

TEST REPORT

No. I22N02185-BLE

for

unitech electronics co., ltd.

Rugged Handheld Computer

Model Name: PA768

with

Hardware Version: FH09_MB_PCB_V1.3

Software Version: RAYA_V03.25b02_20221010

FCC ID: HLEPA768BWNW

IC: 6724A-PA768BWNW

Issued Date: 2022-12-15

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001 Email: yewu@caict.ac.cn, website: www.cszit.com

©Copyright. All rights reserved by SAICT.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22N02185-BLE	Rev.0	1st edition	2022-12-15

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

1. SU	UMMARY OF TEST REPORT	4
1.1.	TEST ITEMS	4
1.2.	TEST STANDARDS	4
1.3.	TEST RESULT	4
1.4.	TESTING LOCATION	4
1.5.	Project data	4
1.6.	Signature	4
2. C	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	6
4. R	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. T	EST RESULTS	8
5.1.	TESTING ENVIRONMENT	8
5.2.	TEST RESULTS	8
5.3.	STATEMENTS	8
6. T	EST EQUIPMENTS UTILIZED	9
7. L	ABORATORY ENVIRONMENT	10
8. M	IEASUREMENT UNCERTAINTY	11
ANNE	X A: DETAILED TEST RESULTS	12
A.0	Antenna requirement	12
A.11	MAXIMUM PEAK OUTPUT POWER	13
A.21	PEAK POWER SPECTRAL DENSITY	14
A.3	6DB BANDWIDTH	18
A.4]	BAND EDGES COMPLIANCE	22
A.5	Transmitter Spurious Emission - Conducted	25
A.6	Transmitter Spurious Emission - Radiated	34
	AC Power line Conducted Emission	
۸ ۷ (00% Occupied Randwidth	18

1. Summary of Test Report

1.1. Test Items

Description Rugged Handheld Computer

Model Name PA768

Applicant's name unitech electronics co., ltd.

Manufacturer's Name unitech electronics co., ltd.

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013; RSS-247 Issue 2; RSS-Gen Issue 5

1.3. Test Result

Pass

Please refer to 5.2 Test Results.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project data

Testing Start Date: 2022-10-26
Testing End Date: 2022-12-09

1.6. Signature

Lin Kanfeng

林仆丰

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

Address:

2. Client Information

2.1. Applicant Information

Company Name: unitech electronics co., ltd.

5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City Address:

231028 , Taiwan

Contact Person: Ben Chiang

E-Mail: BenC@tw.ute.com
Telephone: 886-2-8912-1122
FAX: 886-2-89121391

2.2. Manufacturer Information

Company Name: unitech electronics co., ltd.

5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City

231028, Taiwan

Contact Person: Ben Chiang

E-Mail: BenC@tw.ute.com
Telephone: 886-2-8912-1122
FAX: 886-2-89121391

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Rugged Handheld Computer

Model Name PA768

Frequency Range 2400MHz~2483.5MHz Equipment type Bluetooth® Low Energy

Type of Modulation GFSK RF PHY LE 1M/2M

Number of Channels 40

Antenna Type Integrated
Antenna Gain 0 dBi

Power Supply 3.85V DC by Battery FCC ID HLEPA768BWNW IC 6724A-PA768BWNW

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt	
UT05aa 3585852400018	250505240001057	FH09_MB_P	RAYA_V03.25b02_2022	2022 40 26	
	330303240001037	CB_V1.3	1010	2022-10-26	
LITOO	250505240004550	FH09_MB_P	RAYA_V03.25b02_2022	2022 40 20	
UT09aa	358585240001550	CB_V1.3	1010	2022-10-26	

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE No.	Description	AE ID*
AE1	Battery	1400-900069G
AE2	Charger	S018BYU12000150

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Rugged Handheld Computer with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

^{*}UT05aa is used for Conduction test; UT09aa is used for radiation test and AC Power line Conducted Emission test.

4. Reference Documents

4.1. <u>Documents supplied by applicant</u>

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part15	FCC CFR 47, Part 15, Subpart C:	2019		
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902-928MHz,			
	2400-2483.5 MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		
	Testing of Unlicensed Wireless Devices			
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2		
	Standards Specification	February,		
	Digital Transmission Systems (DTSs), Frequency Hopping	2017		
	Systems (FHSs) and License-Exempt Local Area Network			
	(LE-LAN) Devices			
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5 A2		
	Standards Specification	February,		
	General Requirements for Compliance of Radio Apparatus	2021		

5. Test Results

5.1. Testing Environment

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	/	Р
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р
3	6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р
5	Transmitter Spurious Emission -	15 247 (d)	RSS-247 section 5.5/	Р
5	Conducted	15.247 (d)	RSS-Gen section 6.13	P
6	Transmitter Spurious Emission -	15.247, 15.205,	RSS-247 section 5.5/	Р
0	Radiated	15.209	RSS-Gen section 6.13	Г
7	AC Power line Conducted	15 107 15 207	RSS-Gen section 8.8	Р
/	Emission	15.107, 15.207	KSS-Gen Section 8.8	P
8	99% Occupied Bandwidth	/	RSS-Gen section 6.7	1

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

	Johnadioa toot oyotom					
No. Equipment	Equipment	Model	Serial Manufacturer	Calibration	Calibration	
	Equipment	Wodei	Number	Manufacturei	Due Date	Period
4	Vector Signal	FSV40	100903	Rohde & Schwarz	2022-12-29	1 voor
'	Analyzer	F5V40	100903	Ronde & Schwarz	2022-12-29	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2022-12-29	1 year
3	Data Acquisiton	U2531A	TW55443507	Keysight	/	/
1	Shielding	C04	CT000986-13	CTC Lindaran	2026 00 12	Evere
4 Ro	Room	S81	44	ETS-Lindgren	2026-09-12	5 years

Radiated emission test system

Naui	Vadiated enhission test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due Date	Calibration Period
1	Test Receiver	ESR7	101676	R&S	2023-11-23	1 year
2	BiLog Antenna	3142E	0224831	ETS-lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-lindgren	2025-04-17	1 year
4	Anechoic Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years
5	Spectrum Analyzer	FSV40	101192	R&S	2023-01-12	1 year
6	Loop Antenna	HLA6120	35779	TESEQ	2025-05-10	3 years
7	Horn Antenna	QSH-SL-1 8-26-S-20	17013	Q-par	2023-01-06	3 years
8	Test Receiver	ESCI	100702	R&S	2023-01-12	1 year
9	LISN	ENV216	102067	R&S	2023-07-14	1 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω

Anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertainty (k=2)	
RF Output Power - Conducted	1.32	2dB
2. Power Spectral Density - Conducted	1.32dB	m/MHz
3. Occupied channel bandwidth - Conducted	4.56	SkHz
	30MHz≤f<1GHz	1.41dB
4 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
4. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
F. Transmitter Churique Emission Dadiated	30MHz≤f<1GHz	4.86dB
5. Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.50dB
	18GHz≤f≤40GHz	2.90dB
6. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement		
	An intentional radiator shall be designed to ensure that no antenna other		
	than that furnished by the responsible party shall be used with the device.		
	The use of a permanently attached antenna or of an antenna that uses a		
	unique coupling to the intentional radiator shall be considered sufficient to		
	comply with the provisions of this section. The manufacturer may design the		
	unit so that a broken antenna can be replaced by the user, but the use of a		
FCC CRF Part	standard antenna jack or electrical connector is prohibited. This requirement		
15.203	does not apply to carrier current devices or to devices operated under the		
13.203	provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this		
	requirement does not apply to intentional radiators that must be		
	professionally installed, such as perimeter protection systems and some		
	field disturbance sensors, or to other intentional radiators which, in		
	accordance with §15.31(d), must be measured at the installation site.		
	However, the installer shall be responsible for ensuring that the proper		
	antenna is employed so that the limits in this part are not exceeded.		

