Spectral Density Bluetooth 5.0 DTS Channel 19: 2440MHz

Date: 8 JAN 2021 22:30:03

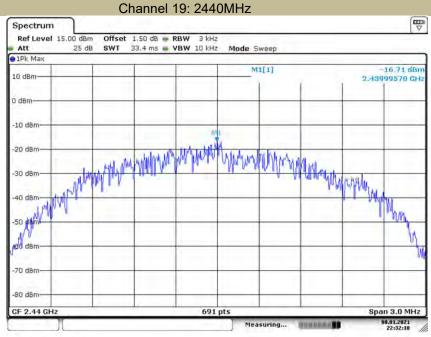
Power Spectral Density Bluetooth 5.0 DTS

Date: 8.JAN 2021 22:31:07



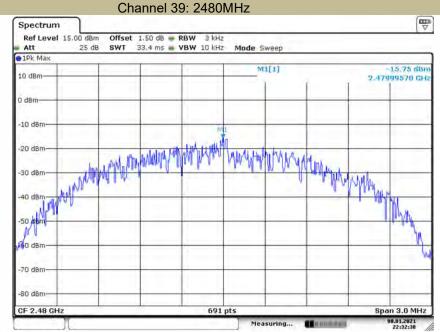
08.01.2021 22:31:35

BLE 2M


Power Spectral Density Bluetooth 5.0 DTS

Date: 8.JAN.2021 22:31:35

Test Model


Power Spectral Density Bluetooth 5.0 DTS

Date: 8.JAN.2021 22:32:18

Power Spectral Density Bluetooth 5.0 DTS

Date: 8.JAN.2021 22:32:37

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

■ Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to = 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

■ Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

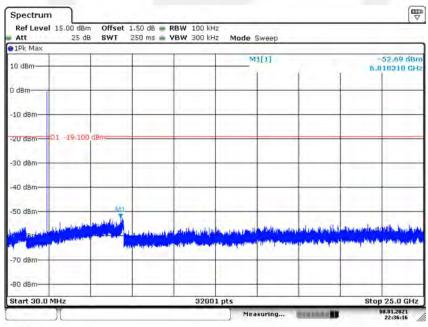
Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results

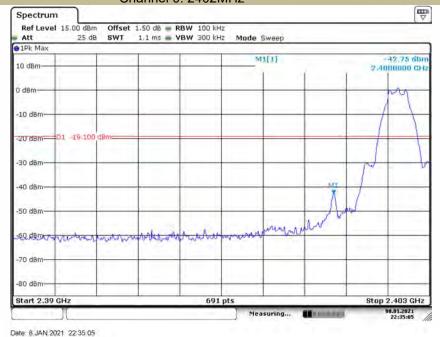
Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

All the modes were tested and the data of BLE 1M the worst modes are attached the following pages.


PSD(Power Spectral Density) RBW=100kHz Bluetooth 5.0 DTS

Date: 8 JAN 2021 22:34:34

Test Model


Unwanted Emissions in non-restricted frequency bands Bluetooth 5.0 DTS Channel 0: 2402MHz

Date: 8.JAN.2021 22:36:16

PSD(Power Spectral Density) RBW=100kHz Bluetooth 5.0 DTS Channel 19: 2440MHz

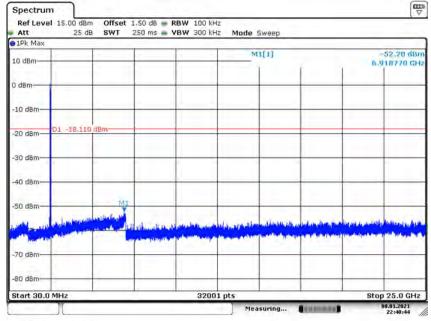
Date: 8.JAN.2021 22:37:11


Unwanted Emissions In Non-Restricted Frequency Bands Bluetooth 5.0 DTS

Date: 8.JAN.2021 22:37:54

Test Model

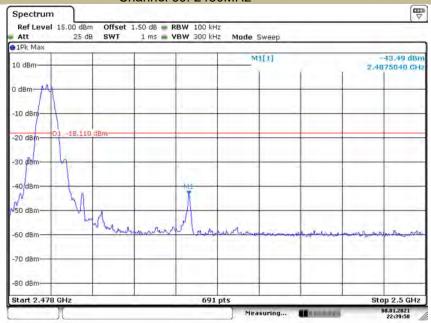
PSD(Power Spectral Density) RBW=100kHz Bluetooth 5.0 DTS Channel 19: 2480MHz



