FCC RF Test Report

APPLICANT : unitech electronics co., ltd.
EQUIPMENT : Rugged Handheld Computer

BRAND NAME : unitech MODEL NAME : EA660

FCC ID : HLEEA660BWNW

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

TEST DATE(S) : Aug. 18, 2023 ~ Sep. 18, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Report No.: FR372407B

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 1 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

TABLE OF CONTENTS

		N HISTORY	_
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	12
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	14
	3.5	Radiated Band Edges and Spurious Emission Measurement	15
	3.6	AC Conducted Emission Measurement	19
	3.7	Antenna Requirements	21
4	LIST	OF MEASURING EQUIPMENT	22
5	MEAS	SUREMENT UNCERTAINTY	23
APF	PENDI	X A. CONDUCTED TEST RESULTS	
APF	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
APF	PENDI	X C. RADIATED SPURIOUS EMISSION AND PLOTS	
APF	PENDI	X D. DUTY CYCLE PLOTS	
APF	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR372407B	Rev. 01	Initial issue of report	Oct. 13, 2023

Report Template No.: BU5-FR15CBT4.0 Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.64 dB at 59.100 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 13.62 dB at 0.184 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or
 in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of
 non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 4 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

1 General Description

1.1 Applicant

unitech electronics co., ltd.

5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City, Taiwan

1.2 Manufacturer

unitech electronics co., ltd.

5F., No. 136, Ln. 235, Baoqiao Rd., Xindian Dist., New Taipei City, Taiwan

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Rugged Handheld Computer
Brand Name	unitech
Model Name	EA660
FCC ID	HLEEA660BWNW
	Conducted: 004400152020000
IMEI Code	Conduction: 004400152020000
	Radiation: 357458980006356
HW Version	V4
SW Version	ST6729A_1280_Unitech_patchbuild_20230815181058934
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	Bluetooth LE 1Mbps : 0.75 dBm (0.0012 W)			
Maximum Output Fower to Antenna	Bluetooth LE 2Mbps : 6.33 dBm (0.0043 W)			
99% Occupied Bandwidth	Bluetooth LE 1Mbps :1.023MHz			
39 % Occupied Baildwidth	Bluetooth LE 1Mbps :2.010MHz			
Antenna Type / Gain	PIFA Antenna type with gain -1.00 dBi			
Type of Modulation	Bluetooth LE : GFSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

Sporton International Inc. Kunshan)Page Number: 5 of 23TEL: +86-512-57900158Report Issued Date: Oct. 13, 2023FCC ID: HLEEA660BWNWReport Version: Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
	TEL: +86-512-57900158				
	Sporton Sito No	ECC Designation No.	FCC Test Firm		
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.		
rest one NO.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309		

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH06-KS	AUDIX	E3	210616
3.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International Inc. Kunshan)Page Number: 6 of 23TEL: +86-512-57900158Report Issued Date: Oct. 13, 2023FCC ID: HLEEA660BWNWReport Version: Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
[18	2438	39	2480
[19	2440	-	-
	20	2442	-	-

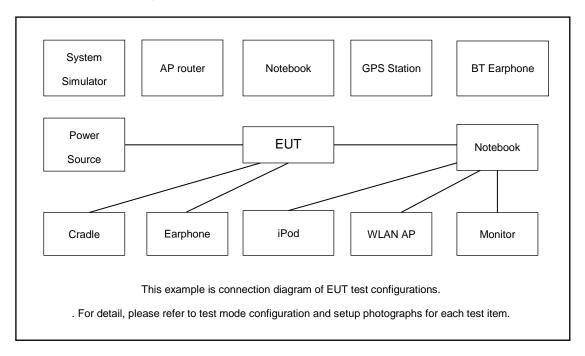
TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 7 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
rest item	Bluetooth – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz					
	Mode 2: Bluetooth Tx CH19_2440 MHz					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz					
Dedicted	Mode 1: Bluetooth Tx CH00_2402 MHz					
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz					
AC	Made 4. CSM 950 Idle - Divisto eth Link - W/J AN Link /2 4C) - LISD Coble (Charging					
Conducted	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable (Charging					
Emission	from Adapter)					
Remark: For	Radiated Test Cases, The tests were performance with Adapter , USB Cable					

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 8 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
4.	Bluetooth Earphone	Lenovo	thinkplus-BH3	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 9 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss6.10 dB

 $Offset(dB) = RF \ cable \ loss(dB)$ = 6.10(dB)

FCC ID: HLEEA660BWNW

Page Number : 10 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

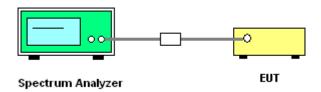
Report No.: FR372407B

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

Sporton International Inc. Kunshan) TEL: +86-512-57900158

FCC ID: HLEEA660BWNW

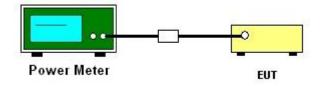
Page Number : 11 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1
 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

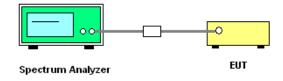
3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International Inc. Kunshan)Page NumberTEL: +86-512-57900158Report Issued

FCC ID: HLEEA660BWNW Report Version : Rev. 01

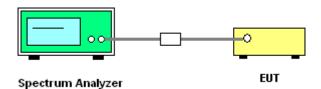
Page Number : 13 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Boy 01

Report No.: FR372407B

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

Please refer to Appendix A.

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 14 of 23 Report Issued Date : Oct. 13, 2023

: Rev. 01

Report No.: FR372407B

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Report Version

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

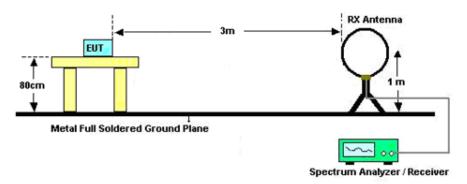
The section 4.0 of List of Measuring Equipment of this test report is used for test.