Note: The Directional gains of antenna used for transmitting is 0 dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247 (b) & RSS-247 section 5.4	< 30	< 36

Measurement Results:

Mode	Frequency (MHz)	Peak Conducted Output Power (dBm)	E.I.R.P (dBm)	Conclusion
	2402 (CH0)	-0.42	-0.42	Р
LE-1M	2440 (CH19)	0.17	0.17	Р
	2480 (CH39)	-0.30	-0.30	Р
	2402 (CH0)	-0.55	-0.55	Р
LE-2M	2440 (CH19)	0.08	0.08	Р
	2480 (CH39)	-0.42	-0.42	Р

Note: E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247 (e) & RSS-247 section 5.2	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402 (CH0)	Fig.1	-15.69	Р
LE-1M	2440 (CH19)	Fig.2	-14.90	Р
	2480 (CH39)	Fig.3	-15.43	Р
	2402 (CH0)	Fig.4	-19.97	Р
LE-2M	2440 (CH19)	Fig.5	-19.17	Р
	2480 (CH39)	Fig.6	-19.66	Р

See below for test graphs.

Conclusion: PASS

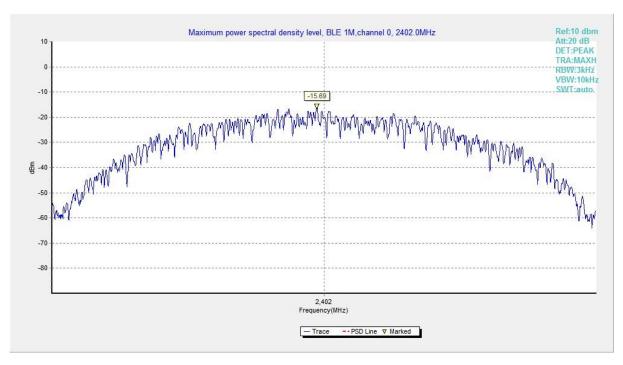


Fig.1 Power Spectral Density (Ch 0), LE 1M

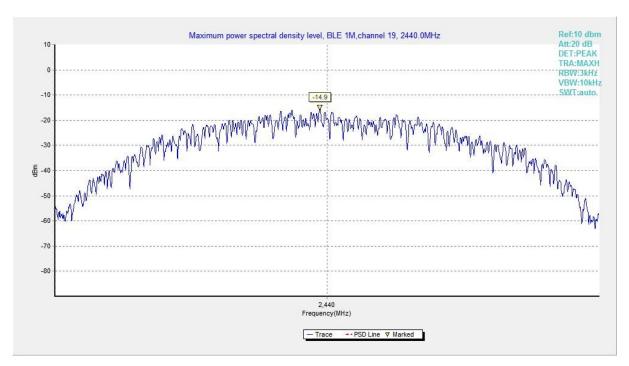


Fig.2 Power Spectral Density (Ch 19), LE 1M

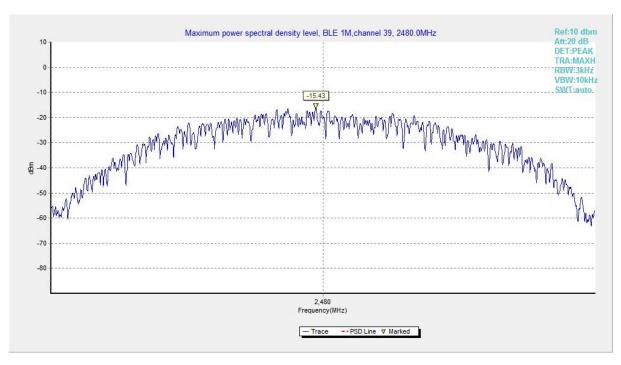


Fig.3 Power Spectral Density (Ch 39), LE 1M

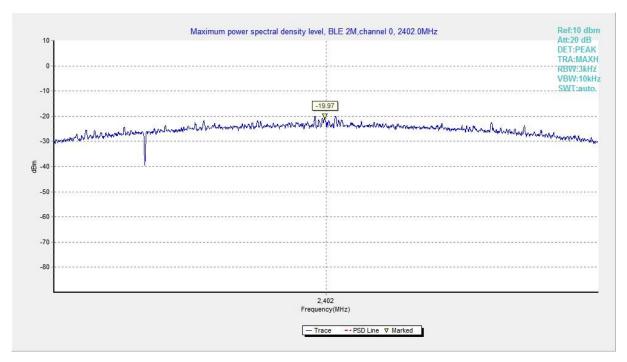


Fig.4 Power Spectral Density (Ch 0), LE 2M

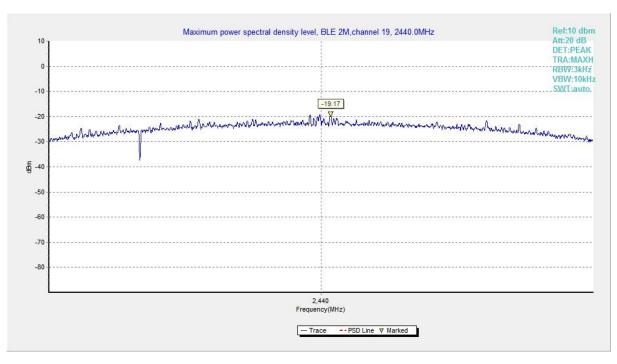


Fig.5 Power Spectral Density (Ch 19), LE 2M

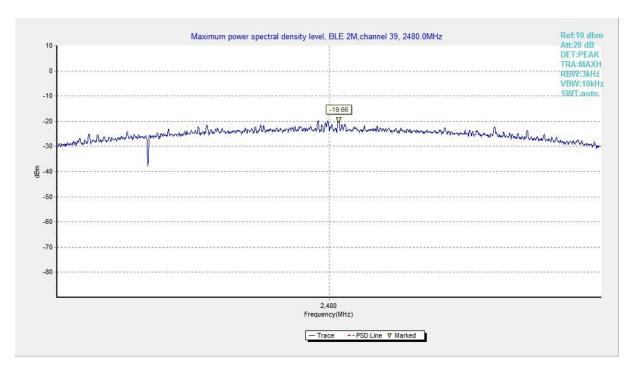


Fig.6 Power Spectral Density (Ch 39), LE 2M

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a) & RSS-247 section 5.2	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402 (CH0)	Fig.7	674.50	Р
LE-1M	2440 (CH19)	Fig.8	673.50	Р
	2480 (CH39)	Fig.9	671.50	Р
	2402 (CH0)	Fig.10	1159.00	Р
LE-2M	2440 (CH19)	Fig.11	1159.50	Р
	2480 (CH39)	Fig.12	1159.00	Р

See below for test graphs.

