10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz , QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 \%
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	± 9.6 \%
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	± 9.6 \%
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, $60 \mathrm{MHz}, \mathrm{QPSK}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	5.84	± 9.6 \%
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	± 9.6 \%
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, $5 \mathrm{MHz}, \mathrm{QPSK}, 15 \mathrm{kHz}$)	5G NR FR1 FDD	5.52	$\pm 9.6 \%$
10929	AAC	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 \%
10930	AAC	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	± 9.6 \%
10931	AAC	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 \%
10932	AAC	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 25 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 \%
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 \%
10934	AAC	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 40 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	$\pm 9.6 \%$
10935	AAD	5 G NR (DFT-s-OFDM, $1 \mathrm{RB}, 50 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6 \%
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 \%
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.77	± 9.6 \%
10938	AAC	5 G NR (DFT-s-OFDM, 50% RB, 15 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.90	± 9.6 \%
10939	AAC	5 G NR (DFT-s-OFDM, 50% RB, 20 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.82	± 9.6 \%
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.89	± 9.6 \%
10941	AAC	5 G NR (DFT-s-OFDM, 50% RB, 30 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 \%
10942	AAC	5 G NR (DFT-s-OFDM, 50% RB, 40 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 \%
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.95	± 9.6 \%
10944	AAC	5 G NR (DFT-s-OFDM, 100% RB, 5 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.81	± 9.6 \%
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.85	± 9.6 \%
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.83	± 9.6 \%
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 \%
10948	AAC	5 G NR (DFT-s-OFDM, 100% RB, 25 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.94	± 9.6 \%
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.87	± 9.6 \%
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	$\pm 9.6 \%$
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz , QPSK, 15 kHz)	5G NR FR1 FDD	5.92	± 9.6 \%
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, $5 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 FDD	8.25	± 9.6 \%
10953	AAA	5G NR DL (CP-OFDM, TM $3.1,10 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 FDD	8.15	± 9.6 \%
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, $15 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 FDD	8.23	± 9.6 \%
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, $20 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 FDD	8.42	± 9.6 \%
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, $5 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 FDD	8.14	± 9.6 \%
10957	AAA	5 G NR DL (CP-OFDM, TM 3.1, $10 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 FDD	8.31	$\pm 9.6 \%$
10958	AAA	5G NR DL (CP-OFDM, TM $3.1,15 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 FDD	8.61	$\pm 9.6 \%$
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, $20 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 FDD	8.33	± 9.6 \%
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, $5 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 TDD	9.32	$\pm 9.6 \%$
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, $10 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 TDD	9.36	± 9.6 \%
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, $15 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 TDD	9.40	± 9.6 \%
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, $20 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 TDD	9.55	± 9.6 \%
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, $5 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.29	± 9.6 \%
10965	AAB	5G NR DL (CP-OFDM, TM $3.1,10 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.37	± 9.6 \%
10966	AAB	5 C NR DL (CP-OFDM, TM 3.1, $15 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.55	± 9.6 \%
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, $20 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.42	± 9.6 \%
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, $100 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.49	± 9.6 \%
10972	$A A B$	5 G NR (CP-OFDM, $1 \mathrm{RB}, 20 \mathrm{MHz}$, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	± 9.6 \%
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz , QPSK, 30 kHz)	5G NR FR1 TDD	9.06	± 9.6 \%
10974	AAB	5 G NR (CP-OFDM, 100% RB, $100 \mathrm{MHz}, 256-$ QAM, 30 kHz)	5G NR FR1 TDD	10.28	± 9.6 \%
10978	AAA	ULLA BDR	ULLA	2.23	± 9.6 \%
10979	AAA	ULLA HDR4	ULLA	7.02	± 9.6 \%
10980	AAA	ULLA HDR8	ULLA	8.82	± 9.6 \%
10981	AAA	ULLA HDRp4	ULLA	1.50	± 9.6 \%
10982	AAA	ULLA HDRp8	ULLA	1.44	± 9.6 \%
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz , 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	± 9.6 \%
10984	AAA	5G NR DL (CP-OFDM, TM $3.1,50 \mathrm{MHz}, 64-\mathrm{QAM}, 15 \mathrm{kHz}$)	5G NR FR1 TDD	9.42	± 9.6 \%

10985	AAA	5G NR DL (CP-OFDM, TM 3.1, $40 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.54	± 9.6 \%
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, $50 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.50	$\pm 9.6 \%$
10987	AAA	5G NR DL (CP-OFDM, TM 3.1,60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	± 9.6 \%
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, $70 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.38	± 9.6 \%
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, $80 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.33	± 9.6 \%
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, $90 \mathrm{MHz}, 64-\mathrm{QAM}, 30 \mathrm{kHz}$)	5G NR FR1 TDD	9.52	± 9.6 \%

${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ANNEX H Dipole Calibration Certificate

6.5G Dipole Calibration Certificate

Calibration Laboratory of Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Client CTTL-BJ (Auden) Certificate No: D6.5GHzV2-1059_Dec21

Certificate No: D6.5GHzV2-1059_Dec21
Page 1 of 6

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A
not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=3.4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
Frequency	$6500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	34.5	$6.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$34.3 \pm 6 \%$	$6.13 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	\ldots

