

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221021006RFX

keTEST REPORT

Product Name:	2.4G Wireless 2D Barcode Scanner
FCC ID:	HLEMS822BW
Trademark:	unitech
Model Number:	MS822B
Prepared For:	Unitech Electronics Co., Ltd.
Address:	5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist., New Taipei City, Taiwan
Manufacturer:	Unitech Electronics Co., Ltd.
Address:	5F, No. 136, Lane 235, Pao-Chiao Rd., Hsin-Tien Dist., New Taipei City, Taiwan
Prepared By:	Shenzhen CTB Testing Technology Co., Ltd.
Address:	1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District,
	Shenzhen, Guangdong, China
Sample Received Date:	Jan. 29, 2023
Sample tested Date:	Jan. 29, 2023 to Apr. 17, 2023
Issue Date:	Apr. 17, 2023
Report No.:	CTB230321027RF
Test Standards	FCC Part15.249
	ANSI C63.10:2013
Test Results	PASS C C C C C C C C
Remark:	This is 2.4GHz radio test report.
Compiled by:	Reviewed by: Approved by:
	AING TECC

ChenZheng

Chen Zheng

8 5 8 S

Arron Liu

Arron 2:0

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Γe	est Re	eport Declaration	Page
	1.	VERSION	3
	2.	TEST SUMMARY	4
	3. C	MEASUREMENT UNCERTAINTY	5
	4.	PRODUCT INFORMATION AND TEST SETUP	6
	4.1	Product Information	6
	4.2	Test Setup Configuration	6
	4.3	Support Equipment	
	4.4	Channel List	7
	4.5	Test Mode	7
	4.6	Test Environment	7
	5. C	TEST FACILITY AND TEST INSTRUMENT USED	8
	5.1	Test Facility	8
	5.2	Test Instrument Used	8
	6.	AC POWER LINE CONDUCTED EMISSION	10
	6.1	Block Diagram Of Test Setup	
	6.2	Limit	10
	6.3	Test procedure	
	6.4	Test Result	
	7.	RADIATED SPURIOUS EMISSION	
	7.1	Block Diagram Of Test Setup	
	7.2	Limit	
	7.3	Test procedure	
	7.4	Test Result	
	8. 🤇	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	
	8.1	Block Diagram Of Test Setup	
	8.2	Limit	
	8.3	Test procedure	
	8.4	Test Result	
	9. 😋	BANDWIDTH TEST	
	9.1	Block Diagram Of Test Setup	
	9.2	Limit	
	9.3	Test procedure	
	9.4	Test Result	
	10.		
	11.	EUT TEST SETUP PHOTOGRAPHS	27

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB230321027RF	Apr. 17, 2023	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	1 cr
15.215	20dB Bandwidth	PASS	-
15.249	Fundamental &Radiated Spurious Emission Measurement	PASS	్రో
15.205	Band Edge Emission	PASS	S
15.203	Antenna Requirement	PASS	4

Remark:

Test according to ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated

for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item C C C C C	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density, Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(9KHz-30MHz)	4.8dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63°C
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	MS822B C C C C
Model Description:	N/A A A A A
Hardware Version:	MS822B_BASE_V1.6 / MS822B_MAIN_V1.6
Software Version:	HW1:VN=B2P3A0.20
Operation Frequency:	2402-2478MHz
Type of Modulation:	GFSK
Antenna installation:	Spring antenna
Antenna Gain:	2.58dBi
Ratings:	DC 5V charging from adapter
	DC 3.7V from battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

	Item	Equipment	Mfr/Brand	Model/Type No.	Series	Note
8	1	Adapter	JIYIN	JY-05100C	\$ \$	