Sporton International Inc. Kunshan)

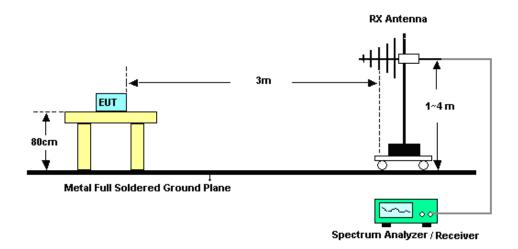
TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 15 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

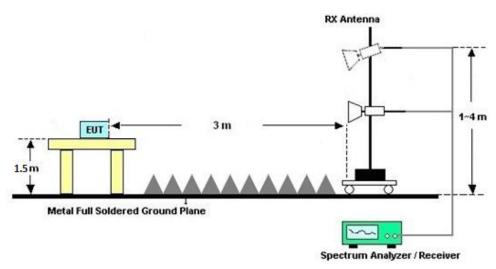
3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Sporton International Inc. Kunshan)Page Number: 16 of 23TEL: +86-512-57900158Report Issued Date: Oct. 13, 2023FCC ID: HLEEA660BWNWReport Version: Rev. 01


Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. Kunshan)

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 17 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR372407B

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C

Sporton International Inc. Kunshan)Page Number: 18 of 23TEL: +86-512-57900158Report Issued Date: Oct. 13, 2023FCC ID: HLEEA660BWNWReport Version: Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

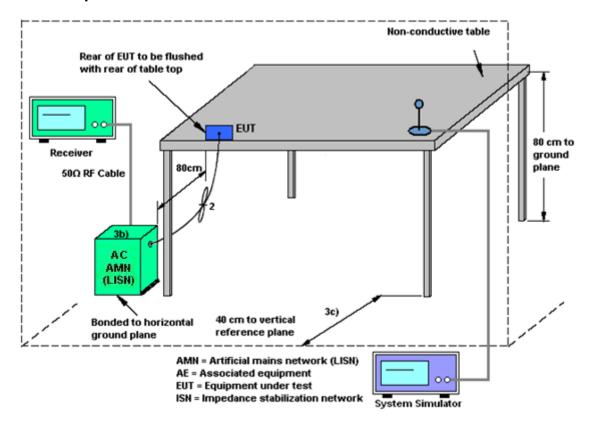
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Sporton International Inc. Kunshan)Page Number: 19 of 23TEL: +86-512-57900158Report Issued Date: Oct. 13, 2023FCC ID: HLEEA660BWNWReport Version: Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW Page Number : 20 of 23
Report Issued Date : Oct. 13, 2023
Report Version : Rev. 01

Report No.: FR372407B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International Inc. Kunshan) Page Number TEL: +86-512-57900158 Report Issued Date: Oct. 13, 2023 FCC ID: HLEEA660BWNW

: Rev. 01 Report Version

: 21 of 23

Report No.: FR372407B

List of Measuring Equipment 4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV30	101338	10Hz~30GHz	May 16, 2023	Aug. 29, 2023 ~Aug. 31, 2023	May 15, 2024	Conducted (TH01-KS)
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 12, 2022	Aug. 29, 2023 ~Aug. 31, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 05, 2023	Aug. 29, 2023 ~Aug. 31, 2023	Jan. 04, 2024	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 13, 2022	Aug. 18, 2023 ~Sep. 18, 2023	Oct. 12, 2023	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY602421 26	10Hz-44GHz	Oct. 13, 2022	Aug. 18, 2023 ~Sep. 18, 2023	Oct. 12, 2023	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 16, 2022	Aug. 18, 2023 ~Sep. 18, 2023	Oct. 15, 2023	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	Apr. 09, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Apr. 08, 2024	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 06, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Apr. 05, 2024	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 08, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Jan. 07, 2024	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	380827	9KHz ~1GHZ	Jul. 06, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Jul. 05, 2024	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 05, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Jan. 04, 2024	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2082395	1Ghz-18Ghz	Jan. 05, 2023	Aug. 18, 2023 ~Sep. 18, 2023	Jan. 04, 2024	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532703 19	500MHz~26.5G Hz	Oct. 12, 2022	Aug. 18, 2023 ~Sep. 18, 2023	Oct. 12, 2023	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Aug. 18, 2023 ~Sep. 18, 2023	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Aug. 18, 2023 ~Sep. 18, 2023	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Aug. 18, 2023 ~Sep. 18, 2023	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Aug. 31, 2023 ~Sep. 01, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2022	Aug. 31, 2023 ~Sep. 01, 2023	Oct. 12, 2023	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Aug. 31, 2023 ~Sep. 01, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2022	Aug. 31, 2023 ~Sep. 01, 2023	Oct. 11, 2023	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International Inc. Kunshan) TEL: +86-512-57900158

Page Number : 22 of 23 Report Issued Date: Oct. 13, 2023 : Rev. 01 FCC ID: HLEEA660BWNW Report Version

Report Template No.: BU5-FR15CBT4.0 Version 2.0

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.94dB
of 95% (U = 2Uc(y))	2:94UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	C OC-ID
of 95% (U = 2Uc(y))	6.26dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.02dB
of 95% (U = 2Uc(y))	J.020B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.26dB
of 95% (U = 2Uc(y))	3.20dB

----- THE END -----

 Sporton International Inc. Kunshan)
 Page Number
 : 23 of 23

 TEL: +86-512-57900158
 Report Issued Date
 : Oct. 13, 2023

 FCC ID: HLEEA660BWNW
 Report Version
 : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 2.0