Conclusion: PASS

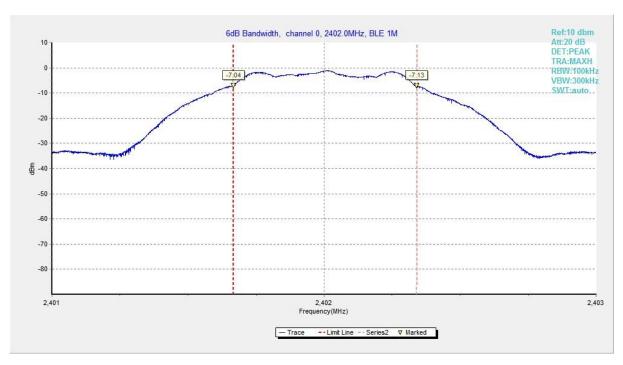


Fig.7 6dB Bandwidth (Ch 0), LE 1M

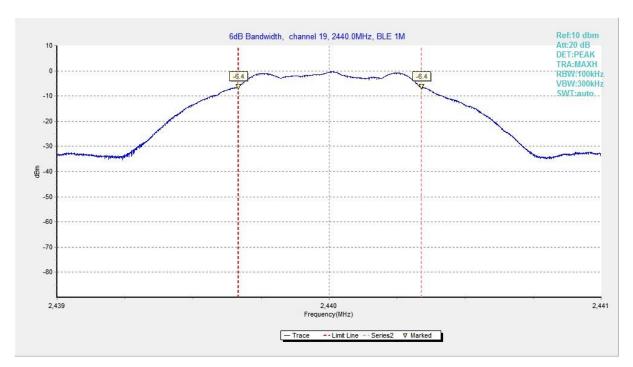


Fig.8 6dB Bandwidth (Ch 19), LE 1M

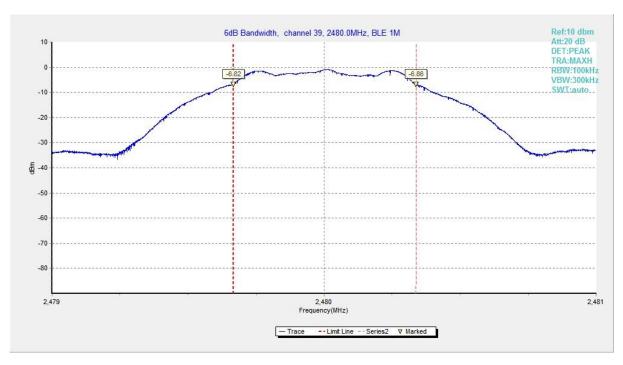


Fig.9 6dB Bandwidth (Ch 39), LE 1M

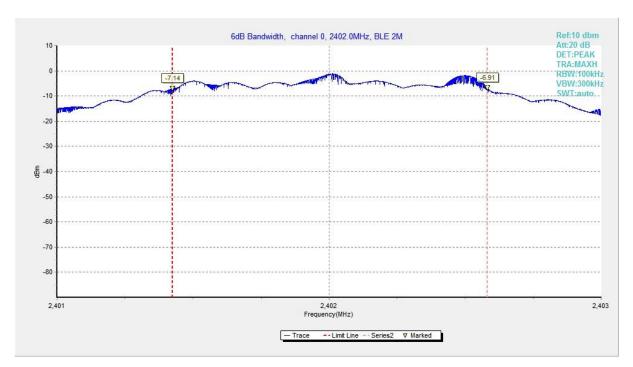


Fig.10 6dB Bandwidth (Ch 0), LE 2M

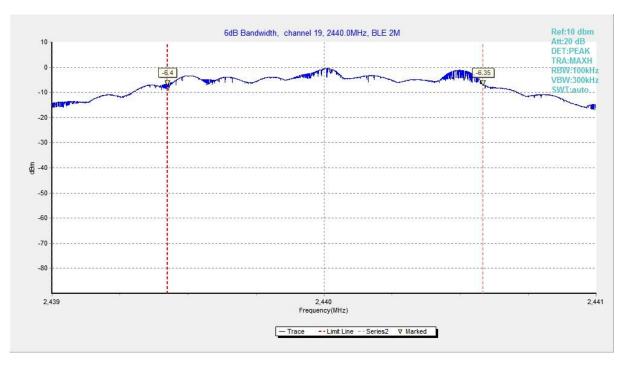


Fig.11 6dB Bandwidth (Ch 19), LE 2M

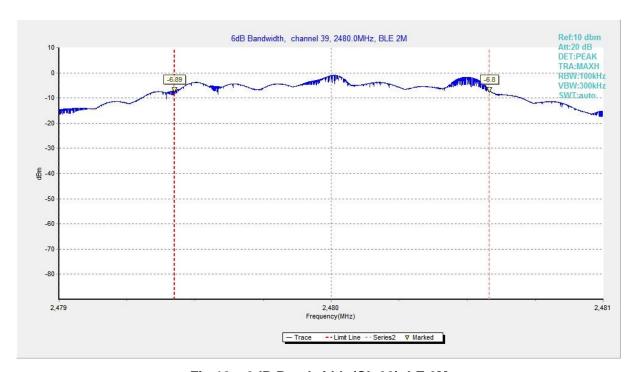


Fig.12 6dB Bandwidth (Ch 39), LE 2M

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results (dB)		Conclusion
LE-1M	2402 (CH0)	Fig.13	56.65	Р
LE-TIVI	2480 (CH39)	Fig.14	59.54	Р
LE-2M	2402 (CH0)	Fig.15	40.16	Р
LE-ZIVI	2480 (CH39)	Fig.16	54.67	Р

See below for test graphs.