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221021006RFX

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
\$ 1	2402 MHz	21	2422 MHz	41	2442 MHz	61	2462 MHz
2	2403 MHz	22	2423 MHz	42	2443 MHz	62	2463 MHz
3	2404 MHz	23	2424 MHz	43	2444 MHz	63	2464 MHz
4	2405 MHz	24	2425 MHz	44	2445 MHz	64	2465 MHz
5	2406 MHz	25	2426 MHz	45	2446 MHz	65	2466 MHz
6	2407 MHz	26	2427 MHz	46	2447 MHz	66	2467 MHz
7	2408 MHz	27	2428 MHz	47	2448 MHz	67	2468 MHz
8	2409 MHz	28	2429 MHz	48	2449 MHz	68	2469 MHz
9	2410 MHz	29	2430 MHz	49	2450 MHz	69	2470 MHz
10	2411 MHz	30	2431 MHz	50	2451 MHz	70	2471 MHz
11	2412 MHz	31	2432 MHz	51	2452 MHz	71	2472 MHz
12	2413 MHz	32	2433 MHz	52	2453 MHz	72	2473 MHz
13	2414 MHz	33	2434 MHz	53	2454 MHz	73	2474 MHz
14	2415 MHz	34	2435 MHz	54	2455 MHz	74	2475 MHz
15	2416 MHz	35	2436 MHz	55	2456 MHz	75	2476 MHz
16	2417 MHz	36	2437 MHz	56	2457 MHz	76	2477 MHz
17	2418 MHz	37	2438 MHz	57	2458 MHz	77	2478 MHz
18	2419 MHz	38	2439 MHz	58	2459 MHz		6 6
19	2420 MHz	39	2440 MHz	59	2460 MHz		4
20	2421 MHz	40	2441 MHz	60	2461 MHz	~	N . N

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting GFSK	2402MHz	2441MHz	2478MHz

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(AC):	120V
Normal Temperature(°C)	
Low Temperature(°C)	
High Temperature(°C)	40 C C C C C C

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2023.07.19
2	Power Sensor	Agilent	U2021XA	MY56120032	2023.07.19
3	Power Sensor	Agilent	U2021XA	MY56120034	2023.07.19
4	Communication test set	R&S	CMW500	108058	2023.07.19
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	2023.07.19
6	Signal Generator	Agilent	N5181A	MY50140365	2023.07.19
7	Vector signal generator	Agilent	N5182A	MY47420195	2023.07.19
8	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
9	2.4 GHz Filter	Shenxiang	MSF2400-2483. 5MS-1154	20181015001	2023.07.19
10	5 GHz Filter	Shenxiang	MSF5150-5850 MS-1155	20181015001	2023.07.19
11	Filter	Xingbo	XBLBQ-DZA12 0	190821-1-1	2023.07.19
12	BT&WI-FI Automatic test software	Micowave	MTS8000	Ver. 2.0.0.0	cht cht c
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2023.10.30
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2023.07.19
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	ch ch ch
16	966 chamber	C.R.T.	966	6 b 6	2024.08.11
17	Receiver	R&S	ESPI	100362	2023.07.19
18	Amplifier	HP 💊	8447E	2945A02747	2023.07.19
19	Amplifier	Agilent	8449B	3008A01838	2023.07.19
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22

5.2 Test Instrument Used

CTB

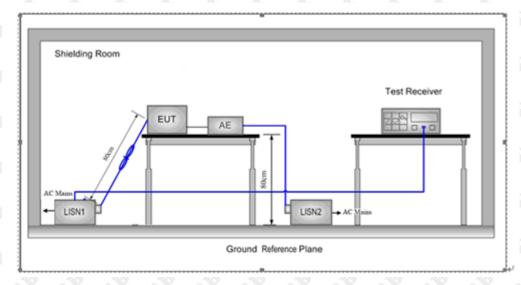
Double Ridged Broadband Horn 21 Schwarzbeck BBHA9120D 01911 2023.07.22 Antenna 22 EMI test software Fala EZ-EMC FA-03A2 RE FMZB 1519B 1519B-224 2023.07.23 23 Loop Antenna Schwarzbeck 24 ZHINAN loop antenna ZN30900A GTS534 7 25 40G Horn antenna A/H/System SAS-574 588 2024.10.30 Amplifier AEROFLEX 2024.10.30 26 Aeroflex 097