Appendix A. Conducted Test Results

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

Case No. : FR372407B

Ambient Condition: 25 °C, 45 %RH

According Standard: ■Part15C

Test Date: 2023.8.29~2023.8.31 Test Engineer: <u>Jiang Jun</u>

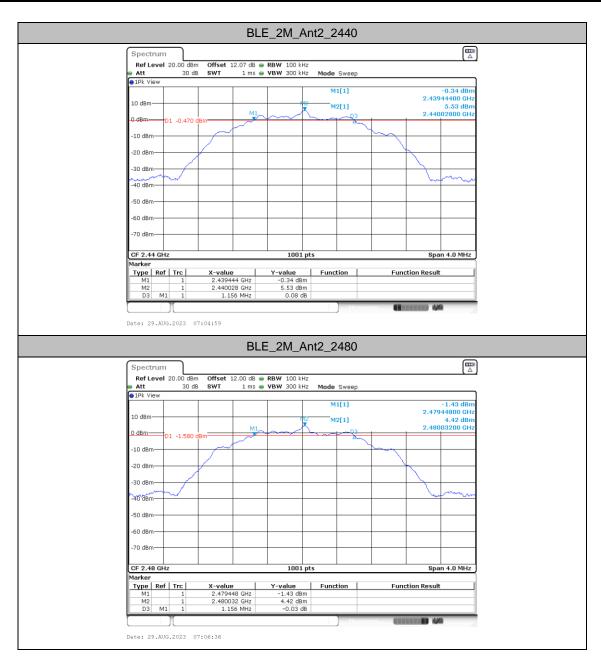
DTS Bandwidth

Test Result


TestMode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M		2402	0.68	2401.68	2402.36	0.5	PASS
	Ant2	2440	0.68	2439.68	2440.36	0.5	PASS
		2480	0.68	2479.68	2480.35	0.5	PASS
BLE_2M		2402	1.16	2401.44	2402.60	0.5	PASS
	Ant2	2440	1.16	2439.44	2440.60	0.5	PASS
		2480	1.16	2479.45	2480.60	0.5	PASS

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

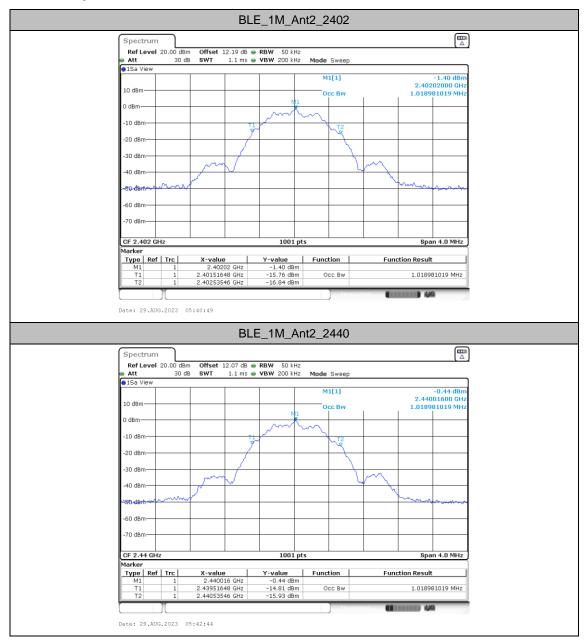
Test Graphs



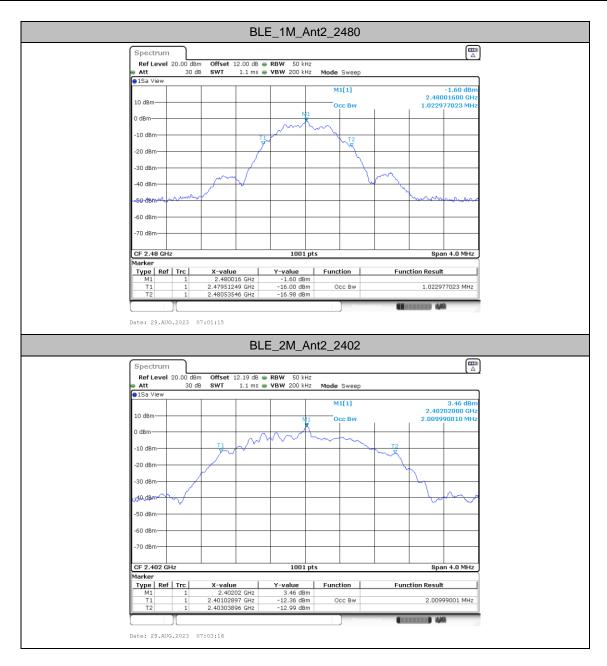
TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

Date: 29.AUG.2023 07:03:04

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW


Occupied Channel Bandwidth

Test Result


TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant2	2402	1.019	2401.5165	2402.5355		
		2440	1.019	2439.5165	2440.5355		
		2480	1.023	2479.5125	2480.5355		
BLE_2M	M Ant2	2402	2.010	2401.0290	2403.0390		
		2440	2.010	2439.0290	2441.0390		
		2480	2.010	2479.0290	2481.0390		