Conclusion: Pass

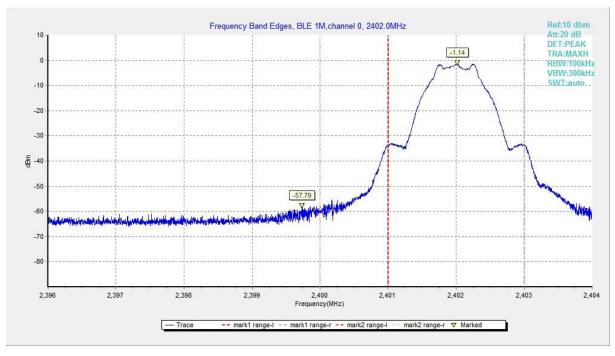


Fig.13 Band Edges (Ch 0), LE 1M

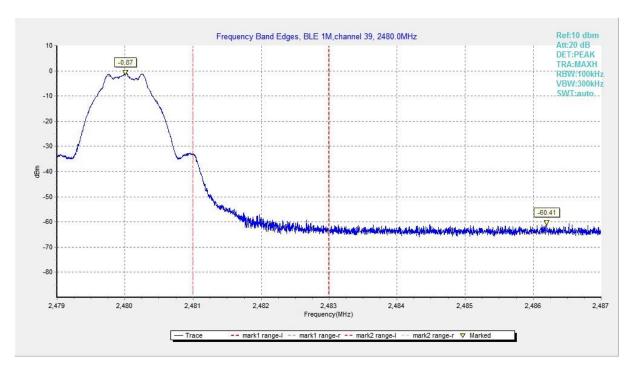


Fig.14 Band Edges (Ch 39), LE 1M

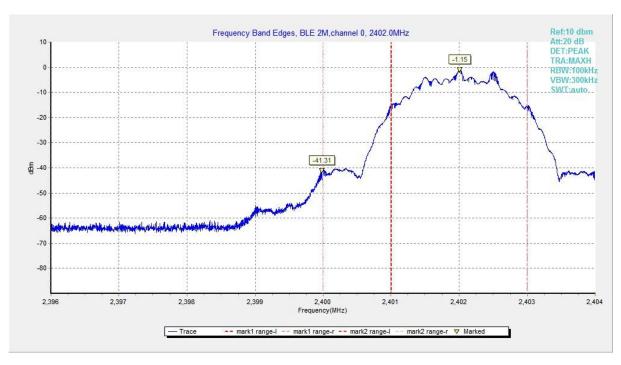


Fig.15 Band Edges (Ch 0), LE 2M

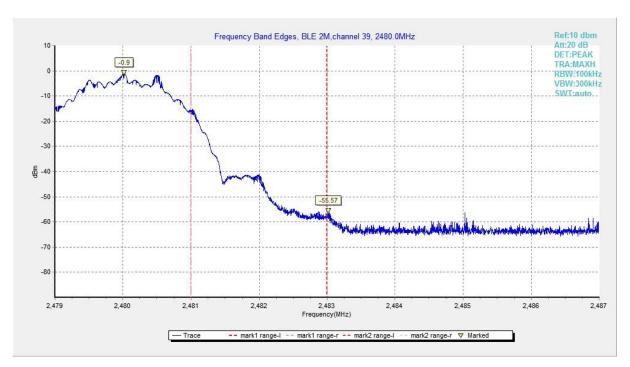


Fig.16 Band Edges (Ch 39), LE 2M

A.5 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247 (d) & RSS-247	20dD below peak output newer in 100kl Iz bandwidth
section 5.5/RSS-Gen section 6.13	20dB below peak output power in 100kHz bandwidth

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~ 3 GHz	Fig.17	Р
	0	3 GHz ~ 10 GHz	Fig.18	Р
	19	1 GHz ~ 3 GHz	Fig.19	Р
LE-1M	19	3 GHz ~ 10 GHz	Fig.20	Р
LE-TIVI	39	1 GHz ~ 3 GHz	Fig.21	Р
	39	3 GHz ~ 10 GHz	Fig.22	Р
	All channels	30 MHz ~ 1 GHz	Fig.23	Р
	All Charmers	10 GHz ~ 26 GHz	Fig.24	Р
	19 39	1 GHz ~ 3 GHz	Fig.25	Р
		3 GHz ~ 10 GHz	Fig.26	Р
		1 GHz ~ 3 GHz	Fig.27	Р
LE-2M		3 GHz ~ 10 GHz	Fig.28	Р
LE-ZIVI		1 GHz ~ 3 GHz	Fig.29	Р
		3 GHz ~ 10 GHz	Fig.30	Р
	All abannals	30 MHz ~ 1 GHz	Fig.31	Р
	All channels	10 GHz ~ 26 GHz	Fig.32	Р

See below for test graphs.