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$29.0 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 8 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{2 4 . 7} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g })}$ of Head TSL	condition	
SAR measured	$\mathbf{1 0 0} \mathbf{~ m W}$ input power	$5.33 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{5 3 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{2 4 . 4} \% \mathbf{(k = 2)}$

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.9 \Omega-6.2 \mathrm{j} \Omega$
Return Loss	-23.5 dB

APD (Absorbed Power Density)

APD averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{2}}$	Condition	
APD measured	100 mW input power	$289 \mathrm{~W} / \mathrm{m}^{2}$
APD measured	normalized to 1 W	$\mathbf{2 8 9 0} \mathbf{W} / \mathbf{m}^{\mathbf{2}} \pm \mathbf{2 9 . 2} \%(\mathbf{k}=\mathbf{2})$

APD averaged over $\mathbf{4} \mathbf{c m}^{\mathbf{2}}$	condition	
APD measured	100 mW input power	$130 \mathrm{~W} / \mathrm{m}^{2}$
APD measured	normalized to 1 W	$\mathbf{1 3 0 0} \mathbf{W} / \mathbf{m}^{\mathbf{2}} \pm \mathbf{2 8 . 9} \%(\mathbf{k}=\mathbf{2})$

*The reported APD values have been derived using psSAR8g.

General Antenna Parameters and Design

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0 MHz)

Device under Test Properties			
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	$16.0 \times 6.0 \times 300.0$	SN: 1059	

SN: 1059

Exposure Conditions

Phantom Section, TSL	Position, Test Distance	Band	Group, UID	Frequency $[\mathrm{MHz}]$	Conversion Factor	TSL Cond. $[\mathrm{S} / \mathrm{m}]$	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.13	34.3

Hardware Setup	
Phantom	TSL
MFP V8.0 Center - 1182	HBBL600-10000V6

Scan Setup

	Zoom Scan
Grid Extents $[\mathrm{mm}]$	$22.0 \times 22.0 \times 22.0$
Grid Steps $[\mathrm{mm}]$	$3.4 \times 3.4 \times 1.4$
Sensor Surface $[\mathrm{mm}]$	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N / A
Surface Detection	VMS +6 p
Scan Method	Measured

Probe, Calibration Date	DAE, Calibration Date
EX3DV4-SN7405, 2020-12-30	DAE4 Sn908, 2021-06-2

Measurement Results

Zoom Scan
2021-12-01, 13:15

Date	2021-12-01, 13:15
psSAR1g $[\mathrm{W} / \mathrm{Kg}]$	29.0

psSAR10g [W/Kg] 5.33
Power Drift [dB] -0.00
Power Scaling Disabled

Scaling Factor [dB]
TSL Correction
No correction
M2/M1 [\%]
Dist 3dB Peak [mm]
51.1
4.8

Impedance Measurement Plot for Head TSL

10G Dipole Calibration Certificate

[^0]
Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz .
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz : The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) $30,45,60$ and 90 GHz . The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E-field distribution: E field is measured in two x - y-plane $(10 \mathrm{~mm}, 10 \mathrm{~mm}+N / 4)$ with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged ($1 \mathrm{~cm}^{2}$ and $4 \mathrm{~cm}^{2}$) power density values at 10 mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

- Local peak E -field $(\mathrm{V} / \mathrm{m})$ and average of peak spatial components of the poynting vector (W/m2) averaged over the surface area of $1 \mathrm{~cm}^{2}$ and $4 \mathrm{~cm}^{2}$ at the nominal operational frequency of the verification source. Both square and circular averaging results are listed

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5 G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	$\mathrm{dx}, \mathrm{dy}=7.5 \mathrm{~mm}$	
Number of measured planes	$2(10 \mathrm{~mm}, 10 \mathrm{~mm}+\mathrm{N} 4)$	
Frequency	$10 \mathrm{GHz} \pm 10 \mathrm{MHz}$	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measured Plane	$\begin{aligned} & \text { Prad } \\ & (\mathrm{mW}) \end{aligned}$	$\begin{aligned} & \text { Max E-field } \\ & (V / m) \end{aligned}$	Uncertainty $(k=2)$	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod +) (W/m²)		Uncertainty $(k=2)$
				$1 \mathrm{~cm}^{2}$	$4 \mathrm{~cm}^{2}$	
10 mm	86.1	153	1.27 dB	57.5	53.5	1.28 dB
Distance Horn Aperture to Measured Plane	Prad ${ }^{\prime}$ (mW)	Max E-field (V/m)	Uncertainty $(k=2)$	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty $(k=2)$
				$1 \mathrm{~cm}^{2}$	$4 \mathrm{~cm}^{2}$	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.6, 54.2, 54.6	1.28 dB