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221021006RFX

Continuous disturbance

el No.Serial No.Calibrated until13-Z51003182023.07.191072000570010500000007.10
0 0 0 0 0 0 0
l3Z2 357881052 2023.07.19
SCI 100428/003 2023.07.19
NJ-SMA 18091905 2023.07.19
M8158 183 2023.07.19
515C MY50102567 2023.07.19
N500 108058 2023.07.19
on3A1.1 / /
2 /13 10

	Radiated emission									
No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	2023.07.22					
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22					
3	Amplifier	Agilent	8449B	3008A01838	2023.07.19					
4	Amplifier	HP O	8447E	2945A02747	2023.07.19					
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2023.07.19					
6	Coaxial cable	ETS	RFC-SNS-100- NMS-80 NI		2023.07.19					
7	Coaxial cable	ETS	RFC-SNS-100- NMS-20 NI		2023.07.19					
8	Coaxial cable	ETS	RFC-SNS-100- SMS-20 NI	07 0	2023.07.19					
9	Coaxial cable	ETS	RFC-NNS-100 -NMS-300 NI		2023.07.19					
10	Communication test set	Agilent	E5515C	MY50102567	2023.07.19					
11	Communication test set	R&S	CMW500	108058	2023.07.19					
12	EZ-EMC	Frad	EMC-con3A1.1							


Report

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221021006RFX

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

Table 4 – AC power-line conducted emissions limits								
Frequency (MHz)	Conducted limit (dBµV)							
	Quasi-peak	Average						
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}						
0.5 – 5	56	46						
5 - 30	60	50						

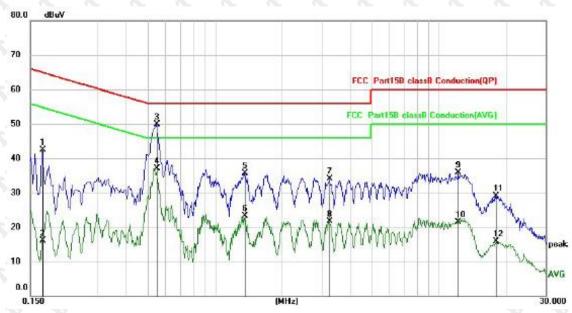
Note 1: The level decreases linearly with the logarithm of the frequency.

* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane.

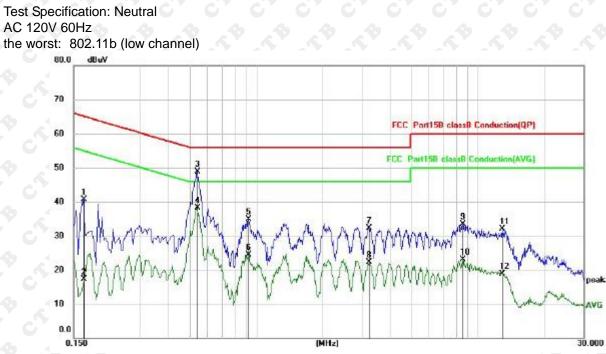
Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB221021006RFX


This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

6.4 Test Result

Test Specification: Line AC 120V 60Hz the worst: 802.11b (low channel)