Conclusion: Pass

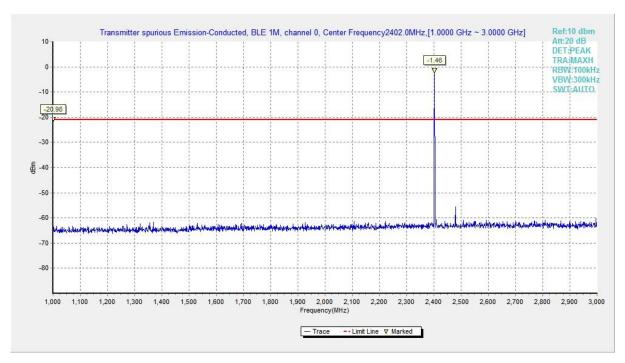


Fig.17 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 1M

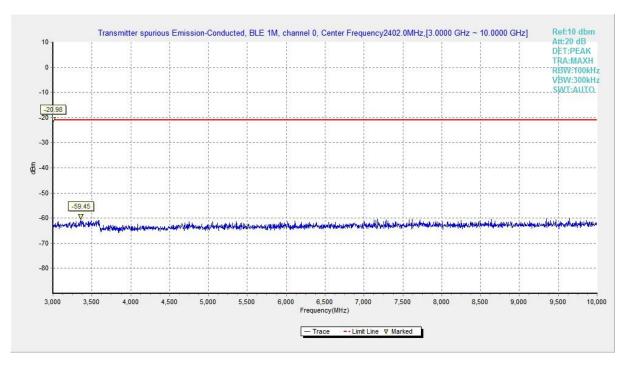


Fig.18 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 1M

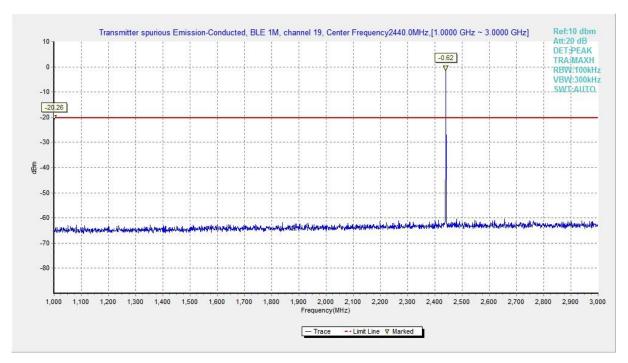


Fig.19 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 1M

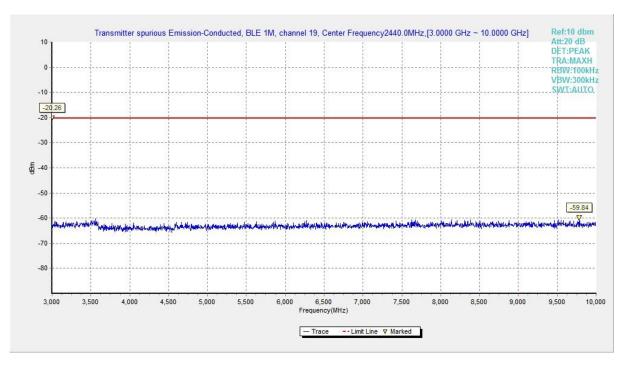


Fig.20 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 1M

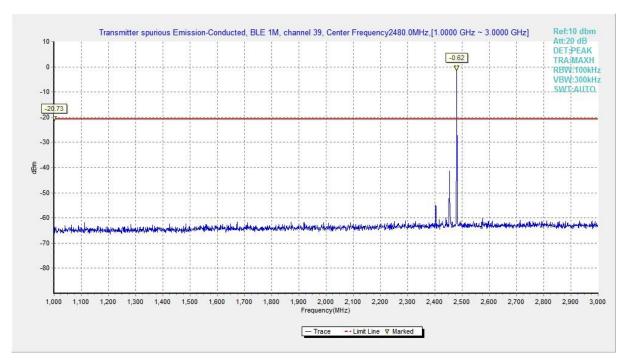


Fig.21 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 1M

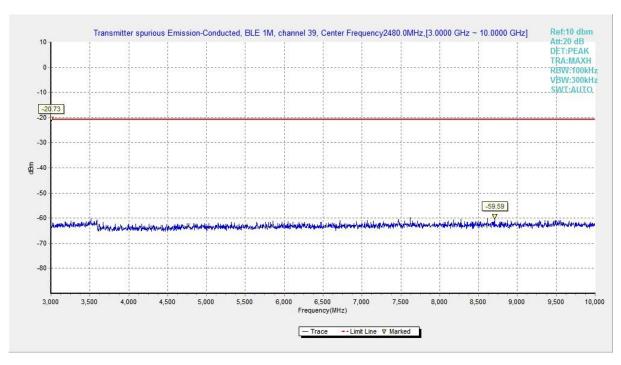


Fig.22 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 1M

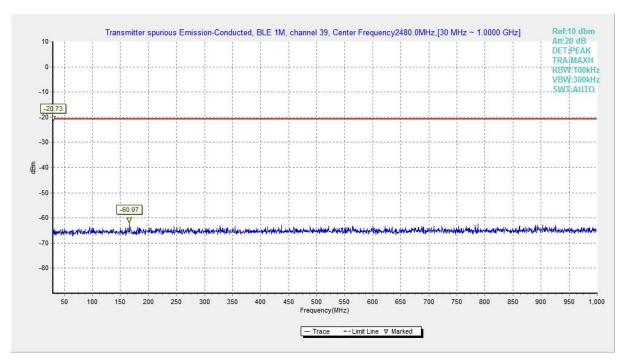


Fig.23 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 1M

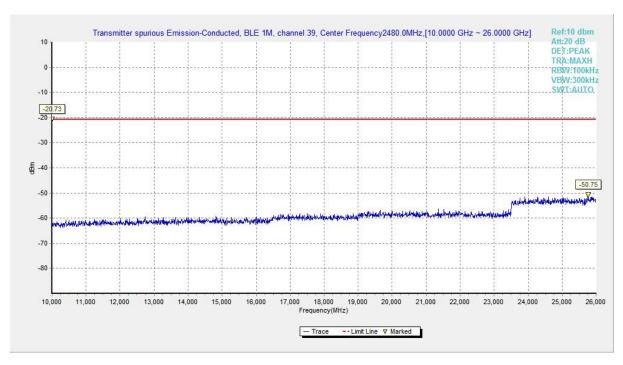


Fig.24 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 1M

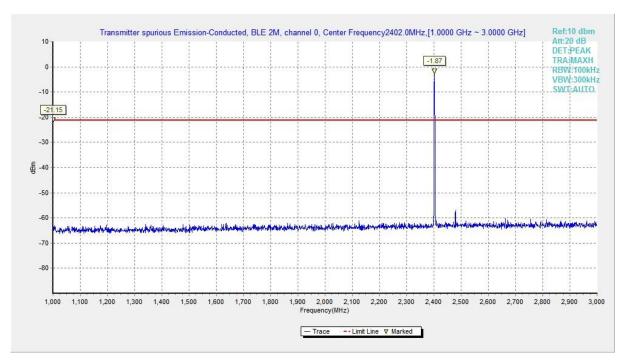


Fig.25 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 2M

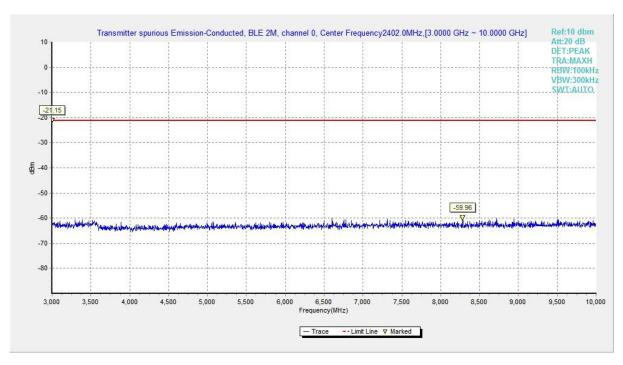


Fig.26 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 2M

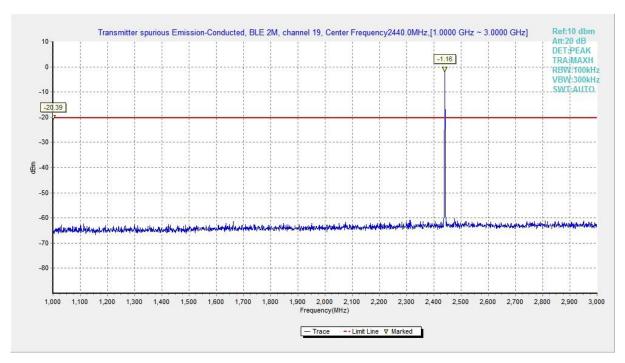


Fig.27 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 2M

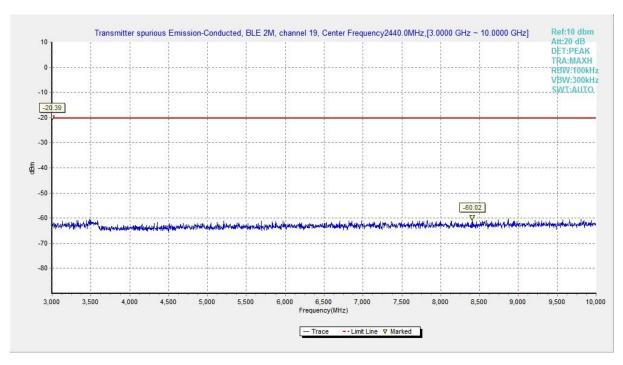


Fig.28 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 2M

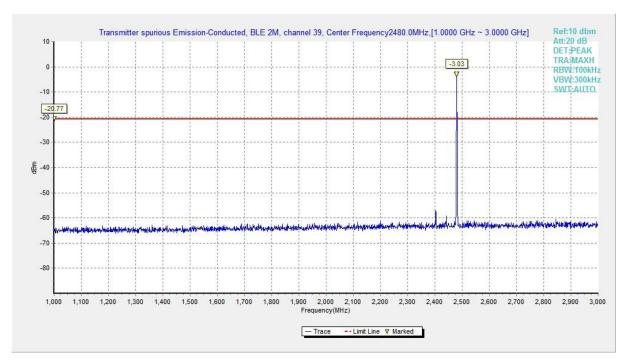


Fig.29 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 2M

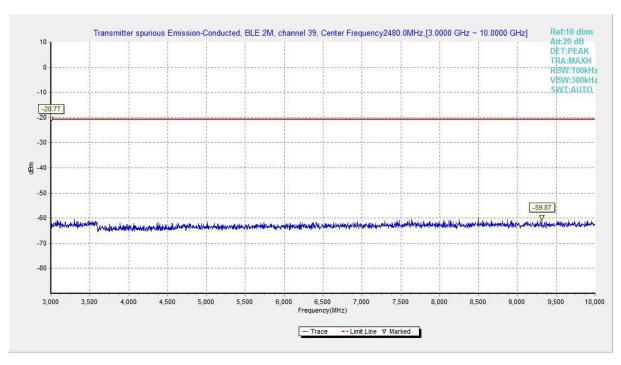


Fig.30 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 2M

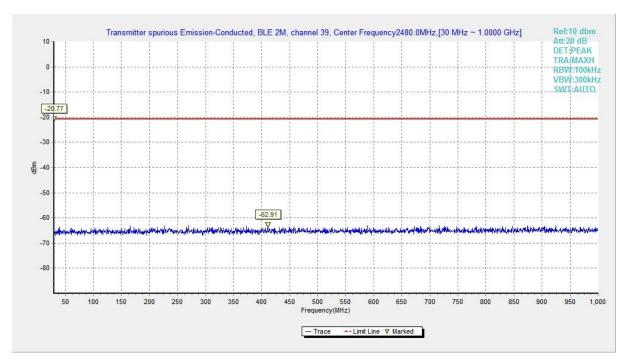


Fig.31 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 2M

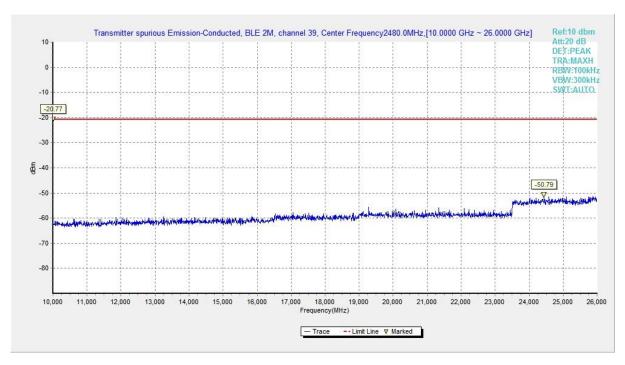


Fig.32 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 2M

A.6 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dD below peek output pewer
RSS-247 section 5.5/RSS-Gen section 6.13	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~ 18 GHz	Fig.33	Р