Date: 8.JAN.2021 22:38:30

Unwanted Emissions In Non-Restricted Frequency Bands Bluetooth 5.0 DTS

Channel 39: 2480MHz



Date: 8.JAN.2021 22:40:44

Test Model

Band edge Bluetooth 5.0 DTS

Channel 39: 2480MHz

Date: 8.JAN.2021 22:39:50

8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

200, restricted barras		
MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz (9KHz to 30MHz)

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK .	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz (1GHz to 25GHz) Bluetooth 5.0 DTS mode have been tested, and the worst result was report as below:

Test mode: BLE(1M) Frequency: Channel 0: 2402MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
2012.69	V	41.25	28.30	74	54	-32.75	-25.70
5487.26	V	46.53	31.40	74	54	-27.47	-22.60
7829.86	V	52.60	36.40	74	54	-21.40	-17.60
3280.33	Н	41.87	27.60	74	54	-32.13	-26.40
5471.42	Н	48.22	34.30	74	54	-25.78	-19.70
7497.65	Н	53.11	36.80	74	54	-20.89	-17.20

Test mode: BLE(1M) Frequency: Channel 19: 2440MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
3924.14	V	43.76	28.40	74	54	-30.24	-25.60
7829.86	V	54.18	36.70	74	54	-19.82	-17.30
14408.42	V	58.30	40.40	74	54	-15.70	-13.60
2024.35	Н	41.00	27.20	74	54	-33.00	-26.80
4367.06	Н	44.95	30.10	74	54	-29.05	-23.90
12687.74	Н	56.42	37.40	74	54	-17.58	-16.60

Test mode: BLE(1M) Frequency: Channel 39: 2480MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
3890.26	V	44.46	29.80	74	54	-29.54	-24.20
5487.26	V	47.73	33.10	74	54	-26.27	-20.90
13837.02	V	57.38	38.20	74	54	-16.62	-15.80
2758.04	Н	41.22	26.90	74	54	-32.78	-27.10
7852.52	Н	52.82	35.70	74	54	-21.18	-18.30
14366.84	Н	57.51	38.50	74	54	-16.49	-15.50

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor.

(3) Correct Factor= Ant F + Cab L - Preamp

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

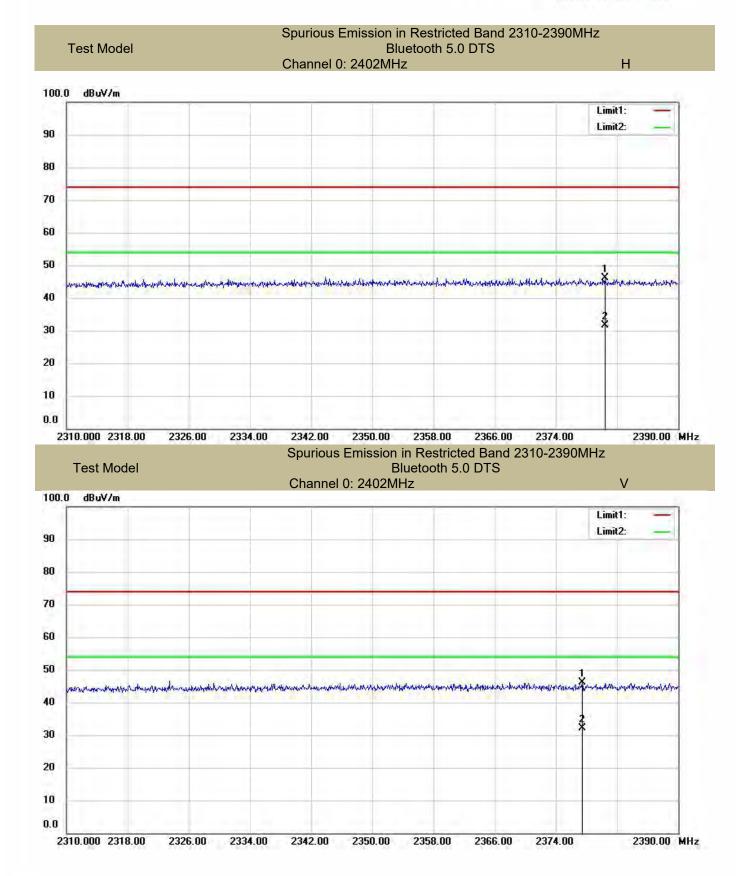
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