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

Test Graphs

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

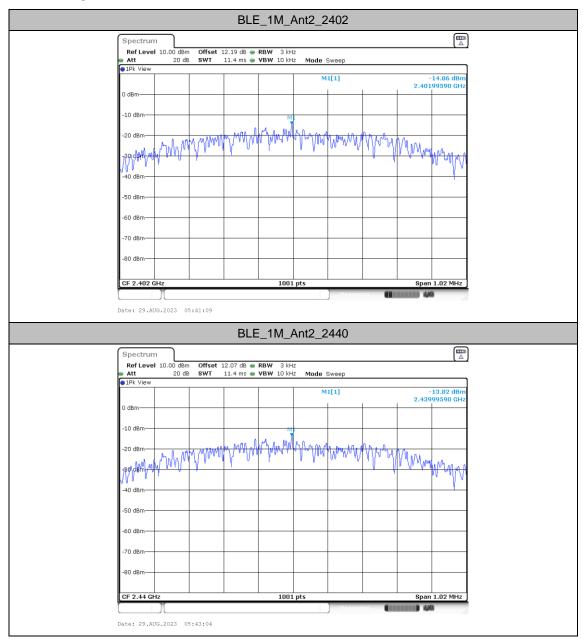
: A7 of A26

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

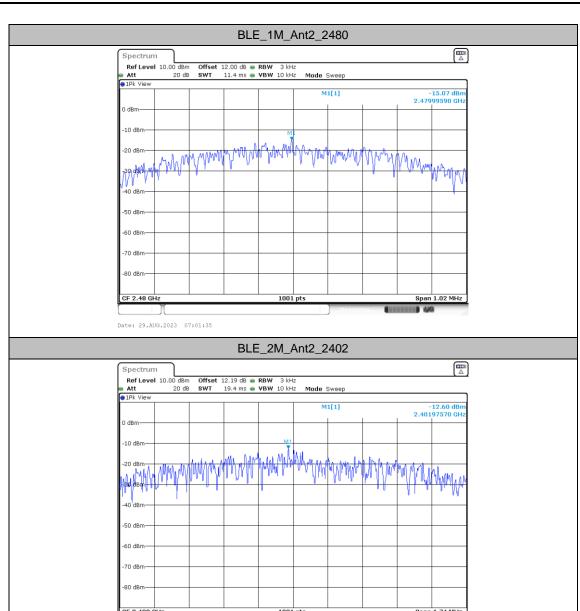
Maximum conducted output power

Test Result Peak

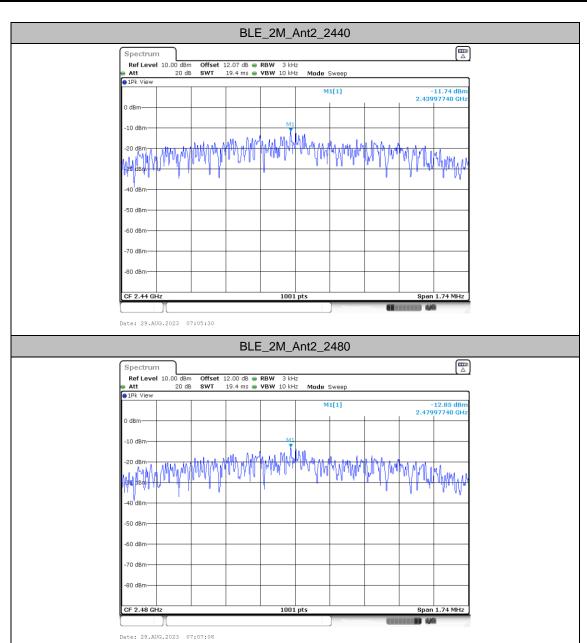
TestMode	Antenna	CH.	Peak Conducted Power (dBm)	Conducted Power Limit	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit	Pass/Fail
	Ant2	0	0.37	30.00	-1	-0.63	36.00	Pass
BLE1M		39	0.75	30.00	-1	-0.25	36.00	Pass
		78	-0.70	30.00	-1	-1.70	36.00	Pass
		0	5.96	30.00	-1	4.96	36.00	Pass
BLE2M	Ant2	39	6.33	30.00	-1	5.33	36.00	Pass
		78	4.69	30.00	-1	3.69	36.00	Pass


Maximum power spectral density

Test Result

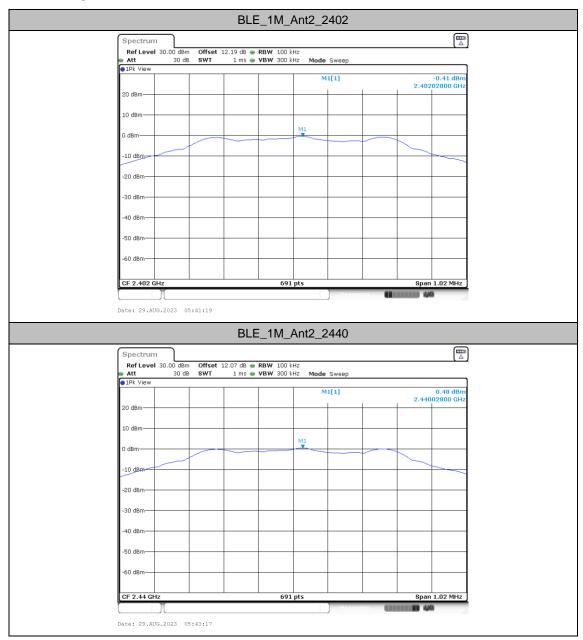

TestMode	Antenna	Freq(MHz)	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant2	2402	-14.86	≤8.00	PASS
		2440	-13.82	≤8.00	PASS
		2480	-15.07	≤8.00	PASS
BLE_2M	Ant2	2402	-12.6	≤8.00	PASS
		2440	-11.74	≤8.00	PASS
		2480	-12.85	≤8.00	PASS

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW


Test Graphs

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

Date: 29.AUG.2023 07:03:34


Reference level measurement

Test Result


TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm/100KHz]
		2402	2402.03	-0.41
BLE_1M	Ant2	2440	2440.03	0.48
		2480	2480.03	-0.73
BLE_2M		2402	2402.03	4.72
	Ant2	2440	2440.03	5.53
		2480	2480.03	4.39

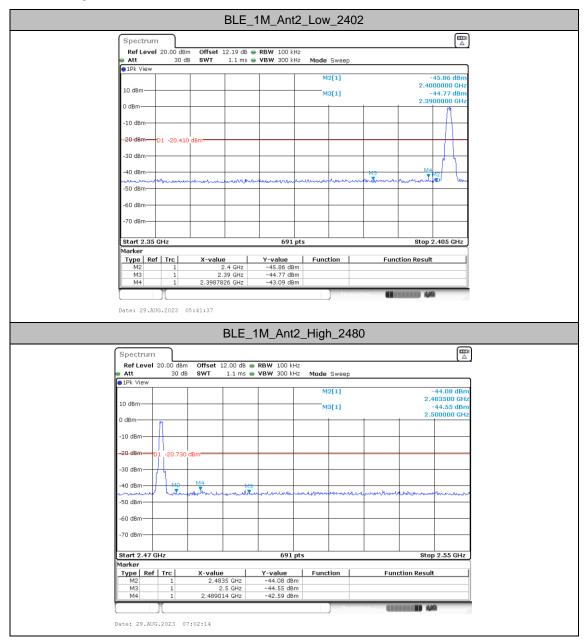
TEL: +86-512-57900158 FCC ID: HLEEA660BWNW