		9 kHz ~ 30 MHz	Fig.34	Р
	10	30 MHz ~ 1 GHz	Fig.35	Р
1 E 4M	19	1 GHz ~ 18 GHz	Fig.36	Р
LE-1M		18 GHz ~ 26.5 GHz	Fig.37	Р
	39	1 GHz ~ 18 GHz	Fig.38	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz Fig.39		Р
	Restricted Band (CH39)	2.45 GHz ~ 2.5 GHz	Fig.40	Р
LE-2M	0	1 GHz ~ 18 GHz	Fig.41	Р
		9 kHz ~ 30 MHz	Fig.42	Р
	19	30 MHz ~ 1 GHz	Fig.43	Р
	19	1 GHz ~ 18 GHz	Fig.44	Р
		18 GHz ~ 26.5 GHz	Fig.45	Р
	39	1 GHz ~ 18 GHz	Fig.46	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.47	Р
	Restricted Band (CH39)	2.45 GHz ~ 2.5 GHz	Fig.48	Р

See below for test graphs.

Conclusion: Pass

Worst Case Result

LE-1M CH19 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
2984.800000	47.27	74.00	26.73	Н	10.96
4034.100000	36.80	74.00	37.20	V	-11.77
4976.700000	44.95	74.00	29.05	V	-8.81
7317.200000	43.49	74.00	30.51	V	-1.72
14255.200000	50.03	74.00	23.97	V	7.02
17987.600000	53.63	74.00	20.37	V	14.07

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
2984.800000	35.36	54.00	18.64	Н	10.96
4034.100000	23.58	54.00	30.42	V	-11.77
4976.700000	27.93	54.00	26.07	V	-8.81
7317.200000	30.53	54.00	23.47	V	-1.72
14255.200000	38.03	54.00	15.97	V	7.02
17987.600000	41.69	54.00	12.31	V	14.07

LE-2M CH19 (1-18GHz)

Frequency	MaxPeak	Limit	Margin (dB)	Pol	Corr. (dB)
(MHz)	(dBµV/m)	(dBµV/m)			
2987.200000	46.78	74.00	27.22	V	10.94
4306.800000	36.82	74.00	37.18	Н	-11.40
4978.800000	44.24	74.00	29.76	Н	-8.79
7318.400000	43.98	74.00	30.02	V	-1.73
16607.200000	46.94	74.00	27.06	V	4.54
17975.200000	51.59	74.00	22.41	Н	14.32

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
2987.200000	35.17	54.00	18.83	V	10.94
4306.800000	23.41	54.00	30.59	Н	-11.40
4978.800000	28.01	54.00	25.99	Н	-8.79
7318.400000	32.23	54.00	21.77	V	-1.73
16607.200000	35.20	54.00	18.80	V	4.54
17975.200000	40.45	54.00	13.55	Н	14.32

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result = P_{Mea} + Cable Loss + Antenna Factor - Gain of the preamplifier