Test mode: BLE(1M) Frequency: Channel 0: 2402MHz

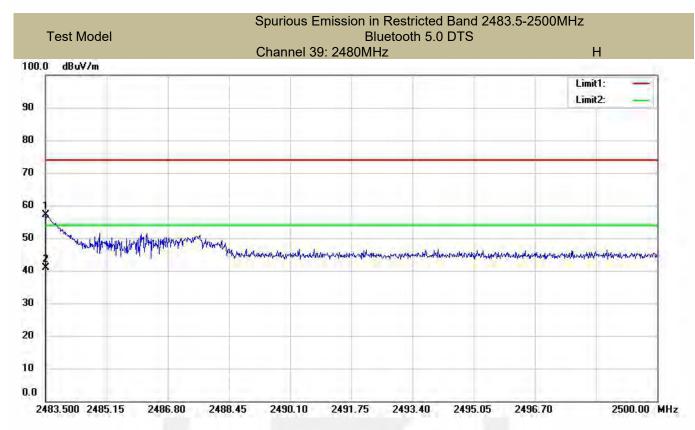
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2380.400	Н	46.09	74	-27.91	31.60	54	-22.40
2377.440	V	46.23	74	-27.77	32.10	54	-21.90

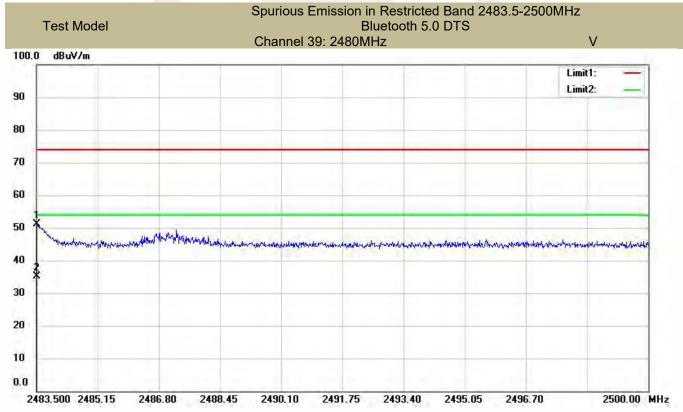
Test mode: BLE(1M) Frequency: Channel 39: 2480MHz

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.517	Н	57.13	74	-16.87	41.00	54	-13.00
2483.500	V	51.02	74	-22.98	35.20	54	-18.80


Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

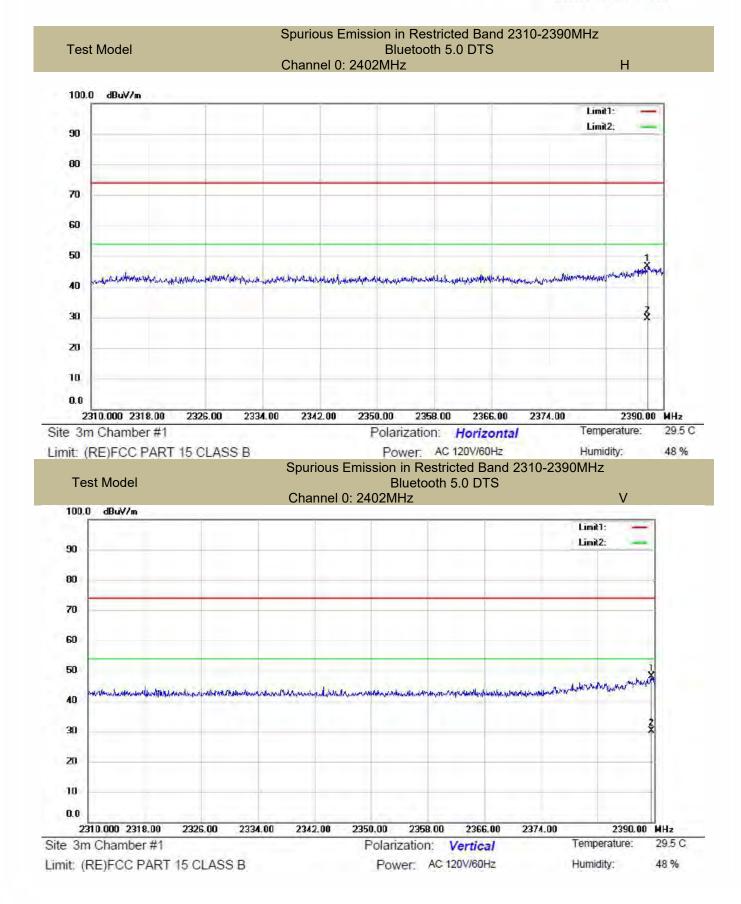
(2) Emission Level= Reading Level+Correct Factor.


(3) Correct Factor= Ant_F + Cab_L - Preamp

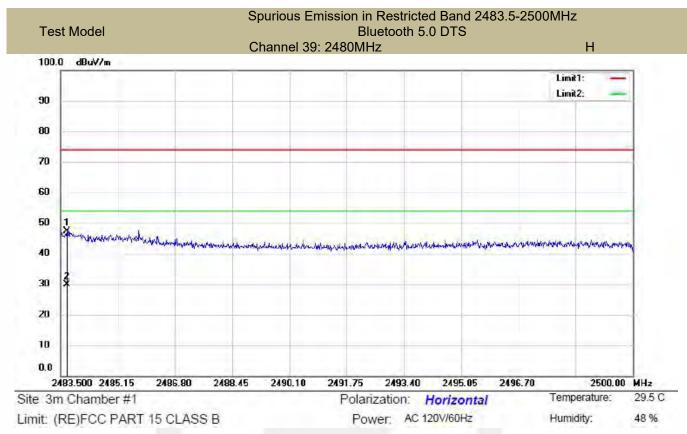

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

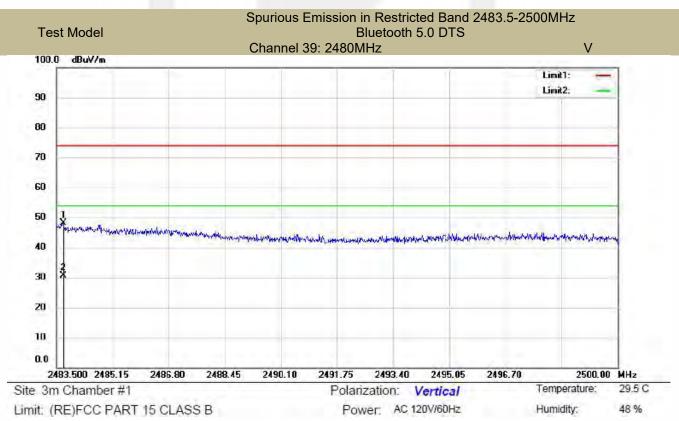
Test mode: BLE(2M) Frequency: Channel 0: 2402MHz

