

TEST REPORT

No. I22N02185-WLAN 2.4GHz

for

unitech electronics co., ltd.

Rugged Handheld Computer

Model Name: PA768

with

Hardware Version: FH09_MB_PCB_V1.3

Software Version: RAYA_V03.25b02_20221010

FCC ID: HLEPA768BWNW

IC: 6724A-PA768BWNW

Issued Date: 2022-12-15

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001

Email: yewu@caict.ac.cn, website: www.cszit.com

©Copyright. All rights reserved by SAICT.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22N02185-WLAN 2.4GHz	Rev.0	1st edition	2022-12-15

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

1.	SUI	MMARY OF TEST REPORT	4	
1	.1.	TEST ITEMS	4	
1	.2.	TEST STANDARDS	4	
1	.3.	TEST RESULT	4	
1	.4.	TESTING LOCATION	4	
1	.5.	PROJECT DATA	4	
1	.6.	SIGNATURE	4	
2.	CL	IENT INFORMATION	5	
2	.1.	APPLICANT INFORMATION	5	
2	.2.	MANUFACTURER INFORMATION	5	
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6	
3	.1.	About EUT	6	
3	.2.	INTERNAL IDENTIFICATION OF EUT	6	
3	.3.	INTERNAL IDENTIFICATION OF AE	6	
3	.4.	GENERAL DESCRIPTION	6	
4.	RE	FERENCE DOCUMENTS	7	
4	.1.	DOCUMENTS SUPPLIED BY APPLICANT	7	
4	.2.	REFERENCE DOCUMENTS FOR TESTING	7	
5.	TE	ST RESULTS	8	
5	.1.	TESTING ENVIRONMENT		
5	.2.	TEST RESULTS	8	
5	.3.	STATEMENTS	8	
6.	TE	ST EQUIPMENTS UTILIZED	9	
7.	LA	BORATORY ENVIRONMENT 1	0	
8.	ME	ASUREMENT UNCERTAINTY1	1	
AN	NEX	A: DETAILED TEST RESULTS 1	2	
A	A.0 A	NTENNA REQUIREMENT	2	
A	A.1 MAXIMUM OUTPUT POWER			
A	A.2 PEAK POWER SPECTRAL DENSITY			
A	A.3 6DB BANDWIDTH			
A	A.4 BAND EDGES COMPLIANCE			
A	A.5 C	ONDUCTED EMISSION	4	
A	A.6 RADIATED EMISSION			
A	A.7 AC POWER LINE CONDUCTED EMISSION			
A	A.8 99% Occupied Bandwidth			

1. Summary of Test Report

1.1. Test Items

Description	Rugged Handheld Computer
Model Name	PA768
Applicant's name	unitech electronics co., ltd.
Manufacturer's Name	unitech electronics co., ltd.

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013; RSS-247 Issue 2; RSS-Gen Issue 5

1.3. Test Result

Pass Please refer to 5.2 Test Results.

1.4. <u>Testing Location</u>

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project data

Testing Start Date:	2022-10-26
Testing End Date:	2022-12-09

1.6. Signature

林佩丰

Lin Kanfeng (Prepared this test report)

An Ran (Reviewed this test report)

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	unitech electronics co., ltd.
Address:	5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City 231028, Taiwan
Contact Person	Ben Chiang
E-Mail	BenC@tw.ute.com
Telephone:	886-2-8912-1122
Fax:	886-2-89121391

2.2. Manufacturer Information

Company Name:	unitech electronics co., ltd.
Address:	5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City 231028 , Taiwan
Contact Person	Ben Chiang
E-Mail	BenC@tw.ute.com
Telephone:	886-2-8912-1122
Fax:	886-2-89121391

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1.	About	EUT

Description	Rugged Handheld Computer
Model Name	PA768
RF Protocol	IEEE 802.11 b/g/n20/n40
Operating Frequency	2412MHz~2462MHz
Number of Channels	11
Antenna Type	Integrated
Antenna Gain	Antenna 0 = 0 dBi; Antenna 1 = -2.1 dBi
Power Supply	3.85V DC by Battery
FCC ID	HLEPA768BWNW
IC	6724A-PA768BWNW
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt
UT05aa	358585240001857	FH09_MB_P	RAYA_V03.25b02_2022	2022-10-26
010544		CB_V1.3	1010	2022-10-20
	259595240004550	FH09_MB_P	RAYA_V03.25b02_2022	2022 40 26
UT09aa	358585240001550	CB_V1.3	1010	2022-10-26

*EUT ID: is used to identify the test sample in the lab internally.

*UT05aa is used for Conduction test; UT09aa is used for radiation test and AC Power line Conducted Emission test.

3.3. Internal Identification of AE

AE No.	Description	AE ID*
AE1	Battery	1400-900069G
AE2	Charger	S018BYU12000150
*AE ID: is used to identify the test sample in the leb internally		

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Rugged Handheld Computer with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

4. <u>Reference Documents</u>

4.1. <u>Documents supplied by applicant</u>

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz, 2400-2483.5	
	MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2
	Standards Specification	February,
	Digital Transmission Systems (DTSs), Frequency Hopping	2017
	Systems (FHSs) and License-Exempt Local Area Network	
	(LE-LAN) Devices	
RSS-Gen	Spectrum Management and Telecommunications Radio	lssue 5 A2
	Standards Specification	February,
	General Requirements for Compliance of Radio Apparatus	2021

5. Test Results

5.1. Testing Environment

Normal Temperature:	15~35°C
Relative Humidity:	20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	/	Р
1	Maximum Output Power	15.247 (b)	RSS-247 section 5.4	Р
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р
3	6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р
5	Conducted Emission	15.247 (d)	RSS-247 section 5.5/RSS-Gen section 6.13	Р
6	Radiated Emission	15.247, 15.205, 15.209	RSS-247 section 5.5/RSS-Gen section 6.13	Р
7	AC Power line Conducted	15.107, 15.207	RSS-Gen section 8.8	Р
8	99% Occupied Bandwidth	/	RSS-Gen section 6.7	/

See **ANNEX A** for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due Date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2022-12-29	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2022-12-29	1 year
3	Data Acquisiton	U2531A	TW55443507	Keysight	/	/
4	Shielding Room	S81	CT000986-13 44	ETS-Lindgren	2026-09-12	5 years

Radiated emission test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.	Equipment	Model	Number	Manufacturer	Due Date	Period
1	Test Receiver	ESR7	101676	R&S	2023-11-23	1 year
2	BiLog Antenna	3142E	0224831	ETS-lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-lindgren	2025-04-17	1 year
4	Anechoic	FACT3-2.0	1285	ETS-Lindaren	2023-05-29	2 years
	Chamber	17.010 2.0	1200	ETS-Lindgren	2020 00 20	
5	Spectrum	FSV40	101192	R&S	2023-01-12	1 year
0	Analyzer	10140	101132	Rao	2023-01-12	i yeai
6	Loop Antenna	HLA6120	35779	TESEQ	2025-05-10	3 years
7	Horn Antenna	QSH-SL-1	17013	0 par	2023-01-06	2 1/0010
	Horn Antenna	8-26-S-20	17013	Q-par	2023-01-00	3 years
8	Test Receiver	ESCI	100702	R&S	2023-01-12	1 year
9	LISN	ENV216	102067	R&S	2023-07-14	1 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω

Anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 MΩ
Ground system resistance	<4 Ω
Normalised site attenuation (NSA)	$< \pm 4$ dB, 3 m distance, from 30 to 1000 MHz
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. <u>Measurement Uncertainty</u>

Test Name	Uncertai	tainty <i>(k=2)</i>	
1. RF Output Power - Conducted	1.3	2dB	
2. Power Spectral Density - Conducted	1.32dB	m/MHz	
3. Occupied channel bandwidth - Conducted	4.56	škHz	
	30MHz≪f<1GHz	1.41dB	
1 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB	
4. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB	
	13GHz≪f≪26GHz	2.61dB	
	9kHz≪f<30MHz	1.79dB	
5. Transmitter Spurious Emission - Radiated	30MHz≪f<1GHz	4.86dB	
5. Transmiller Spundus Emission - Radialed	1GHz≤f<18GHz	4.50dB	
	18GHz≪f≪40GHz	2.90dB	
6. AC Power line Conducted Emission	150kHz≪f≪30MHz	2.62dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement I	Limit:
---------------	--------

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than
	that furnished by the responsible party shall be used with the device. The use
	of a permanently attached antenna or of an antenna that uses a unique
	coupling to the intentional radiator shall be considered sufficient to comply
	with the provisions of this section. The manufacturer may design the unit so
	that a broken antenna can be replaced by the user, but the use of a standard
FCC CRF Part	antenna jack or electrical connector is prohibited. This requirement does not
15.203	apply to carrier current devices or to devices operated under the provisions of
15.205	§15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement
	does not apply to intentional radiators that must be professionally installed,
	such as perimeter protection systems and some field disturbance sensors, or
	to other intentional radiators which, in accordance with §15.31(d), must be
	measured at the installation site. However, the installer shall be responsible
	for ensuring that the proper antenna is employed so that the limits in this part
	are not exceeded.

Note: The Directional gains of antenna used for transmitting is 0 dBi (Antenna 0), -2.1 dBi (Antenna 1). The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Output Power

Measurement of method :See ANSI C63.10-Clause 11.9.2.3.2

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247(b) & RSS-247 section 5.4	< 30	< 36

Measurement Results:

Antenna 0 (SISO)

Mode	Frequency (MHz)	Test Result (dBm)	E.I.R.P (dBm)	Conclusion
	2412 (CH1)	16.81	16.81	Р
802.11b	2437 (CH6)	17.52	17.52	Р
	2462 (CH11)	16.13	16.13	Р
	2412 (CH1)	14.73	14.73	Р
802.11g	2437 (CH6)	15.32	15.32	Р
	2462 (CH11)	14.18	14.18	Р
	2412 (CH1)	13.87	13.87	Р
802.11n HT20	2437 (CH6)	14.57	14.57	Р
	2462 (CH11)	13.34	13.34	Р
	2422 (CH3)	14.37	14.37	Р
802.11n HT40	2437 (CH6)	14.07	14.07	Р
	2452 (CH9)	13.31	13.31	Р
	2412 (CH1)	13.07	13.07	Р
802.11ax HE20	2437 (CH6)	13.81	13.81	Р
	2462 (CH11)	12.63	12.63	Р
	2422 (CH3)	13.18	13.18	Р
802.11ax HE40	2437 (CH6)	13.21	13.21	Р
	2452 (CH9)	12.24	12.24	Р

Antenna 1 (SISO)

Mode	Frequency (MHz)	Test Result (dBm)	E.I.R.P (dBm)	Conclusion
	2412 (CH1)	15.67	13.57	Р
802.11b	2437 (CH6)	17.25	15.15	Р
	2462 (CH11)	15.31	13.21	Р
	2412 (CH1)	13.58	11.48	Р
802.11g	2437 (CH6)	15.02	12.92	Р
	2462 (CH11)	13.44	11.34	Р
	2412 (CH1)	12.67	10.57	Р
802.11n HT20	2437 (CH6)	14.17	12.07	Р
	2462 (CH11)	12.16	10.06	Р
	2422 (CH3)	13.31	11.21	Р
802.11n HT40	2437 (CH6)	13.96	11.86	Р
	2452 (CH9)	12.81	10.71	Р
	2412 (CH1)	12.01	9.91	Р
802.11ax HE20	2437 (CH6)	13.51	11.41	Р
	2462 (CH11)	12.11	10.01	Р
	2422 (CH3)	12.23	10.13	Р
802.11ax HE40	2437 (CH6)	12.74	10.64	Р
	2452 (CH9)	11.67	9.57	Р

Antenna 01 (MIMO)

Mode	Frequency (MHz)	Test Result (dBm)	E.I.R.P (dBm)	Conclusion
	2412 (CH1)	16.21	16.21	Р
802.11n HT20	2437 (CH6)	17.40	17.40	Р
	2462 (CH11)	16.17	16.17	Р
	2422 (CH3)	15.98	15.98	Р
802.11n HT40	2437 (CH6)	15.99	15.99	Р
	2452 (CH9)	15.29	15.29	Р
802.11ax HE20	2412 (CH1)	14.72	14.72	Р
	2437 (CH6)	15.88	15.88	Р
	2462 (CH11)	14.51	14.51	Р
802.11ax HE40	2422 (CH3)	14.87	14.87	Р
	2437 (CH6)	14.82	14.82	Р
	2452 (CH9)	14.08	14.08	Р

Note:

The data rate 1Mbps (11b mode), 6Mbps (11g mode), MCS0 (11n mode) and MCS0 (11ax mode)

are selected as the Worst-Case. **Antenna 0** is selected as the worst condition (SISO). The following cases and test graphs are performed with this condition. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%. E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

A.2 Peak Power Spectral Density

Measurement Limit:

Standard	Limit	
FCC CRF Part 15.247(e) & RSS-247 section 5.2	< 8 dBm/3 kHz	

Measurement Results:

SISO

Mode	Channel	Frequency (MHz)	Test Results (dBm)		Conclusion
	CH 1	2412	Fig.1	-8.56	Р
802.11b	CH 6	2437	Fig.2	-7.37	Р
	CH 11	2462	Fig.3	-8.88	Р
	CH 1	2412	Fig.4	-12.23	Р
802.11g	CH 6	2437	Fig.5	-11.11	Р
	CH 11	2462	Fig.6	-12.80	Р
000.44	CH 1	2412	Fig.7	-12.29	Р
802.11n HT20	CH 6	2437	Fig.8	-12.32	Р
П120	CH 11	2462	Fig.9	-12.76	Р
900 1 1 m	CH 3	2422	Fig.10	-14.90	Р
802.11n HT40	CH 6	2437	Fig.11	-15.15	Р
	CH 9	2452	Fig.12	-15.12	Р
802.11ax HE20	CH 1	2412	Fig.13	-14.79	Р
	CH 6	2437	Fig.14	-13.97	Р
	CH 11	2462	Fig.15	-14.20	Р
802.11ax HE40	CH 3	2422	Fig.16	-17.02	Р
	CH 6	2437	Fig.17	-16.71	Р
	CH 9	2452	Fig.18	-17.27	Р