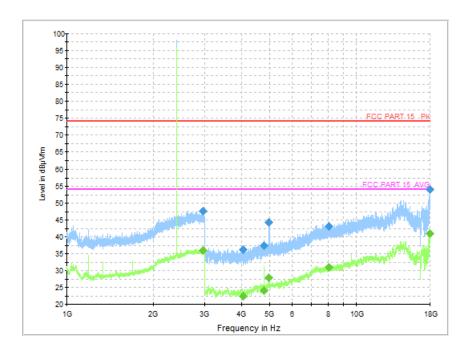


Fig.33 Radiated Spurious Emission (Ch0, 1 GHz - 18 GHz), 1M

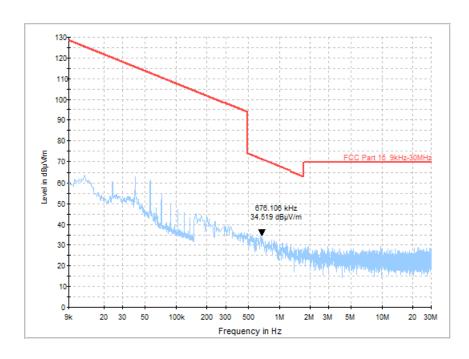


Fig.34 Radiated Spurious Emission (Ch19, 9 kHz - 30 MHz), 1M

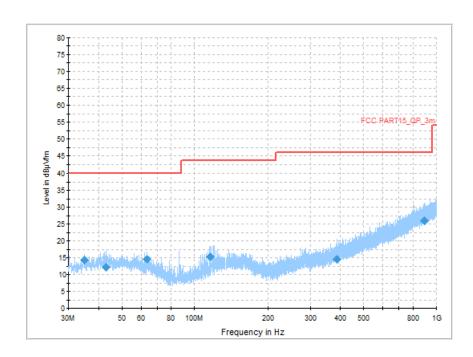


Fig.35 Radiated Spurious Emission (Ch19, 30 MHz - 1 GHz), 1M

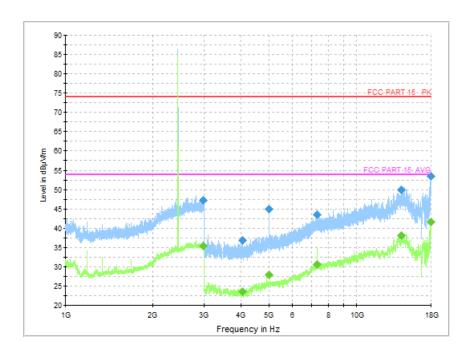


Fig.36 Radiated Spurious Emission (Ch19, 1 GHz - 18 GHz), 1M

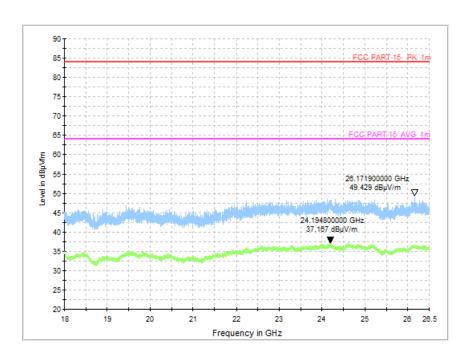


Fig.37 Radiated Spurious Emission (Ch19, 18 GHz - 26.5 GHz), 1M

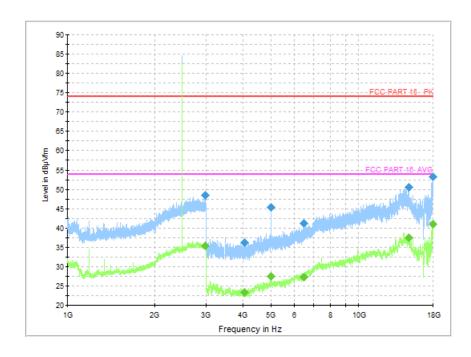


Fig.38 Radiated Spurious Emission (Ch39, 1 GHz - 18 GHz), 1M

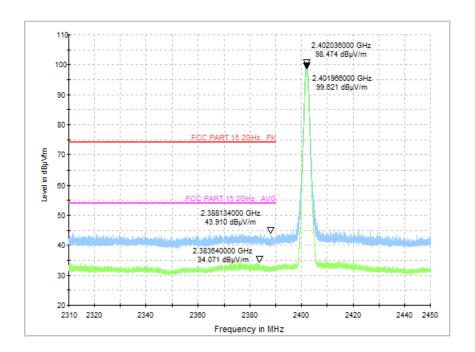


Fig.39 Radiated Band Edges (Ch0, 2380GHz - 2450GHz), 1M

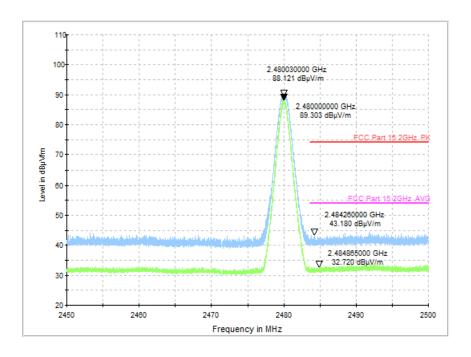


Fig.40 Radiated Band Edges (Ch39, 2450GHz - 2500GHz), 1M

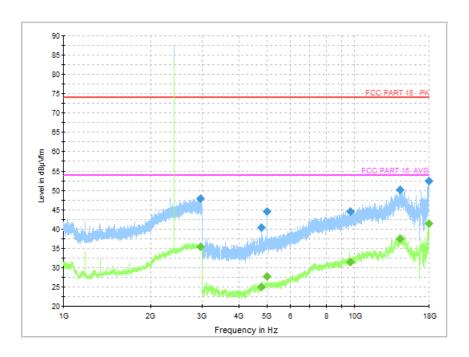


Fig.41 Radiated Spurious Emission (Ch0, 1 GHz - 18 GHz), 2M

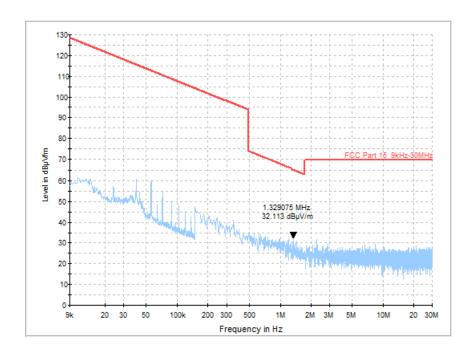


Fig.42 Radiated Spurious Emission (Ch19, 9 kHz - 30 MHz), 2M

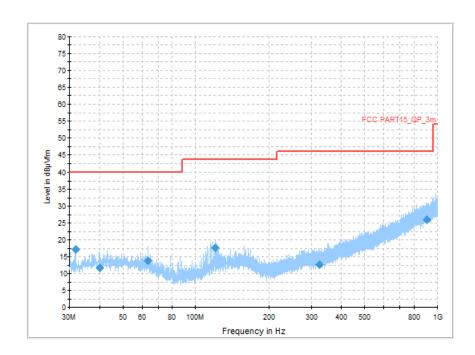


Fig.43 Radiated Spurious Emission (Ch19, 30 MHz - 1 GHz), 2M

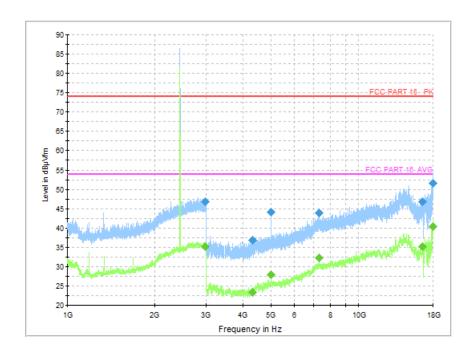


Fig.44 Radiated Spurious Emission (Ch19, 1 GHz - 18 GHz), 2M

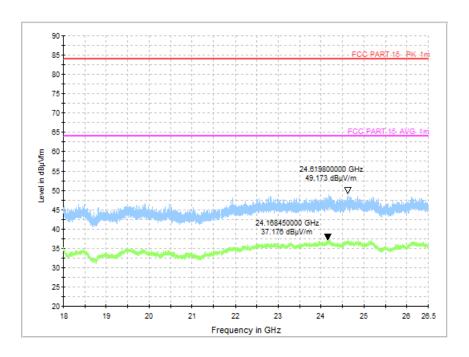


Fig.45 Radiated Spurious Emission (Ch19, 18 GHz - 26.5 GHz), 2M

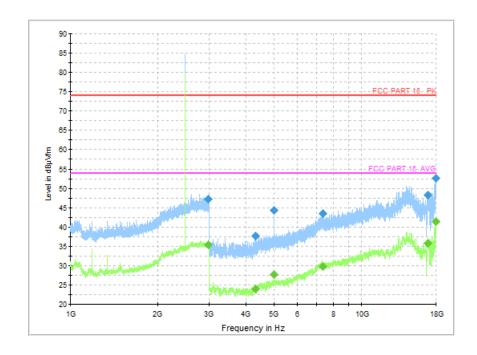


Fig.46 Radiated Spurious Emission (Ch39, 1 GHz - 18 GHz), 2M

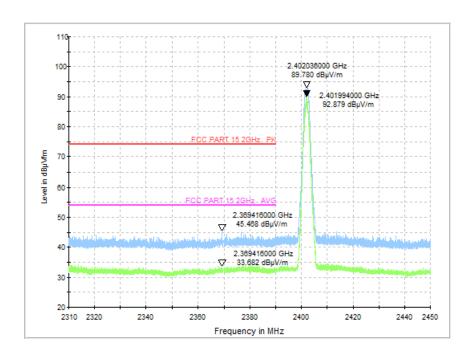


Fig.47 Radiated Band Edges (Ch0, 2380GHz - 2450GHz), 2M

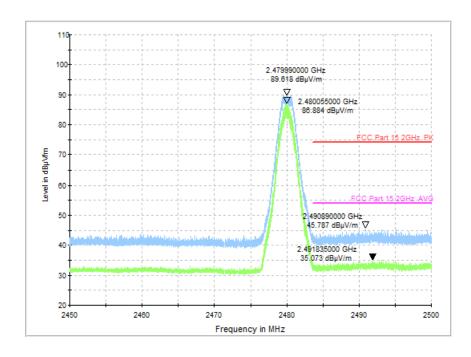


Fig.48 Radiated Band Edges (Ch39, 2450GHz - 2500GHz), 2M

A.7 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

LE-1M

BLE (Quasi-peak Limit) - AE2

Frequency	Quasi-peak	Result	Conclusion	
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.49	Fig.50	Р
5 to 30	60			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BLE (Average Limit) - AE2

Frequency	Average-peak	Result (dBμV)		Canalysian
range (MHz)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.49	Fig.50	Р
5 to 30	50			

Note: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs.