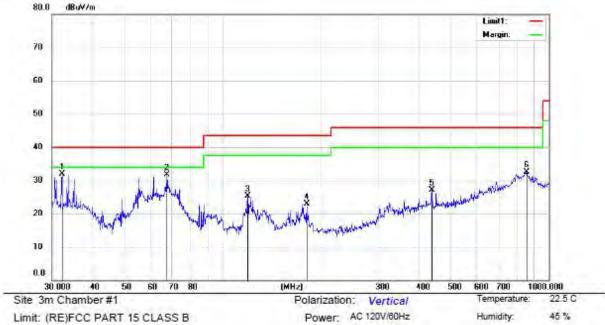
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2387.87	Н	46.70	74	-27.30	29.56	54	-24.44
2389.65	V	48.05	74	-25.95	30.15	54	-23.85

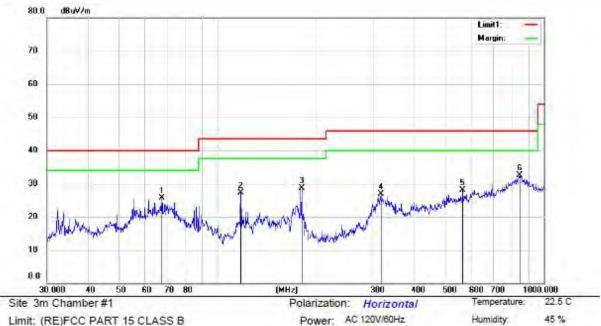

Test mode: BLE(2M) Frequency: Channel 39: 2480MHz

Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.68	Н	47.39	74	-26.61	39.99	54	-24.01
2483.69	V	48.21	74	-25.79	30.59	54	-23.41


Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

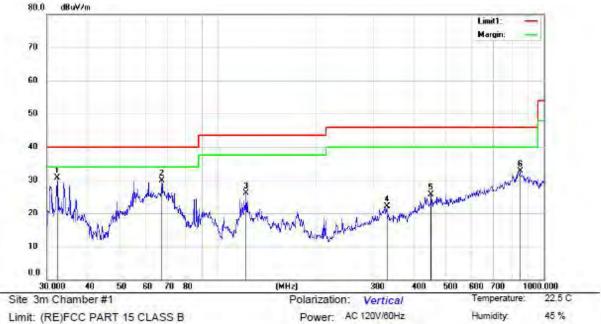

- (2) Emission Level= Reading Level+Correct Factor.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.




Spurious Emission below 1GHz (30MHz to 1GHz) All modes have been tested, and the worst result recorded was report as below:

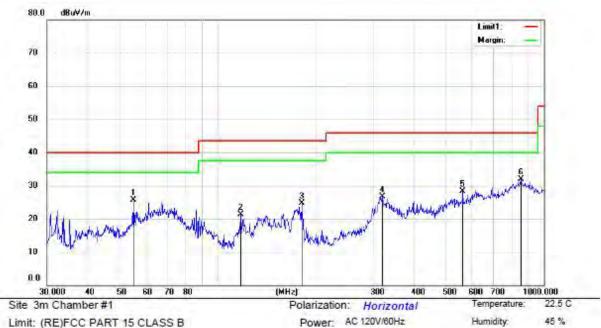
Mode:BLE 2402MHZ

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	32.1794	48.49	-16,54	31.95	40.00	-8.05	QP			
2		67.4381	46.32	-14.56	31.76	40.00	-8.24	QP			
3		119.4360	41.89	-16.66	25.23	43.50	-18.27	QP			
4		180.6484	39.37	-16.45	22.92	43.50	-20.58	QP			
5	-	437.1200	34.30	-7.17	27.13	46.00	-18.87	QP			
6	3	854.0247	29.88	2.57	32.45	46.00	-13.55	QP			