ΜΙΜΟ

Mode	Channel	Frequency (MHz)	Test Results (dBm)	Conclusion
802.11n HT20	CH 1	2412	-9.81	Р
	CH 6	2437	-8.80	Р
	CH 11	2462	-10.04	Р
802.11n HT40	CH 3	2422	-11.23	Р
	CH 6	2437	-11.38	Р
	CH 9	2452	-12.00	Р
802.11ax HE20	CH 1	2412	-10.81	Р
	CH 6	2437	-10.04	Р
	CH 11	2462	-11.02	Р

802.11ax HE40	CH 3	2422	-13.74	Р
	CH 6	2437	-12.56	Р
	CH 9	2452	-13.59	Р

See below for test graphs. Conclusion: PASS

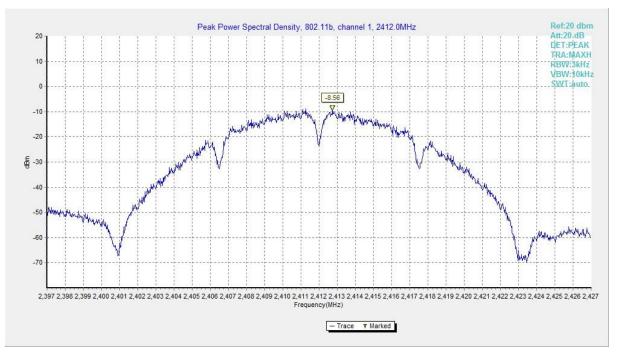


Fig.1Power Spectral Density (802.11b, CH 1)

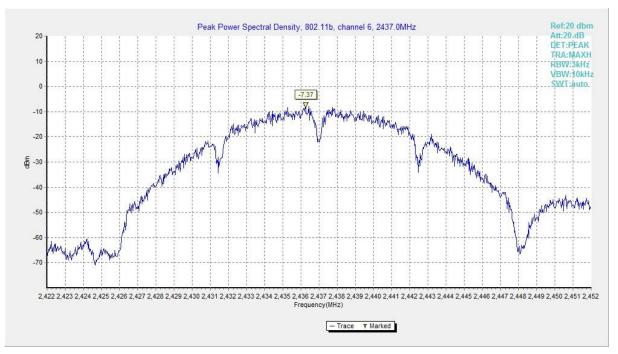


Fig.2 Power Spectral Density (802.11b, CH 6)

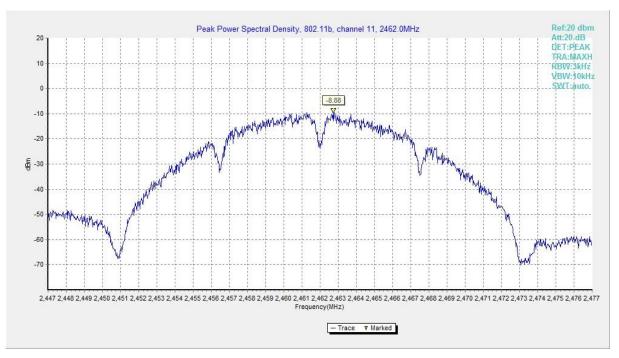


Fig.3 Power Spectral Density (802.11b, CH 11)

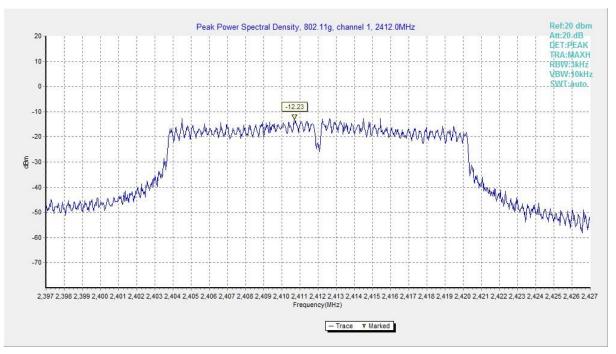


Fig.4 Power Spectral Density (802.11g, CH 1)

Fig.5 Power Spectral Density (802.11g, CH 6)

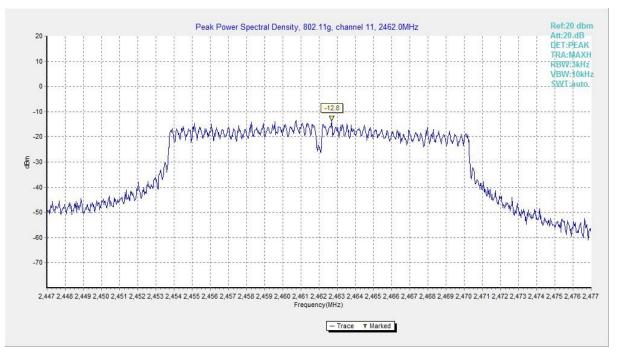


Fig.6 Power Spectral Density (802.11g, CH 11)

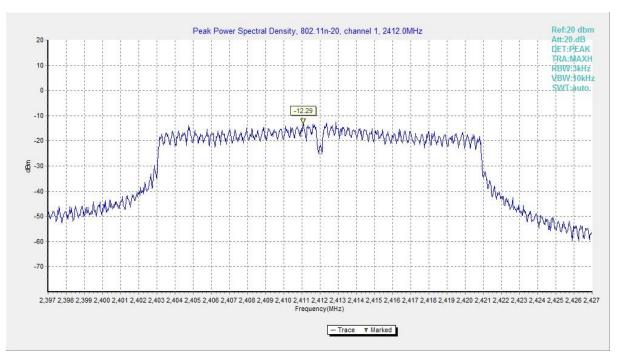


Fig.7 Power Spectral Density (802.11n HT20, CH 1)

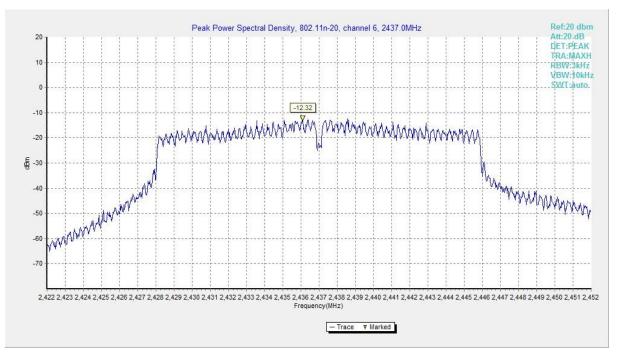


Fig.8 Power Spectral Density (802.11n HT20, CH 6)

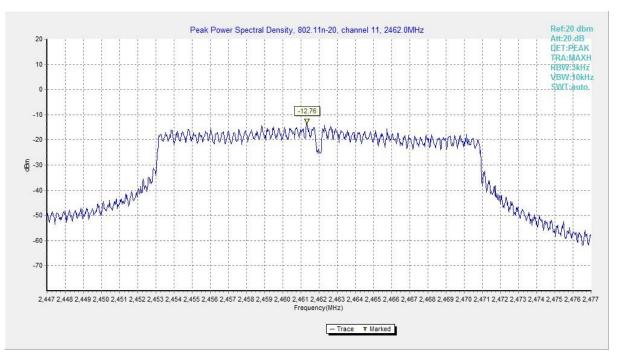


Fig.9 Power Spectral Density (802.11n HT20, CH 11)