Square Averaging

Distance Horn Aperture to Measured Plane	$\begin{aligned} & \mathrm{Prad}^{\prime} \\ & (\mathrm{mW}) \end{aligned}$	Max E-field (V/m)	Uncertainty $(k=2)$	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²)		Uncertainty $(k=2)$
				$1 \mathrm{~cm}^{2}$	$4 \mathrm{~cm}^{2}$	
10 mm	86.1	153	1.27 dB	57.5	53.4	1.28 dB
Distance Horn Aperture to Measured Plane	$\begin{aligned} & \mathrm{Prad}^{\prime} \\ & (\mathrm{mW}) \end{aligned}$	Max E-field (V/m)	Uncertainty $(k=2)$	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty $(k=2)$
				$1 \mathrm{~cm}^{2}$	$4 \mathrm{~cm}^{2}$	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.5, 54.1, 54.5	1.28 dB

Max Power Density

| Distance Horn
 Aperture to
 Measured Plane | Prad $^{\prime}$
 $(\boldsymbol{m W})$ | Max E-field
 $(\mathrm{V} / \mathrm{m})$ | Uncertainty
 $(\mathrm{k}=2)$ | Max Power Density
 Sn, Stot, \|Stot|
 $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ | Uncertainty
 $(\mathrm{k}=2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | 86.1 | 153 | 1.27 dB | $\mathbf{5 7 . 0}, 60.2,60.3$ | 1.28 dB |

${ }^{1}$ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB
Certificate No: 5G-Veri10-1005_Jan23

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 - Channel 10000 ($\mathbf{1 0 0 0 0 . 0 \mathrm { MHz } \text {) }) ~}$

Device under Test Properties					
Name, Manufacturer	Dimensions [mm]		IMEI	DUT Type	
5 G Verification Source 10 GHz	z $\quad 100.0 \times 100.0 \times$		SN: 1005	DUT Type	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm Validation band		CW	$\begin{aligned} & 10000.0, \\ & 10000 \end{aligned}$	
			1.0		

Hardware Setup

Phantom

Medium
Air

Probe, Calibration Date
EUmmWV3 - SN9374_F1-55GHz, 2022-01-03

DAE, Calibration Date DAE4ip Sn1602, 2022-06-27

Scan Setup
Grid Extents [mm]
Grid Steps [lambda]
Sensor Surface [mm]
MAIA

Measurement Results

	5G Scan
Date	2023-01-11, $08: 25$
Avg. Area $\left[\mathrm{cm}^{2}\right]$	1.00
Avg. Type	Circular Averaging
psPDn $\left[\mathrm{W} / \mathrm{m}^{2}\right]$	55.4
psPDtot $+\left[\mathrm{W} / \mathrm{m}^{2}\right]$	58.4
psPDmod $+\left[\mathrm{W} / \mathrm{m}^{2}\right]$	58.6
Max $(\mathrm{Sn})\left[\mathrm{W} / \mathrm{m}^{2}\right]$	57.0
Max $($ Stot $)\left[\mathrm{W} / \mathrm{m}^{2}\right]$	60.2
Max $(\|S t o t\|)\left[\mathrm{W} / \mathrm{m}^{2}\right]$	60.3
$\mathrm{E}_{\text {max }}[\mathrm{V} / \mathrm{m}]$	153
Power Drift $[\mathrm{dB}]$	-0.00

DASY Report

Measurement Report for 5G Verification Source 10 GHz , UID 0 -, Channel 10000 ($\mathbf{1 0 0 0 0 . 0 \mathrm { MHz } \text {) }) ~}$

DASY Report

Measurement Report for 5G Verification Source $\mathbf{1 0 G H z}$, UID 0 -, Channel $\mathbf{1 0 0 0 0}$ ($\mathbf{1 0 0 0 0 . 0 \mathrm { MHz } \text {) }) ~}$
Device under Test Propertie

DASY Report

Measurement Report for 5G Verification Source 10 GHz , UID 0 -, Channel 10000 ($\mathbf{1 0 0 0 0 . 0 \mathrm { MHz } \text {) }) ~}$

Device under Test Properties					
Name, Manufacturer	Dimensions [mm] In		IMEI DUT		
	Hz $100.0 \times 100.0 \times$		SN: 1005		
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequenc Channel	Conversion Factor
5 G .	10.0 mm	Validation band	CW	$\begin{aligned} & 10000.0, \\ & 10000 \end{aligned}$	1.0
Hardware Setup					
Phantom mmWave Phantom - 1002	$\underset{\text { Medium }}{\text { Air }}$		Probe, Calibration Date		DAE, Calibration Date DAE4ip Sn1602, 2022-06-27
			EUm	$1-55 \mathrm{GHz}$,	
Scan Setup			Measurement Results		
Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm] MAIA		56 Scan			
		$\begin{array}{r} 120.0 \times 120.0 \\ 0.25 \times 0.25 \\ 10.0 \\ \text { MAIA not used } \end{array}$	D. 0 Date		
					2023-01-11, 08:25
					Square Averaging
					Square Averaging
					54.1
					54.5
					57.0
					60.2
					60.3
					153

[^1]
ANNEX I Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

 Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0
Telecommunication Technology Labs, CAICT
Beijing
China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for

Electromagnetic Compatibility \& Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

[^0]: Certificate No: 5G-Veri10-1005_Jan23

[^1]: Certificate No: 5G-Veri10-1005 Jan23