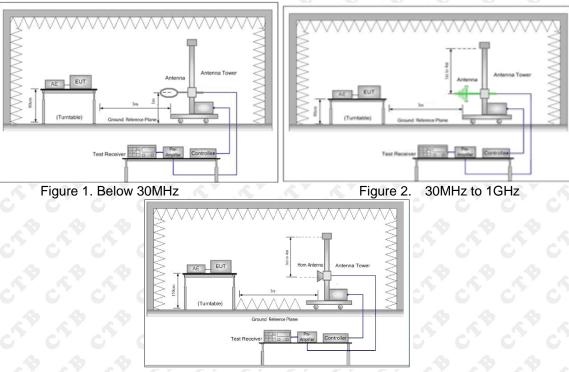


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1700	32.43	10.01	42.44	64.96	-22.52	QP
2	0.1700	6.01	10.01	16.02	54.96	-38.94	AVG
3 *	0.5500	39.97	9.97	49.94	56.00	-6.06	QP
4	0.5500	27.09	9.97	37.06	46.00	-8.94	AVG
5	1.3580	25.64	10.00	35.64	56.00	-20.36	QP
6	1.3580	13.34	10.00	23.34	46.00	-22.66	AVG
7	3.2540	24.04	10.09	34.13	56.00	-21.87	QP
8	3.2540	11.65	10.09	21.74	46.00	-24.26	AVG
9	12.1819	25.42	10.40	35.82	60.00	-24.18	QP
10	12.1819	11.13	10.40	21.53	50.00	-28.47	AVG
11	17.9419	18.54	10.52	29.06	60.00	-30.94	QP
12	17.9419	5.30	10.52	15.82	50.00	-34.18	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1660	30.66	10.01	40.67	65.16	-24.49	QP
2	0.1660	7.38	10.01	17.39	55.16	-37.77	AVG
3 *	0.5420	38.95	9.97	48.92	56.00	-7.08	QP
4	0.5420	28.29	9.97	38.26	46.00	-7.74	AVG
5	0.9220	24.85	9.98	34.83	56.00	-21.17	QP
6	0.9220	14.59	9.98	24.57	46.00	-21.43	AVG
7	3.2100	22.30	10.08	32.38	56.00	-23.62	QP
8	3.2100	12.24	10.08	22.32	46.00	-23.68	AVG
9	8.5380	23.26	10.30	33.56	60.00	-26.44	QP
10	8.5380	12.72	10.30	23.02	50.00	-26.98	AVG
11	12.8540	21.61	10.41	32.02	60.00	-27.98	QP
12	12.8540	8.53	10.41	18.94	50.00	-31.06	AVG


Remark:

6 6

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

- 7. RADIATED SPURIOUS EMISSION
- 7.1 Block Diagram Of Test Setup

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	0-0	<u>' c' c</u>	300
0.490MHz-1.705MHz	24000/F(kHz)		\$.\$	30
1.705MHz-30MHz	30	0-0	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	30
30MHz-88MHz	100	40.0	Quasi-peak	
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

7.3 Test procedure

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

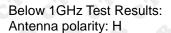
e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter). h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel

j.Repeat above procedures until all frequencies measured was complete.