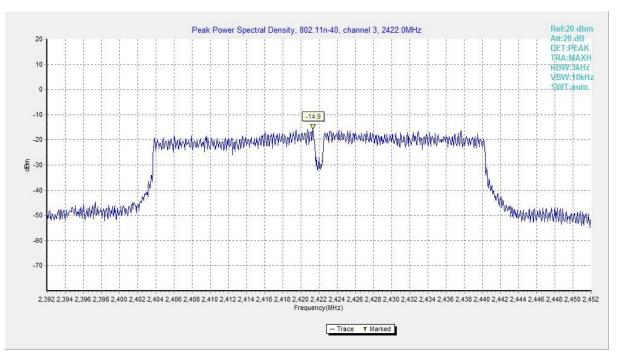


Fig.10 Power Spectral Density (802.11n HT40, CH 3)

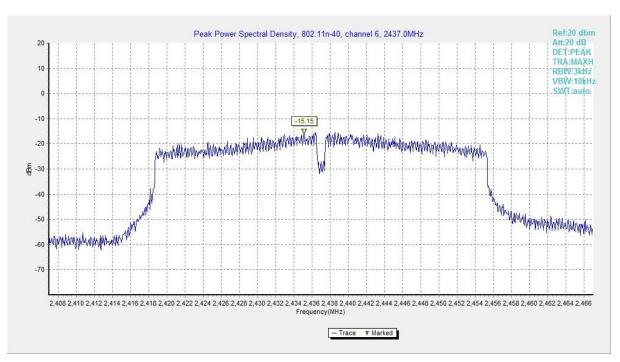


Fig.11 Power Spectral Density (802.11n HT40, CH 6)

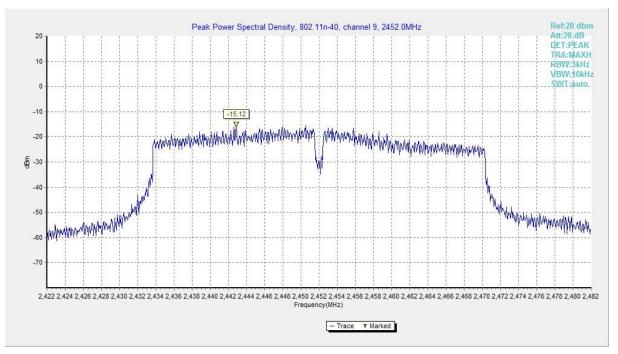


Fig.12 Power Spectral Density (802.11n HT40, CH 9)

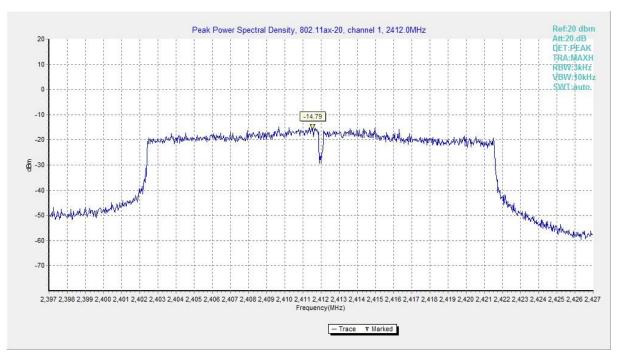


Fig.13 Power Spectral Density (802.11ax HE20, CH 1)

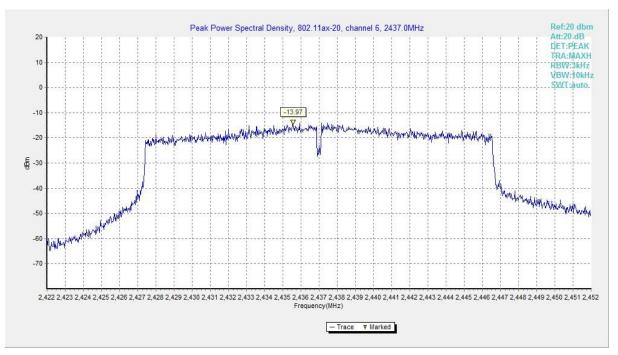


Fig.14 Power Spectral Density (802.11ax HE20, CH 6)

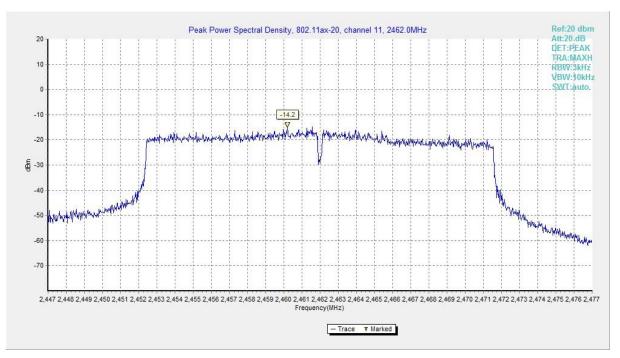


Fig.15 Power Spectral Density (802.11ax HE20, CH 11)

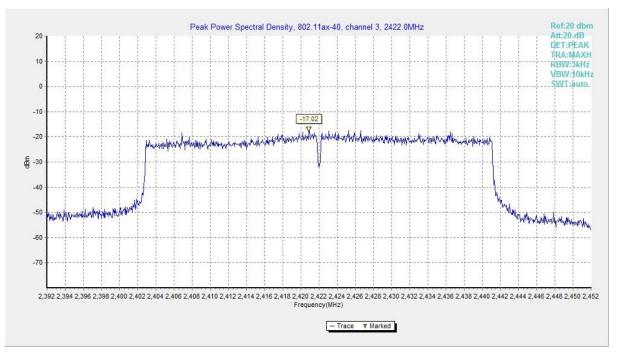


Fig.16 Power Spectral Density (802.11ax HE40, CH 3)

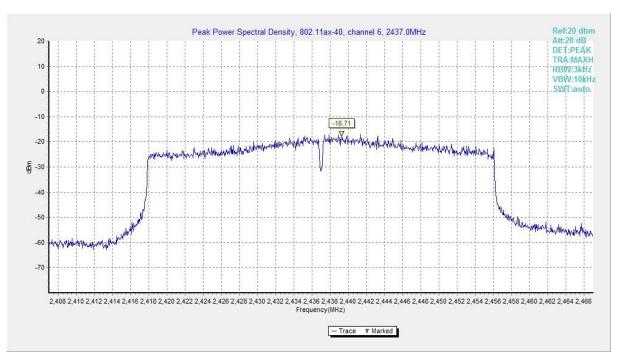


Fig.17 Power Spectral Density (802.11ax HE40, CH 6)

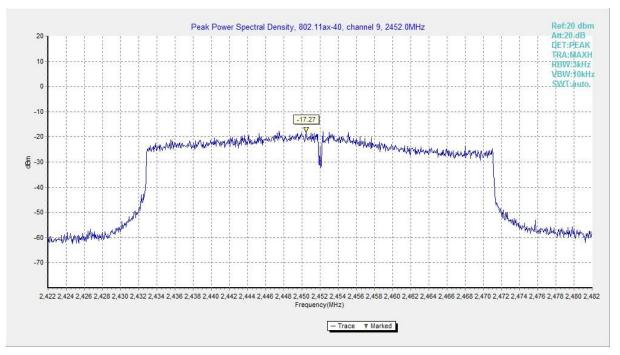


Fig.18 Power Spectral Density (802.11ax HE40, CH 9)