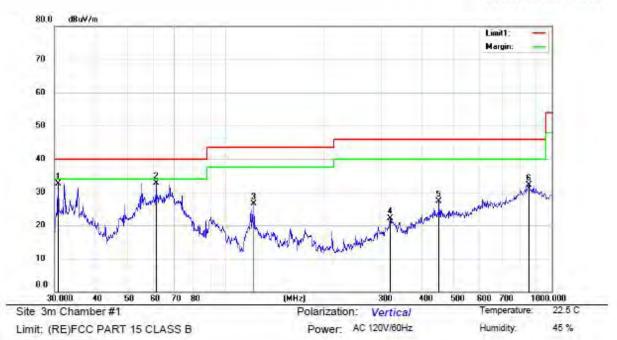
Mode:BLE 2402MHZ

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		67.4381	40.20	-14.56	25.64	40.00	-14.36	QP			
2		117.7724	43.90	-16.60	27.30	43.50	-16.20	QP			
3		180.6484	45.17	-16.45	28.72	43.50	-14.78	QP			
4		316.5890	38.26	-11.44	26.82	46.00	-19.18	QP			
5		564.6385	32.62	-4.42	28.20	46.00	-17.80	QP			
6	2	842.1295	29.59	2.86	32.45	46.00	-13.55	QP			



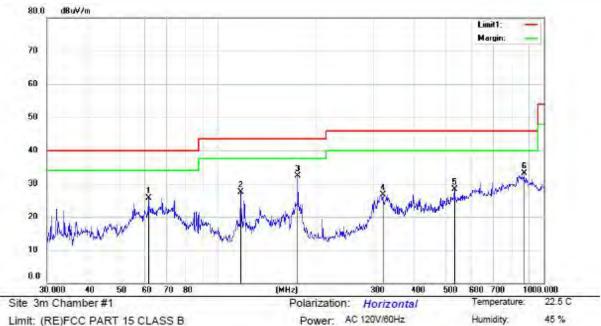
Mode:BLE 2440MHZ

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	×	32.2924	47.27	-16.53	30.74	40.00	-9.26	QP			
2		67.4381	44.45	-14.56	29.89	40.00	-10.11	QP			
3	- 7	122.4040	42.87	-16.72	26.15	43.50	-17.35	QP			
4		330.1947	32.88	-10.68	22.20	46.00	-23.80	QP			
5		451.1350	32.70	-6.95	25.75	46.00	-20.25	QP			
6		845.0877	29.82	2.87	32.69	46.00	-13.31	QP			



Mode:BLE 2440MHZ

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	55.2207	39.69	-13.95	25.74	40.00	-14.26	QP			
-	117.7724	37.90	-16.60	21.30	43.50	-22.20	QP			
9	180.6486	41.16	-16.45	24.71	43.50	-18.79	QP			
7	319.9370	38.03	-11.25	26.78	46.00	-19.22	QP			
	564.6386	32.66	-4.42	28.24	46.00	-17.76	QP			
* }	851.0353	29.05	2.80	31.85	46.00	-14.15	QP			
		MHz 55.2207 117.7724 180.6486 319.9370 564.6386	Mk. Freq. Level MHz dBuV 55.2207 39.69 117.7724 37.90 180.6486 41.16 319.9370 38.03 564.6386 32.66	Mk. Freq. Level Factor MHz dBuV dB 55.2207 39.69 -13.95 117.7724 37.90 -16.60 180.6486 41.16 -16.45 319.9370 38.03 -11.25 564.6386 32.66 -4.42	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 55.2207 39.69 -13.95 25.74 117.7724 37.90 -16.60 21.30 180.6486 41.16 -16.45 24.71 319.9370 38.03 -11.25 26.78 564.6386 32.66 -4.42 28.24	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 55.2207 39.69 -13.95 25.74 40.00 117.7724 37.90 -16.60 21.30 43.50 180.6486 41.16 -16.45 24.71 43.50 319.9370 38.03 -11.25 26.78 46.00 564.6386 32.66 -4.42 28.24 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB 55.2207 39.69 -13.95 25.74 40.00 -14.26 117.7724 37.90 -16.60 21.30 43.50 -22.20 180.6486 41.16 -16.45 24.71 43.50 -18.79 319.9370 38.03 -11.25 26.78 46.00 -19.22 564.6386 32.66 -4.42 28.24 46.00 -17.76	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 55.2207 39.69 -13.95 25.74 40.00 -14.26 QP 117.7724 37.90 -16.60 21.30 43.50 -22.20 QP 180.6486 41.16 -16.45 24.71 43.50 -18.79 QP 319.9370 38.03 -11.25 26.78 46.00 -19.22 QP 564.6386 32.66 -4.42 28.24 46.00 -17.76 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 55.2207 39.69 -13.95 25.74 40.00 -14.26 QP 117.7724 37.90 -16.60 21.30 43.50 -22.20 QP 180.6486 41.16 -16.45 24.71 43.50 -18.79 QP 319.9370 38.03 -11.25 26.78 46.00 -19.22 QP 564.6386 32.66 -4.42 28.24 46.00 -17.76 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 55.2207 39.69 -13.95 25.74 40.00 -14.26 QP 117.7724 37.90 -16.60 21.30 43.50 -22.20 QP 180.6486 41.16 -16.45 24.71 43.50 -18.79 QP 319.9370 38.03 -11.25 26.78 46.00 -19.22 QP 564.6386 32.66 -4.42 28.24 46.00 -17.76 QP