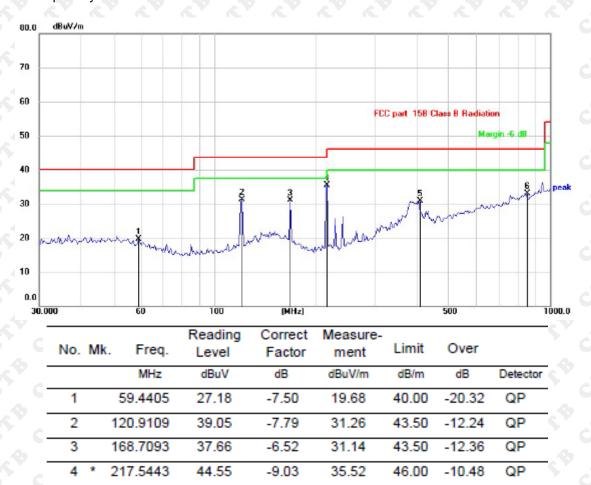

j. Full battery is usedduring test

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

7.4 Test Result

5


6

408.9460

846.5708

33.40

26.82

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

-2.40

6.38

31.00

33.20

46.00

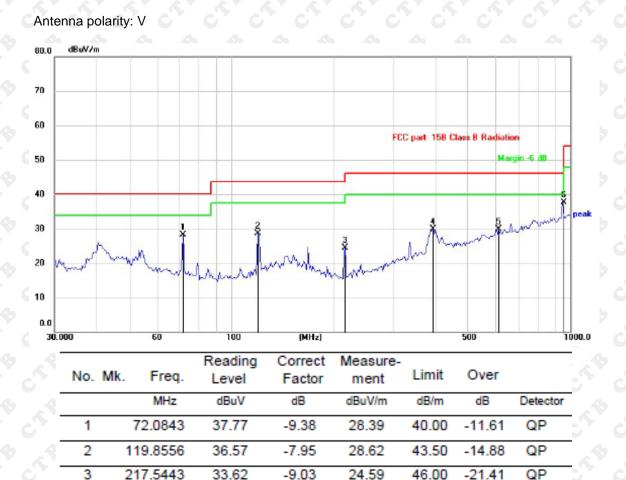
46.00

-15.00

-12.80

QP QP

4


5

6 *

394.8545

606.7221

948.7610

Rem	ark: Fac	ctor = Ca	able los	e + Ante	enna fac	ctor - Pre	e-amplif	ier; Mar	gin = M	easurem	nent – L	imit

-2.79

2.54

7.63

29.99

29.99

37.74

46.00

46.00

46.00

-16.01

-16.01

-8.26

QP

QP

QP

32.78

27.45

30.11

CH Low (2402MHz) Horizontal:

requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	110.37	-5.84	104.53	114	-9.47	peak
2402	93.83	-5.84	87.99	94	-6.01	AVG
4804	58.93	-3.64	55.29	74	-18.71	peak
4804	48.38	-3.64	44.74	54	-9.26	AVG
7206	59.96	-0.95	59.01	74	-14.99	peak
7206	48.68	-0.95	47.73	54	-6.27	AVG

Vertical:

requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	110.10	-5.84	104.26	114	-9.74	peak
2402	93.77	-5.84	87.93	94	-6.07	AVG
4804	57.74	-3.64	54.10	74	-19.90	peak
4804	49.52	-3.64	45.88	54	-8.12	AVG
7206	59.88	-0.95	58.93	74	-15.07	peak
7206	48.92	-0.95	47.97	54	-6.03	AVG

CH Middle (2441MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2441	106.98	-5.71	101.27	114	-12.73	peak
2441	91.52	-5.71	85.81	94	-8.19	AVG
4882	55.59	-3.51	52.08	74	-21.92	peak
4882	46.06	-3.51	42.55	54	-11.45	AVG
7323	56.38	-0.82	55.56	74	-18.44	peak
7323	47.33	-0.82	46.51	54	-7.49	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2441	106.28	-5.71	100.57	114	-13.43	peak
2441	92.17	-5.71	86.46	94	-7.54	AVG
4882	54.67	-3.51	51.16	74	-22.84	peak
4882	46.28	-3.51	42.77	54	-11.23	AVG
7323	56.38	-0.82	55.56	74	-18.44	peak
7323	46.70	-0.82	45.88	54	-8.12	AVG

CH High (2478MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2478	106.87	-5.65	101.22	114	-12.78	peak
2478	92.45	-5.65	86.80	94	-7.20	AVG
4956	55.03	-3.43	51.60	74	-22.40	peak
4956	47.48	-3.43	44.05	54	-9.95	AVG
7434	56.15	-0.75	55.40	74	-18.60	peak
7434	47.10	-0.75	46.35	54	-7.65	AVG

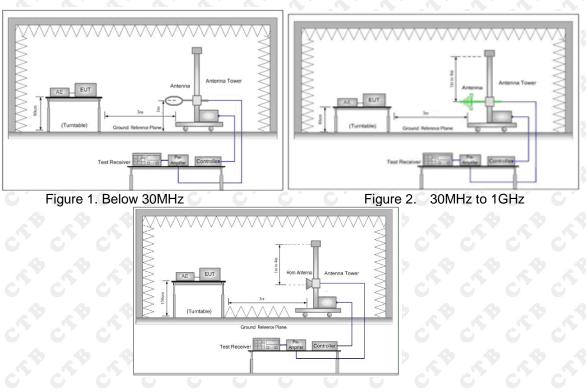
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2478	107.17	-5.65	101.52	114	-12.48	peak
2478	91.43	-5.65	85.78	94	-8.22	AVG
4956	55.73	-3.43	52.30	74	-21.70	peak
4956	46.75	-3.43	43.32	54	-10.68	AVG
7434	56.66	-0.75	55.91	74	-18.09	peak
7434	47.29	-0.75	46.54	54	-7.46	AVG

Remark:

(1) Measuring frequencies from 9KHz to the 25 GHz.