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)	
FCC 47 CFR Part 15.247 (a) RSS-247 section 5.2	≥ 500	

Measurement Result:

Mode	Channel	Frequency (MHz)	Test Results (kHz)		Conclusion
	CH 1	2412	Fig.19	8050	Р
802.11b	CH 6	2437	Fig.20	8100	Р
	CH 11	2462	Fig.21	8550	Р
	CH 1	2412	Fig.22	15300	Р
802.11g	CH 6	2437	Fig.23	15000	Р
	CH 11	2462	Fig.24	15700	Р
000 11 -	CH 1	2412	Fig.25	15050	Р
802.11n HT20	CH 6	2437	Fig.26	15100	Р
H120	CH 11	2462	Fig.27	16250	Р
902.11	CH 3	2422	Fig.28	35680	Р
802.11n HT40	CH 6	2437	Fig.29	33840	Р
	CH 9	2452	Fig.30	31360	Р
802.11ax HE20	CH 1	2412	Fig.31	17250	Р
	CH 6	2437	Fig.32	16050	Р
	CH 11	2462	Fig.33	16950	Р
802.11ax HE40	CH 3	2422	Fig.34	37520	Р
	CH 6	2437	Fig.35	32560	Р
	CH 9	2452	Fig.36	28800	Р

See below for test graphs. Conclusion: PASS

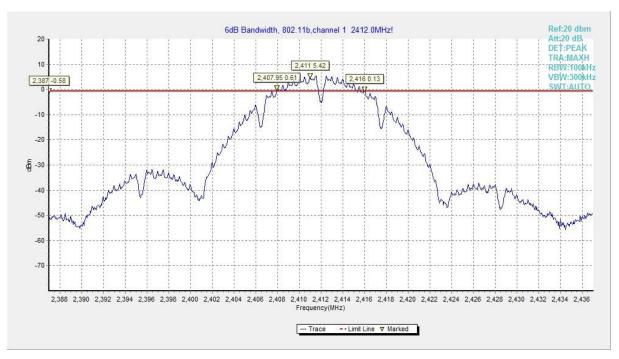


Fig.19 6dB Bandwidth (802.11b, CH 1)

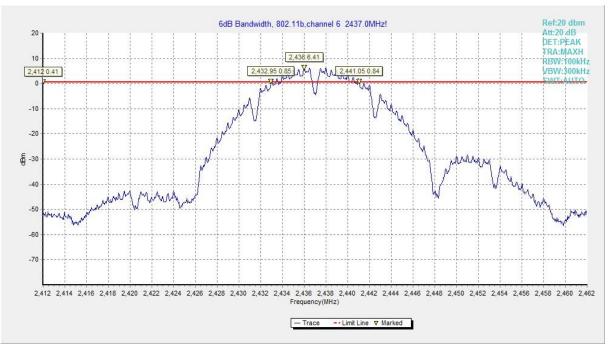


Fig.20 6dB Bandwidth (802.11b, CH 6)



Fig.21 6dB Bandwidth (802.11b, CH 11)

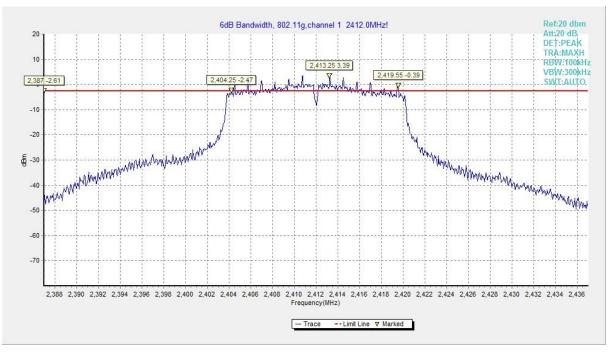


Fig.22 6dB Bandwidth (802.11g, CH 1)

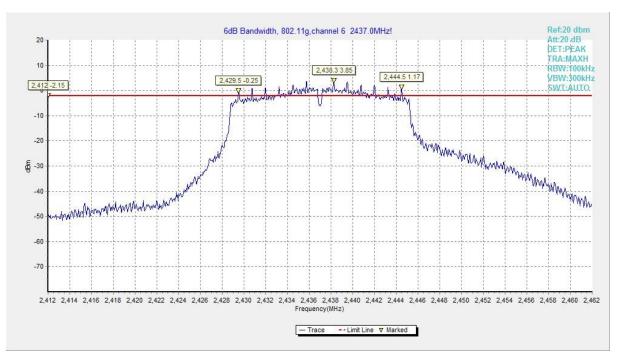


Fig.23 6dB Bandwidth (802.11g, CH 6)

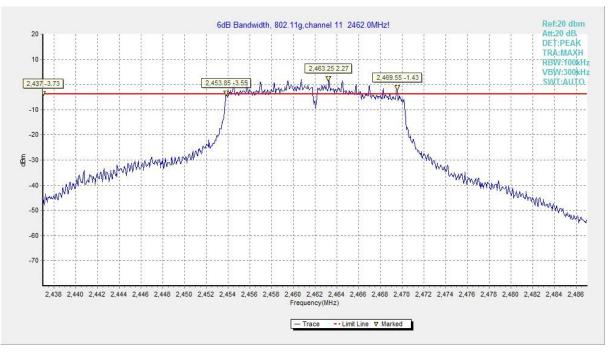


Fig.24 6dB Bandwidth (802.11g, CH 11)

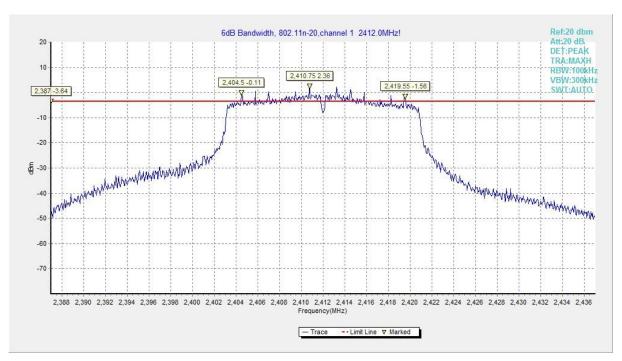


Fig.25 6dB Bandwidth (802.11n HT20, CH 1)

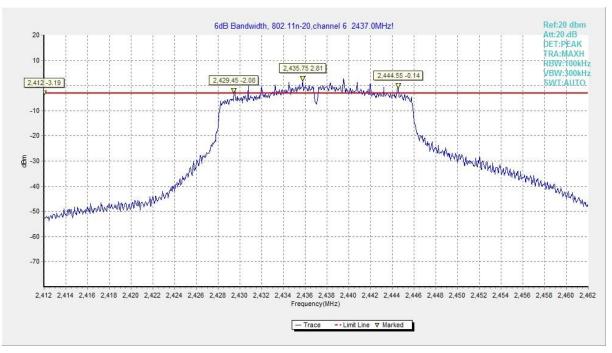


Fig.26 6dB Bandwidth (802.11n HT20, CH 6)