Mode:BLE 2480MHZ

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.7454	49.03	-16.62	32.41	40.00	-7.59	QP			
2	*	61.3462	46.65	-13.91	32.74	40.00	-7.26	QP			
3		122.4040	43.25	-16.72	26.53	43.50	-16.97	QP			
4		319.9370	33.38	-11.25	22.13	46.00	-23.87	QP			
5		451.1350	34.17	-6.95	27.22	46.00	-18.78	QP			
6		851.0353	29.38	2.80	32.18	46.00	-13.82	QP			

Mode:BLE 2480MHZ

MHz dBuV dB dBuV/m dB Detector cm degree Comment 1 61.3462 39.57 -13.91 25.66 40.00 -14.34 QP 2 117.7724 44.11 -16.60 27.51 43.50 -15.99 QP 3 * 176.2684 48.59 -16.32 32.27 43.50 -11.23 QP 4 321.0605 37.94 -11.20 26.74 46.00 -19.26 QP 5 531.9633 33.71 -5.45 28.26 46.00 -17.74 QP 6 869.1300 31.29 1.83 33.12 46.00 -12.88 QP	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
2 117.7724 44.11 -16.60 27.51 43.50 -15.99 QP 3 * 176.2684 48.59 -16.32 32.27 43.50 -11.23 QP 4 321.0605 37.94 -11.20 26.74 46.00 -19.26 QP 5 531.9633 33.71 -5.45 28.26 46.00 -17.74 QP			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
3 * 176.2684 48.59 -16.32 32.27 43.50 -11.23 QP 4 321.0605 37.94 -11.20 26.74 46.00 -19.26 QP 5 531.9633 33.71 -5.45 28.26 46.00 -17.74 QP	1		61.3462	39.57	-13.91	25.66	40.00	-14.34	QP			
4 321.0605 37.94 -11.20 26.74 46.00 -19.26 QP 5 531.9633 33.71 -5.45 28.26 46.00 -17.74 QP	2	_	117.7724	44.11	-16.60	27.51	43.50	-15.99	QP			
5 531.9633 33.71 -5.45 28.26 46.00 -17.74 QP	3	*	176.2684	48.59	-16.32	32.27	43.50	-11.23	QP			
	4	-3	321.0605	37.94	-11.20	26.74	46.00	-19.26	QP			
£ 950 4200 24 20 4.92 22 42 45 00 42 99 OD	5	- 3	531.9633	33.71	-5.45	28.26	46.00	-17.74	QP			
0 009.1300 31.29 1.03 33.12 40.00 -12.00 QF	6		869.1300	31.29	1.83	33.12	46.00	-12.88	QP			