Test Graphs

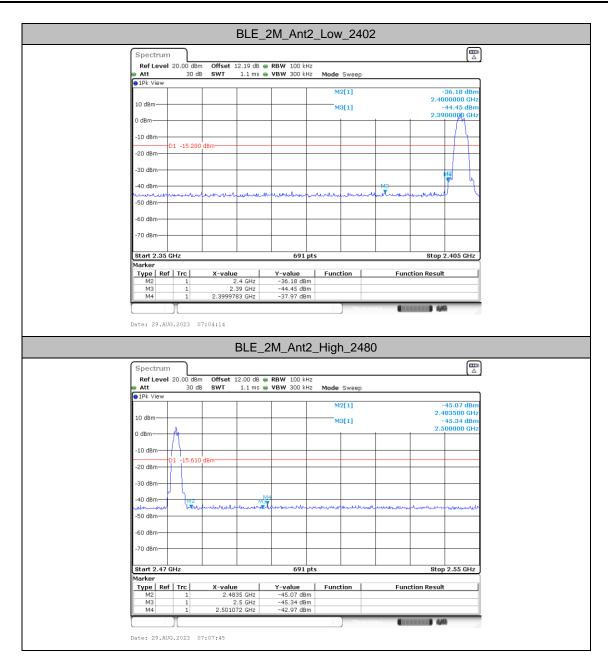
: A14 of A26

Date: 29.AUG.2023 07:03:50

Date: 29.AUG.2023 07:07:24


Band edge measurements

Test Result

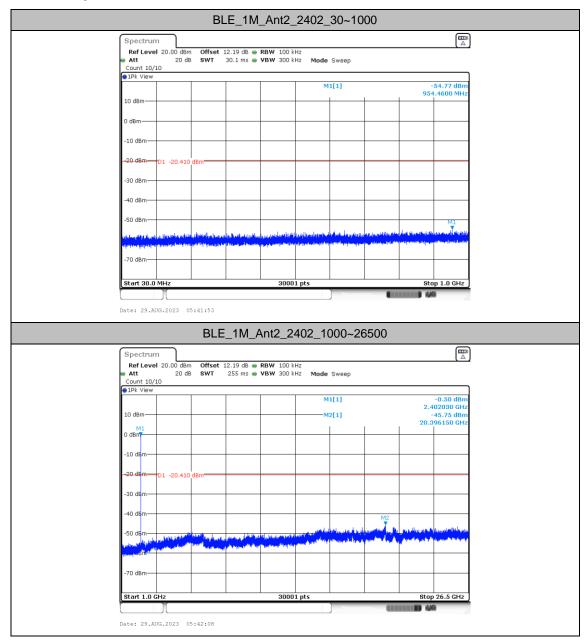

TestMode	Antenna	ChName	Freq (MHz)	RefLevel[dBm /100KHz]	Result[dBm /100KHz]	Limit[dBm /100KHz]	Verdict
DIE 4M	A n.t O	Low	2402	-0.41	-43.09	≤-20.41	PASS
BLE_1M	Ant2	High	2480	-0.73	-42.59	≤-20.73	PASS
BLE_2M Ant2	Anto	Low	2402	4.72	-37.97	≤-15.28	PASS
	Ant2	High	2480	4.39	-42.97	≤-15.61	PASS

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

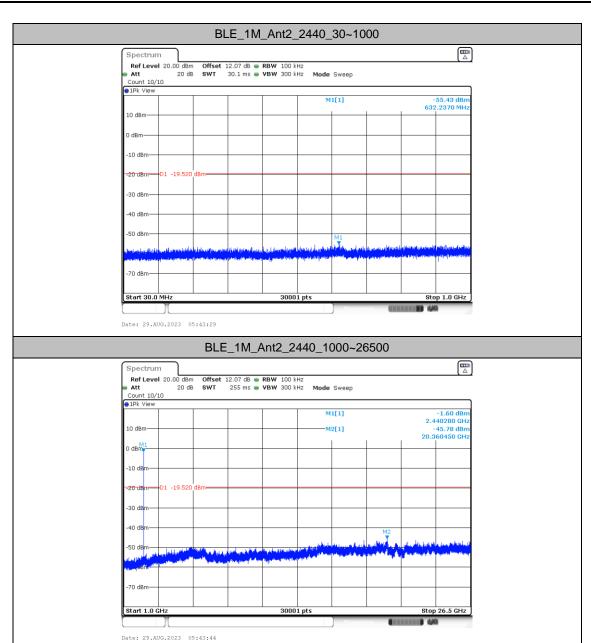
Test Graphs

: A18 of A26

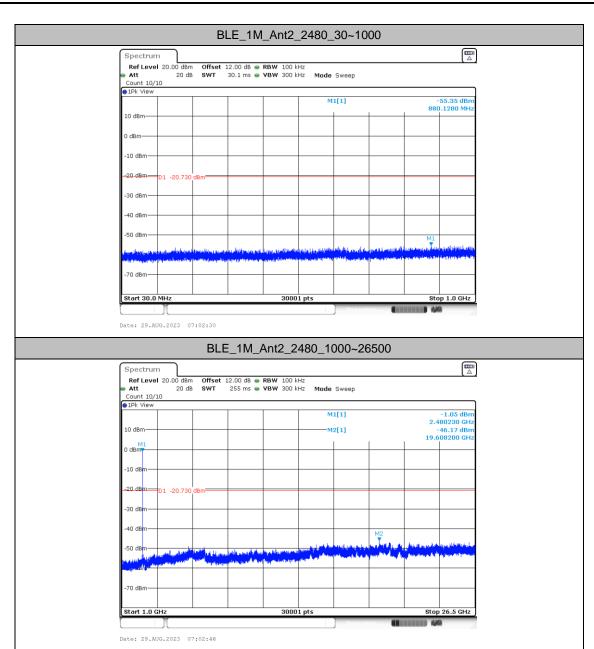
TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