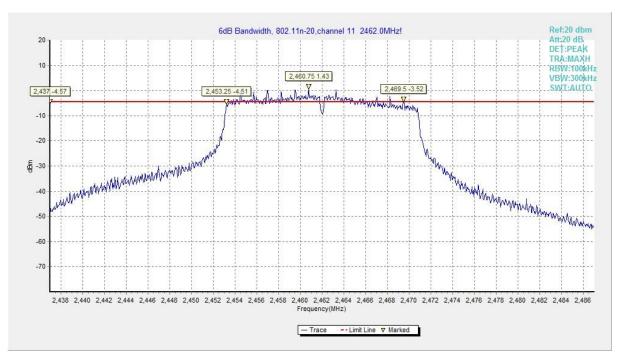


Fig.27 6dB Bandwidth (802.11n HT20, CH 11)

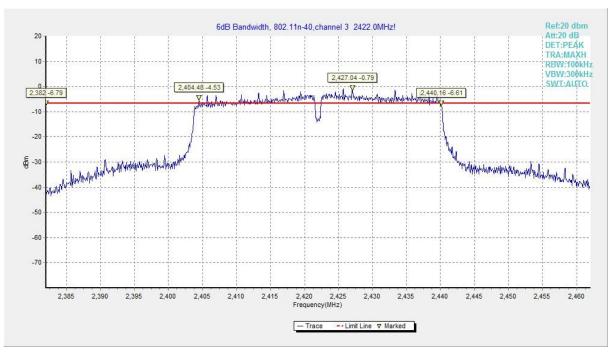


Fig.28 6dB Bandwidth (802.11n HT40, CH 3)

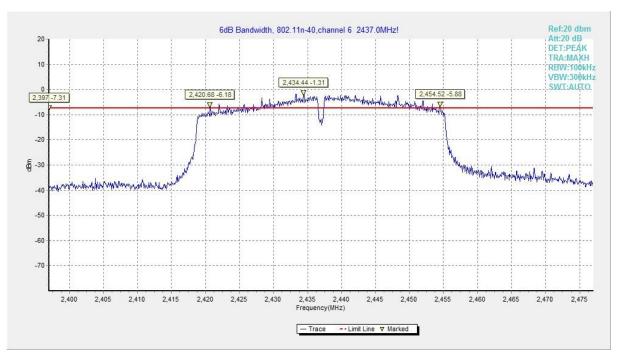


Fig.29 6dB Bandwidth (802.11n HT40, CH 6)

Fig.30 6dB Bandwidth (802.11n HT40, CH 9)

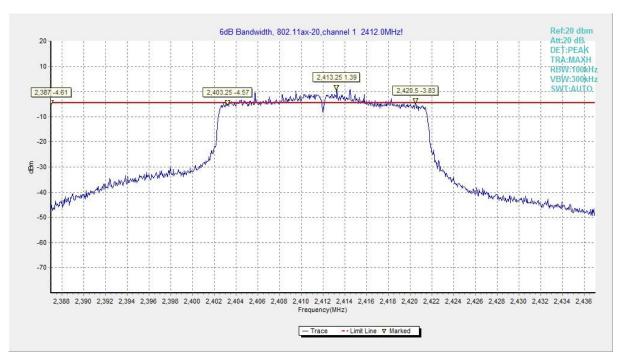


Fig.31 6dB Bandwidth (802.11ax HE20, CH 1)

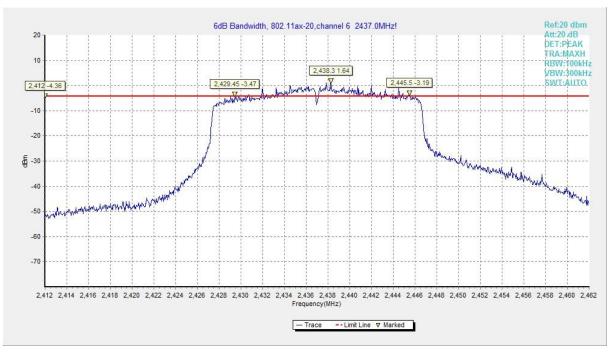


Fig.32 6dB Bandwidth (802.11ax HE20, CH 6)

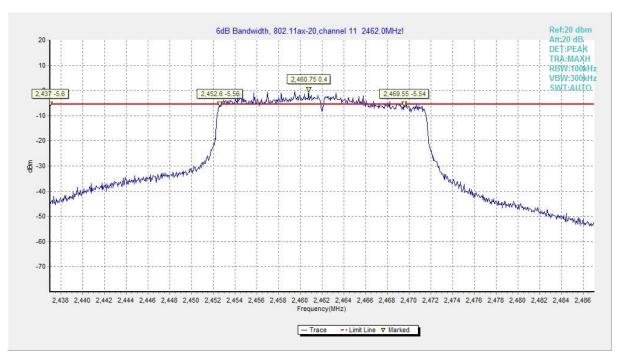


Fig.33 6dB Bandwidth (802.11ax HE20, CH 11)



Fig.34 6dB Bandwidth (802.11ax HE40, CH 3)



Fig.35 6dB Bandwidth (802.11ax HE40, CH 6)



Fig.36 6dB Bandwidth (802.11ax HE40, CH 9)

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dB)	
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5	> 20	

Measurement Result:

Mode	Channel	Frequency (MHz)	Test Results (dB)		Conclusion
802.11b	CH 1	2412	Fig.37	43.39	Р
002.110	CH 11	2462	Fig.38	60.73	Р
802.11g	CH 1	2412	Fig.39	32.97	Р
	CH 11	2462	Fig.40	50.95	Р
802.11n	CH 1	2412	Fig.41	30.77	Р
HT20	CH 11	2462	Fig.42	49.96	Р
802.11n	CH 3	2422	Fig.43	30.13	Р
HT40	CH 9	2452	Fig.44	37.33	Р
802.11ax	CH 1	2412	Fig.45	33.78	Р
HT20	CH 11	2462	Fig.46	49.46	Р
802.11ax	CH 3	2422	Fig.47	31.17	Р
HT40	CH 9	2452	Fig.48	38.28	Р

See below for test graphs. Conclusion: PASS

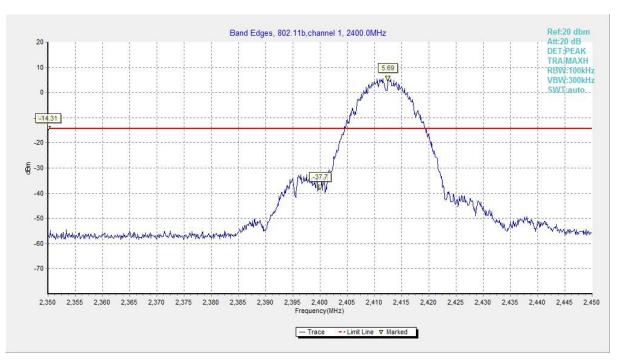


Fig.37 Band Edges (802.11b, CH 1)

Fig.38 Band Edges (802.11b, CH 11)