(2). All modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported for below 1GHz test.


(3). For BT above 1GHz test all modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.

(4). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

(5). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

- 8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS
- 8.1 Block Diagram Of Test Setup

8.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measuremen distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)			300	
0.490MHz-1.705MHz	24000/F(kHz)	0.0	0.0	C ₃₀ C	
1.705MHz-30MHz	30	2 - X	× 2 .	30	
30MHz-88MHz	100	40.0	Quasi-peak		
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak		
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	63 6	

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

8.3 Test procedure

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Frequency	Detector	RBW	VBW	Remark
2310MHz-2400MHz	peak	1MHz	3MHz	peak
2483.5MHz-2500MHz	peak	1MHz	3MHz	peak

8.4 Test Result

CH Low:

Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
O 1	2309.791	28.09	-4.29	23.80	54 0	-30.20	peak
2	2343.554	28.52	-4.31	24.22	54	-29.78	peak
3	2378.029	27.70	-4.45	23.26	54	-30.74	peak
4	2390.095	29.60	-4.90	24.71	54	-29.29	peak
5	2439.712	28.49	-3.97	24.52	54	-29.48	peak

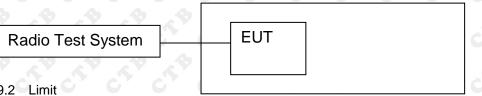
Vertical:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2309.895	28.68	-4.31	24.37	54	-29.63	peak
2	2343.742	27.09	-4.30	22.79	54	-31.21	peak
3	2378.364	27.98	-4.47	23.51	54	-30.49	peak
4	2389.759	26.45	-4.90	21.56	54	-32.44	peak
5	2439.875	28.37	-3.93	24.44	54	-29.56	peak

CH High:

Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
	(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2484.091	30.30	-4.27	26.03	54	-27.97	peak
2	2488.901	32.23	-4.30	27.93	54	-26.07	peak
3	2490.253	33.75	-4.45	29.30	54 0	-24.70	peak
4	2493.268	29.84	-4.94	24.90	54	-29.10	peak
5	2495.937	27.24	-3.98	23.26	54	-30.74	peak


Vertical:

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remar k
		(MHz)	(dBuV/m)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
)	1	2484.137	33.23	-4.35	28.88	54	-25.12	peak
C	2	2488.978	32.77	-4.32	28.45	54	-25.55	peak
	3	2490.263	29.17	-4.50	24.67	54	-29.33	peak
	4	2493.209	30.92	-4.91	26.01	54	-27.99	peak
C	5	2496.114	30.20	-3.95	26.25	54	-27.75	peak

9. BANDWIDTH TEST

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.249) , Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.249	Bandwidth	2402-2483.5	PASS			

9.3 Test procedure

- 1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Result 9.4

Test Mode	Frequency (MHz)	20dB Bandwidth (MHz)	Result
24 24 24 6	Low channel	3.299	PASS
GFSK	Mid channel	2.882	PASS
ర్ ర్ ర్	High channel	1.171	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Test Graph:

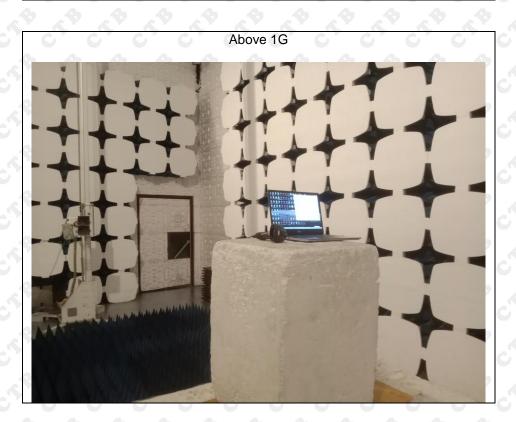
10. ANTENNA REQUIREMENT

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is Spring antenna. The best case gain of the antenna is 2.58dBi.

11. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission

Conducted Emission

******** END OF REPORT *******