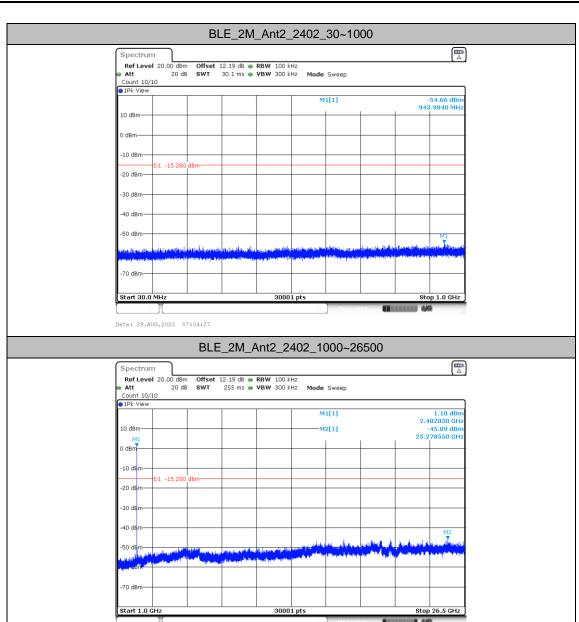

Conducted Spurious Emission

Test Result

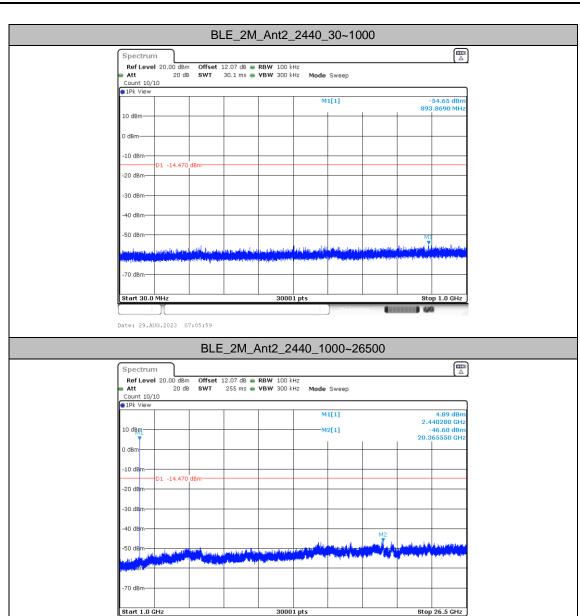

TestMode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel	Result	Limit [dBm/100KHz]	Verdict
			30~1000	-0.41	-54.77	≤-20.41	PASS
		2402	1000~26500	-0.41	-45.75	≤-20.41	PASS
DIE 4M	A = 40	2440	30~1000	0.48	-55.43	≤-19.52	PASS
BLE_1M	Ant2	2440	1000~26500	0.48	-45.78	≤-19.52	PASS
		2480	30~1000	-0.73	-55.35	≤-20.73	PASS
			1000~26500	-0.73	-46.17	≤-20.73	PASS
		2402	30~1000	4.72	-54.66	≤-15.28	PASS
		2402	1000~26500	4.72	-45.89	≤-15.28	PASS
DIE OM	Ant2	2440	30~1000	5.53	-54.65	≤-14.47	PASS
BLE_2M	AIILZ	2440	1000~26500	5.53	-46.6	≤-14.47	PASS
		2490	30~1000	4.39	-54.9	≤-15.61	PASS
		2480	1000~26500	4.39	-46.68	≤-15.61	PASS