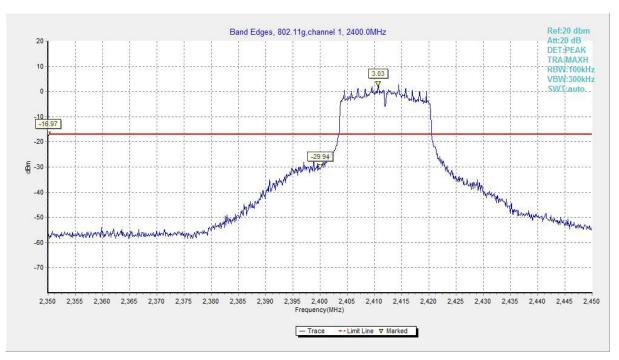


Fig.39 Band Edges (802.11g, CH 1)

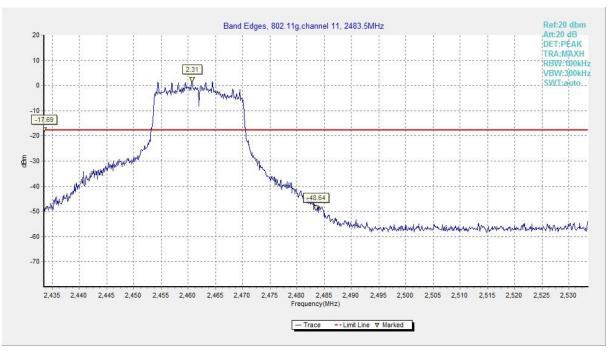


Fig.40 Band Edges (802.11g, CH 11)

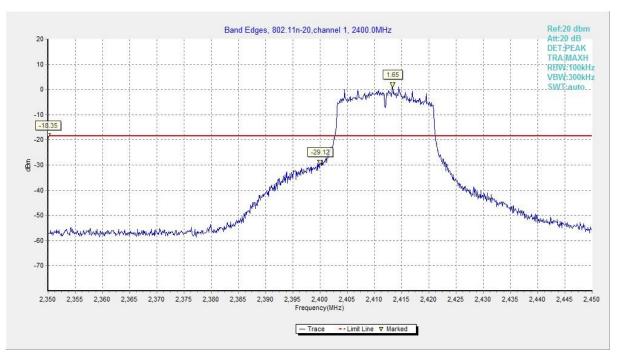


Fig.41 Band Edges (802.11n HT20, CH 1)

Fig.42 Band Edges (802.11n HT20, CH 11)

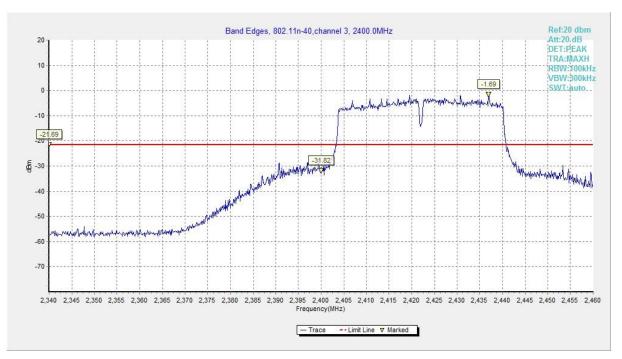


Fig.43 Band Edges (802.11n HT40, CH 3)

Fig.44 Band Edges (802.11n HT40, CH 9)

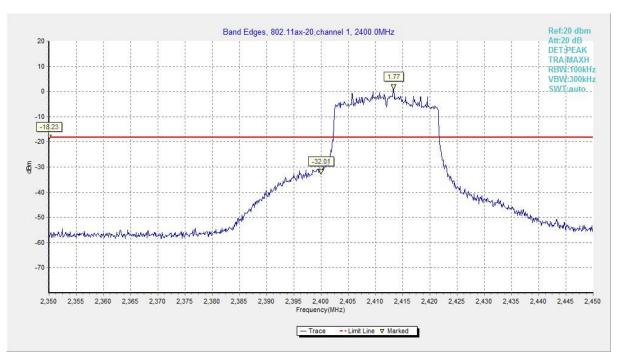


Fig.45 Band Edges (802.11ax HE20, CH 1)

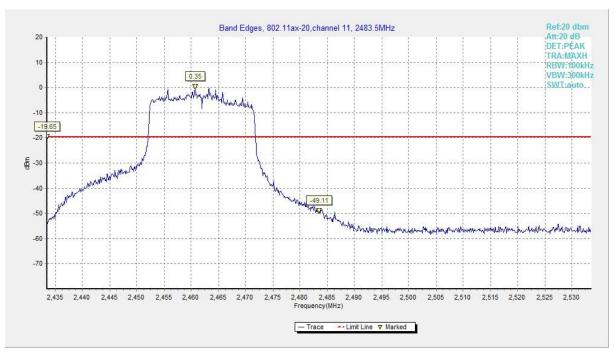


Fig.46 Band Edges (802.11ax HE20, CH 11)

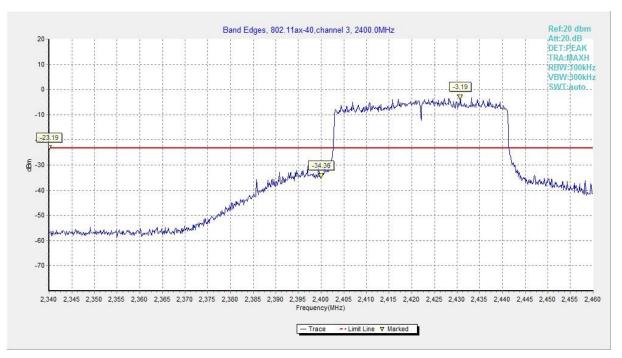


Fig.47 Band Edges (802.11ax HE40, CH 3)

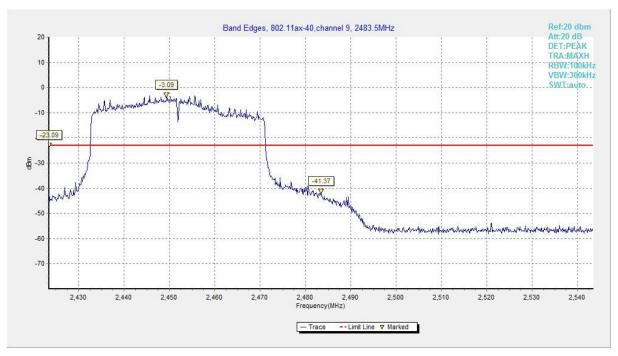


Fig.48 Band Edges (802.11ax HE40, CH 9)

A.5 Conducted Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) & RSS-247	30dB below peak output power in 100kHz
section 5.5/RSS-Gen section 6.13	bandwidth

Measurement Results:

Mode	Channel	Frequency (MHz)	Frequency Range	Test Results	Conclusion
802.11b	CH 1	2412	30MHz-26GHz	Fig.49	Р
	CH 6	2437	30MHz-26GHz	Fig.50	Р
	CH 11	2462	30MHz-26GHz	Fig.51	Р
802.11g	CH 1	2412	30MHz-26GHz	Fig.52	Р
	CH 6	2437	30MHz-26GHz	Fig.53	Р
	CH 11	2462	30MHz-26GHz	Fig.54	Р
802.11n HT20 -	CH 1	2412	30MHz-26GHz	Fig.55	Р
	CH 6	2437	30MHz-26GHz	Fig.56	Р
	CH 11	2462	30MHz-26GHz	Fig.57	Р
802.11n HT40	CH 3	2422	30MHz-26GHz	Fig.58	Р
	CH 6	2437	30MHz-26GHz	Fig.59	Р
	CH 9	2452	30MHz-26GHz	Fig.60	Р
802.11ax - HE20 -	CH 1	2412	30MHz-26GHz	Fig.61	Р
	CH 6	2437	30MHz-26GHz	Fig.62	Р
	CH 11	2462	30MHz-26GHz	Fig.63	Р
802.11ax - HE40 -	CH 3	2422	30MHz-26GHz	Fig.64	Р
	CH 6	2437	30MHz-26GHz	Fig.65	Р
	CH 9	2452	30MHz-26GHz	Fig.66	Р