Conclusion: Pass

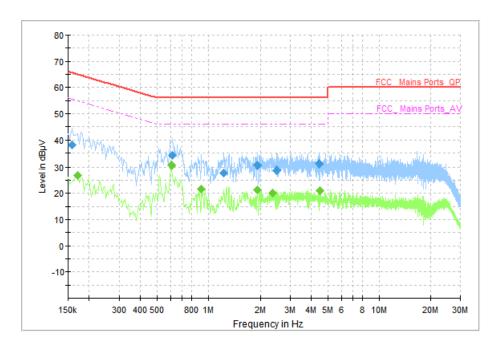


Fig.49 AC Power line Conducted Emission (Traffic, AE2, 120V), 1M

Measurement Results: Quasi Peak

Frequency	QuasiPeak	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Line		
0.158000	38.25	65.57	27.32	L1	ON	10
0.618000	34.01	56.00	21.99	N	ON	10
1.230000	27.62	56.00	28.38	N	ON	10
1.926000	30.49	56.00	25.51	L1	ON	10
2.510000	28.73	56.00	27.27	L1	ON	10
4.454000	31.06	56.00	24.94	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)			()
0.170000	26.93	54.96	28.03	N	ON	10
0.606000	30.31	46.00	15.69	N	ON	10
0.914000	21.61	46.00	24.39	N	ON	10
1.926000	21.20	46.00	24.80	N	ON	10
2.366000	20.14	46.00	25.86	N	ON	10
4.502000	21.07	46.00	24.93	N	ON	10

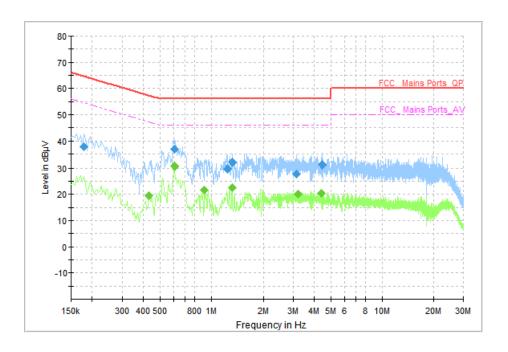


Fig.50 AC Power line Conducted Emission (Idle, AE2, 120V), 1M

Measurement Results: Quasi Peak

Frequency	QuasiPeak	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Line		
0.178000	37.78	64.58	26.79	L1	ON	10
0.610000	36.95	56.00	19.05	L1	ON	10
1.242000	29.69	56.00	26.31	L1	ON	10
1.326000	32.09	56.00	23.91	L1	ON	10
3.142000	27.67	56.00	28.33	N	ON	10
4.458000	30.92	56.00	25.08	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Lille		
0.430000	19.39	47.25	27.86	N	ON	10
0.606000	30.33	46.00	15.67	N	ON	10
0.914000	21.47	46.00	24.53	N	ON	10
1.326000	22.45	46.00	23.55	N	ON	10
3.218000	19.92	46.00	26.08	N	ON	10
4.410000	20.30	46.00	25.70	N	ON	10

A.8 99% Occupied Bandwidth

Measurement Limit:

Standard	Limit	
RSS-Gen section 6.7	/	

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402 (CH0)	Fig.51	1033.00	Р
LE-1M	2440 (CH19)	Fig.52	1032.00	Р
	2480 (CH39)	Fig.53	1033.00	Р
	2402 (CH0)	Fig.54	2015.00	Р
LE-2M	2440 (CH19)	Fig.55	2012.00	Р
	2480 (CH39)	Fig.56	2012.00	Р

See below for test graphs.

Conclusion: PASS

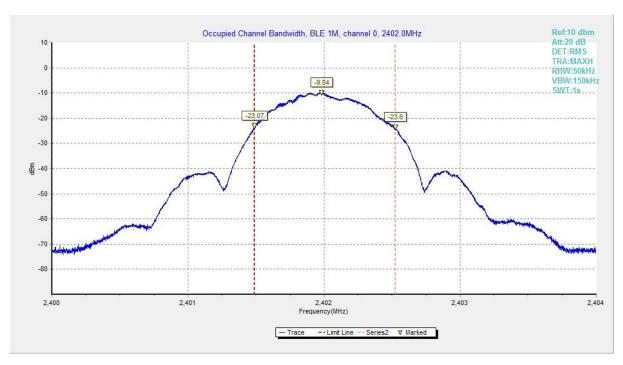


Fig.51 99% Occupied Bandwidth (Ch 0), LE 1M

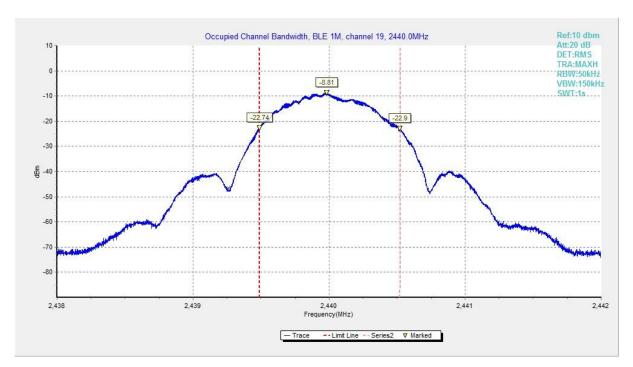


Fig.52 99% Occupied Bandwidth (Ch 19), LE 1M

Fig.53 99% Occupied Bandwidth (Ch 39), LE 1M

Fig.54 99% Occupied Bandwidth (Ch 0), LE 2M

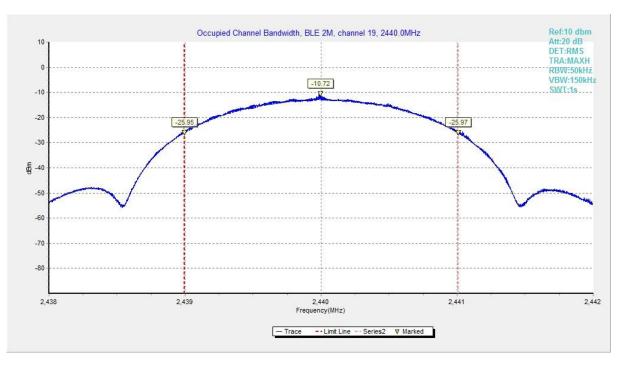


Fig.55 99% Occupied Bandwidth (Ch 19), LE 2M

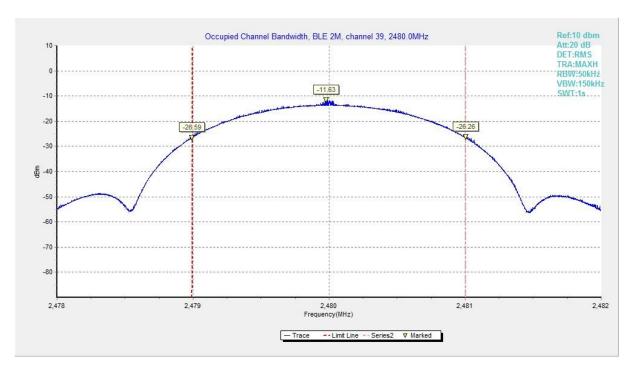


Fig.56 99% Occupied Bandwidth (Ch 39), LE 2M

END OF REPORT