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

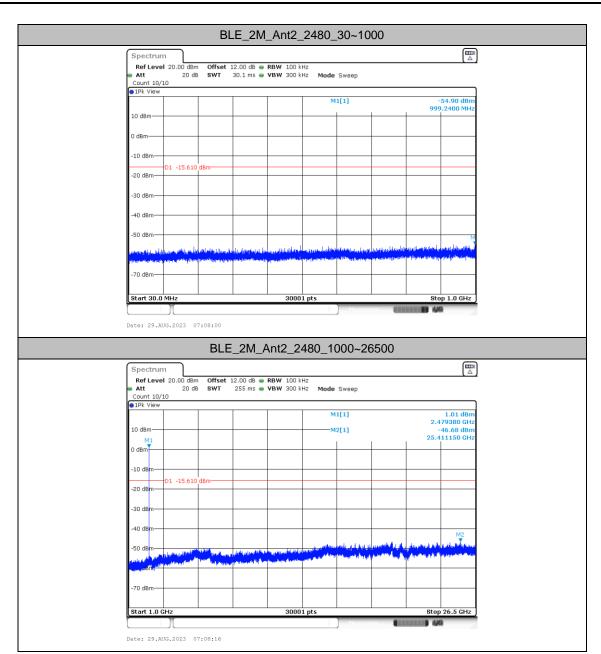

Test Graphs

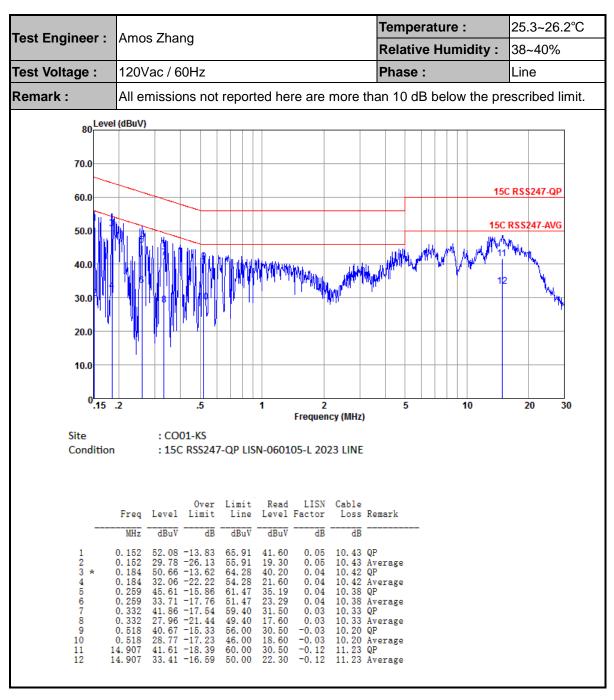


: A21 of A26



TEL: +86-512-57900158 FCC ID: HLEEA660BWNW




Date: 29.AUG.2023 07:04:42

Date: 29.AUG.2023 07:06:14

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

Temperature: 25.3~26.2°C Test Engineer: Amos Zhang **Relative Humidity:** 38~40% Test Voltage: 120Vac / 60Hz Phase: Neutral Remark: All emissions not reported here are more than 10 dB below the prescribed limit. 80 Level (dBuV) 70.0 15C RS\$247-QP 60.0 15C RSS247-AVG 50.0 40.0 30.0 20.0 10.0 10 30 Frequency (MHz) Site : CO01-KS Condition : 15C RSS247-QP LISN-060105-N 2023 NEUTRAL LISN Cable Limit Read Line Level Factor Loss Remark Freq Level Limit dBuV dB dBuV dBuV 47. 07 -18. 71 30. 77 -25. 01 45. 66 -17. 83 27. 06 -26. 43 40. 54 -20. 44 26. 84 -24. 14 36. 81 -20. 52 23. 71 -23. 62 37. 09 -22. 91 29. 19 -20. 81 36. 57 -23. 43 28. 27 -21. 73 65. 78 55. 78 0.04 0.05 0.05 -0.02 -0.02 -0.06 -0.06 -0.14 -0.14 36. 60 20. 30 10.43 QP 10.43 Av 0.154 2 3 4 5 6 7 10. 43 Average 10. 42 QP 10. 42 Average 10. 37 QP 10. 37 Average 10. 27 QP 11. 04 QP 11. 18 QP 11. 18 QP 35. 19 16. 59 30. 19 16. 49 63. 49 53. 49 60. 98 0. 203 0. 203 0.274 50. 98 50. 98 57. 33 47. 33 60. 00 50. 00 50. 00 0.2740.426 26.60 0. 426 12. 582 13. 50 26. 19 18. 29 25. 50 17. 20 10 12.582 14, 288 11 -0.11

Note:

- 1. Level($dB\mu V$) = Read Level($dB\mu V$) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission Test Data

Test Engineer :	Puon VII	Relative Humidity :	41 ~ 42%	
rest Engineer .	Ryan Xu	Temperature :	22 ~ 23℃	

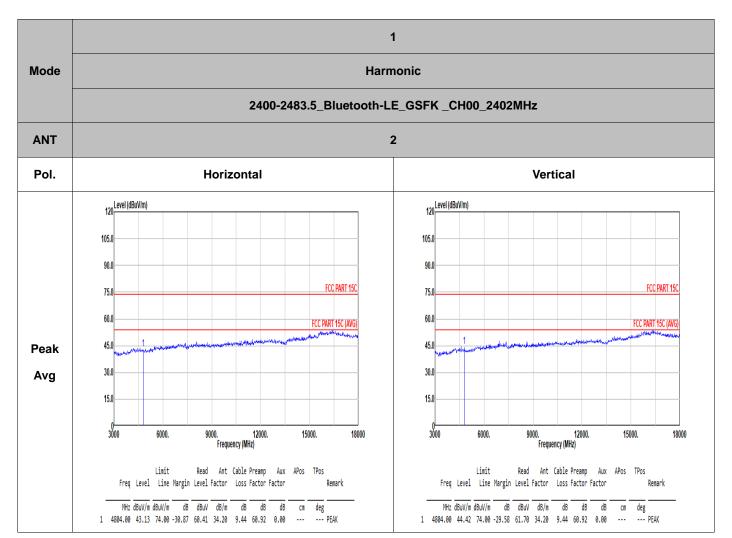
Radiated Spurious Emission Test Modes

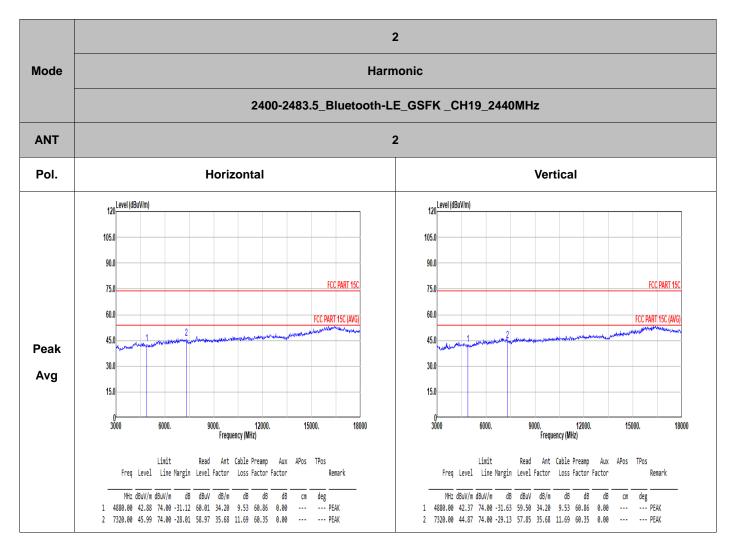
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	2	Bluetooth-LE_GSFK	00	2402	1Mbps	-	-
Mode 2	2400-2483.5	2	Bluetooth-LE_GSFK	19	2440	1Mbps	-	-
Mode 3	2400-2483.5	2	Bluetooth-LE_GSFK	39	2480	1Mbps	-	-
Mode 4	2400-2483.5	2	Bluetooth-LE_GSFK	00	2402	2Mbps	-	-
Mode 5	2400-2483.5	2	Bluetooth-LE_GSFK	19	2440	2Mbps	-	-
Mode 6	2400-2483.5	2	Bluetooth-LE_GSFK	39	2480	2Mbps	-	-