See below for test graphs. Conclusion: PASS

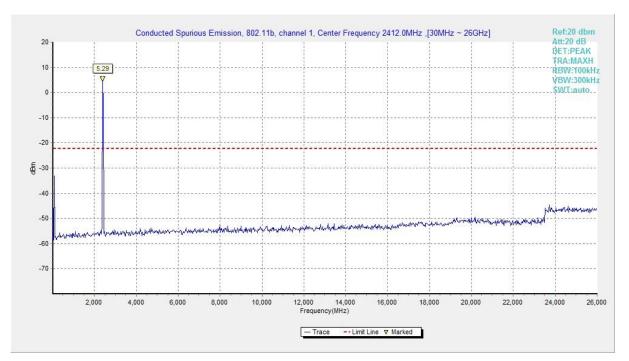


Fig.49 Conducted Spurious Emission (802.11b, CH1)

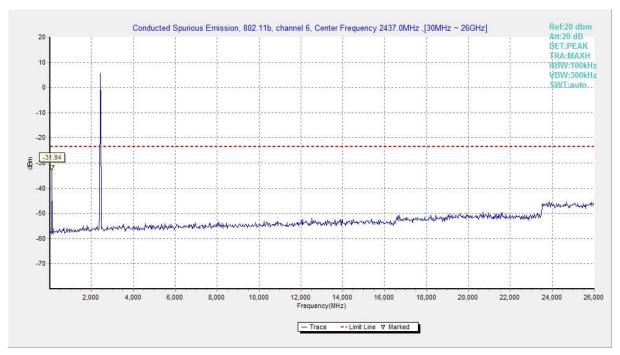


Fig.50 Conducted Spurious Emission (802.11b, CH6)

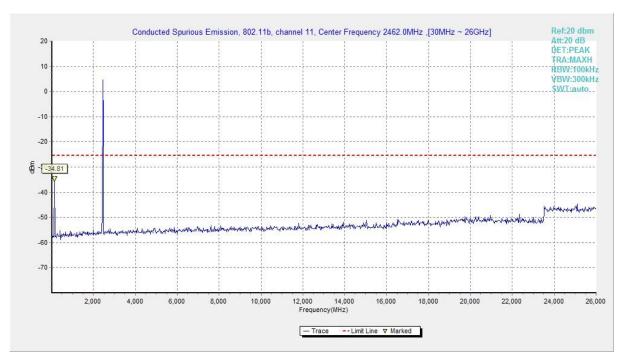


Fig.51 Conducted Spurious Emission (802.11b, CH11)

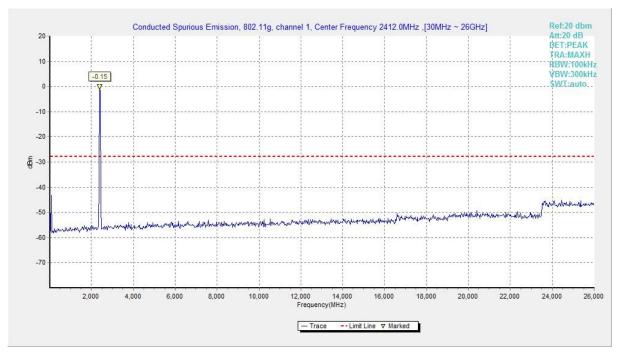


Fig.52 Conducted Spurious Emission (802.11g, CH1)

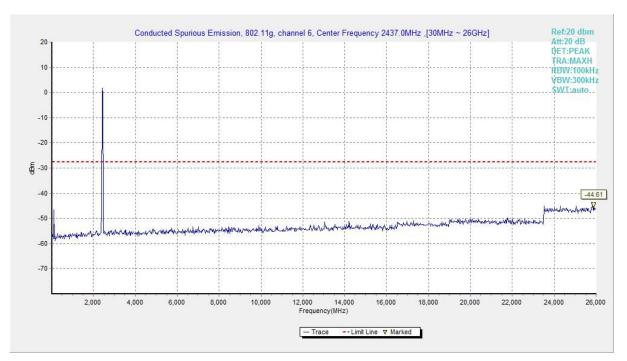


Fig.53 Conducted Spurious Emission (802.11g, CH6)

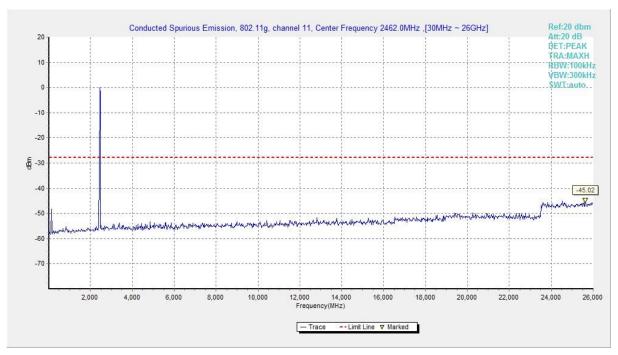


Fig.54 Conducted Spurious Emission (802.11g, CH11)

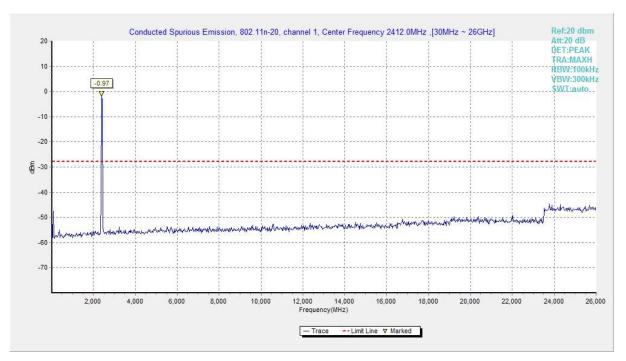


Fig.55 Conducted Spurious Emission (802.11n HT20, CH1)

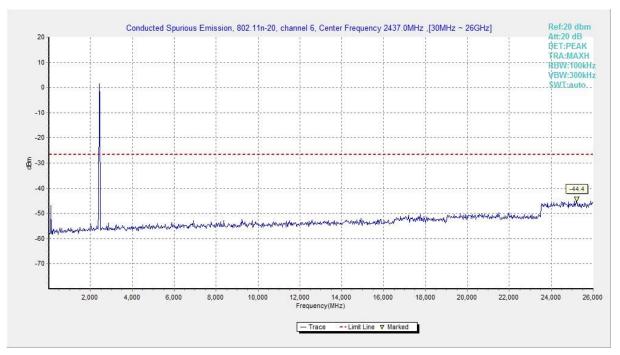


Fig.56 Conducted Spurious Emission (802.11n HT20, CH6)