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

8.6.3 Test Configuration

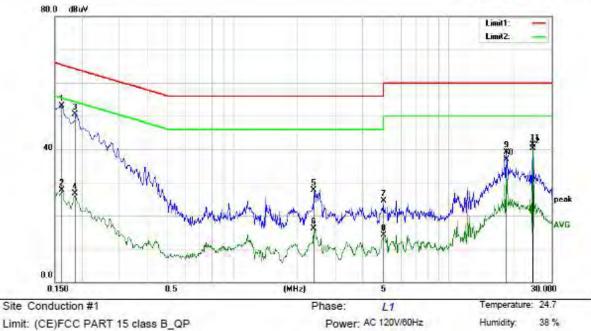
Test according to clause 7.3 conducted emission test setup

8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

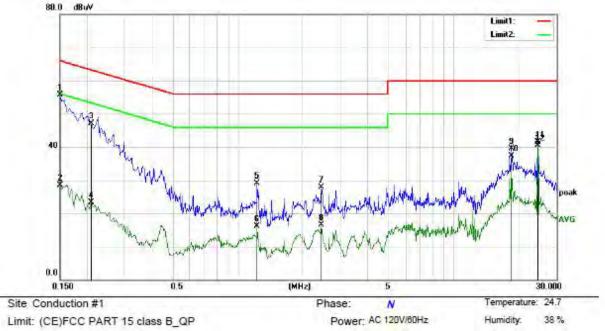
Repeat above procedures until all frequency measured were complete.


8.6.5 Test Results

Pass

The 120V &240V voltagehave been tested, and the worst result recorded was report as below:

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.



Limit: (CE)FCC PART 15 class B_QP

Mode: BLE Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1620	43.66	9.44	53.10	65,36	-12.26	QP	
2	0.1620	18.29	9.44	27.73	55.36	-27.63	AVG	
3	0.1860	41.04	9.44	50.48	64.21	-13.73	QP	
4	0.1860	17.22	9.44	26.66	54.21	-27.55	AVG	
5	2.3660	17.91	9.81	27.72	56.00	-28.28	QP	
6	2.3660	6.31	9.81	16.12	46,00	-29.88	AVG	
7	5.0260	14.71	9.84	24.55	60.00	-35.45	QP	
8	5.0260	4.24	9.84	14.08	50.00	-35.92	AVG	
9	18.4340	29.02	10.17	39,19	60.00	-20.81	QP	
10	18.4340	26.66	10.17	36.83	50.00	-13.17	AVG	
11	24.5780	31.17	10.20	41.37	60.00	-18.63	QP	
12 *	24.5780	30.01	10.20	40.21	50.00	-9.79	AVG	

Mode: BLE Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	46.30	9.44	55.74	66.00	-10.26	QP	
2	0.1500	19.16	9.44	28.60	56,00	-27.40	AVG	
3	0.2100	37.77	9.42	47.19	63.21	-16.02	QP	
4	0.2100	13.90	9.42	23.32	53.21	-29.89	AVG	
5	1.2300	19.34	9.77	29.11	56.00	-26.89	QP	
6	1.2300	6.38	9.77	16.15	46.00	-29.85	AVG	
7	2.4420	18.05	9.81	27.86	56.00	-28.14	QP	
8	2.4420	6.62	9.81	16.43	46.00	-29.57	AVG	
9	18.4340	29.40	10.17	39.57	60.00	-20.43	QP	
10	18.4340	27.05	10.17	37.22	50.00	-12.78	AVG	
11	24.5780	31.35	10.20	41.55	60.00	-18.45	QP	
12 *	24.5780	30.31	10.20	40.51	50.00	-9.49	AVG	

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is

FCC CRF Part 15.203

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

employed so that the limits in this part are not exceeded.

8.7.2 **Result**

PASS.

The EUT is PIFA	Antenna, the q	ain is 3.1dBi.

Note:

Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement

The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

Detail of factor for radiated emission

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	1	20.63
0.15	20.7	0.1	1	20.8
1	20.9	0.15	1	21.05
10	20.1	0.28	1	20.38
30	18.8	0.45	\	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

--- End of Report ---