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: HLEEA660BWNW

Summary of each worse mode

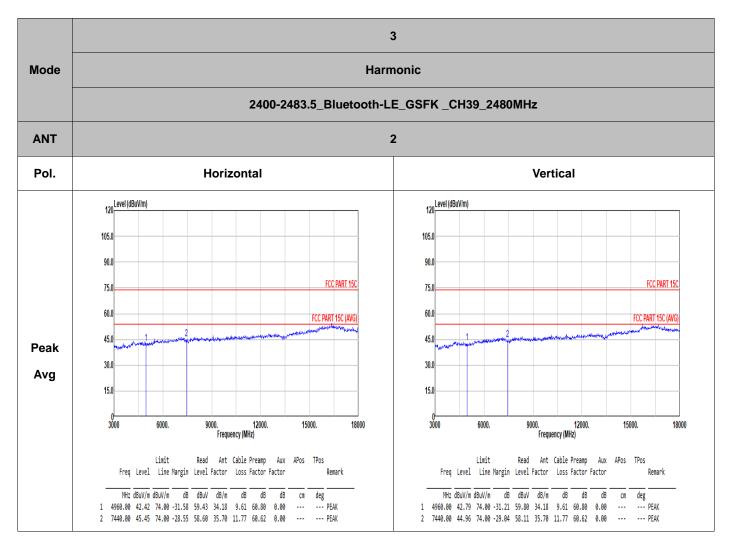
Mode	Modulation	Ch.	Freq.	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
4	Bluetooth-LE_GSFK	00	2383.97	44.39	54.00	-9.61	Н	AVERAGE	Pass	Band Edge
1	Bluetooth-LE_GSFK	00	4804.00	44.42	74.00	-29.58	V	PEAK	Pass	Harmonic
	Bluetooth-LE_GSFK	19	-	-	-	-	-	-	-	Band Edge
2	Bluetooth-LE_GSFK	19	7320.00	45.99	74.00	-28.01	Н	PEAK	Pass	Harmonic
	Bluetooth-LE_GSFK	39	2494.12	45.77	54.00	-8.23	٧	AVERAGE	Pass	Band Edge
3	Bluetooth-LE_GSFK	39	7440.00	45.45	74.00	-28.55	Н	PEAK	Pass	Harmonic
	Bluetooth-LE_GSFK	00	2385.40	44.90	54.00	-9.10	Н	AVERAGE	Pass	Band Edge
4	Bluetooth-LE_GSFK	00	4804.00	43.65	74.00	-30.35	٧	PEAK	Pass	Harmonic
_	Bluetooth-LE_GSFK	19	-	-	-	-	-	-	-	Band Edge
5	Bluetooth-LE_GSFK	19	7320.00	44.75	74.00	-29.25	V	PEAK	Pass	Harmonic
	Bluetooth-LE_GSFK	39	2484.46	46.16	54.00	-7.84	Н	AVERAGE	Pass	Band Edge
6	Bluetooth-LE_GSFK	39	7440.00	44.80	74.00	-29.20	Н	PEAK	Pass	Harmonic
	Bluetooth-LE_GSFK	39	59.10	33.36	40.00	-6.64	٧	PEAK	Pass	LF


TEL: +86-512-57900158 FCC ID: HLEEA660BWNW

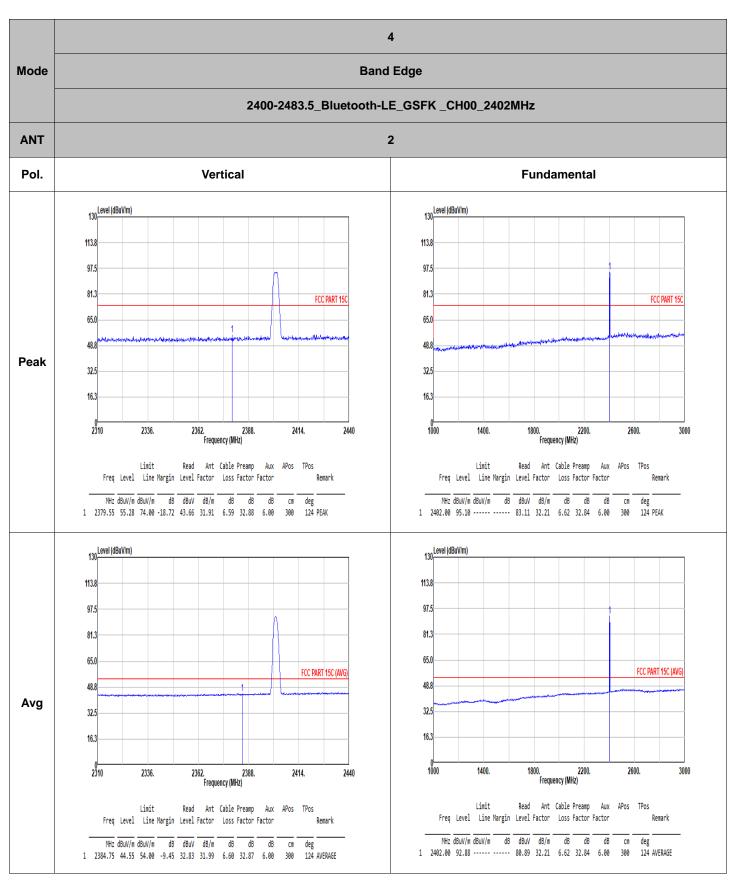

1 Mode **Band Edge** 2400-2483.5_Bluetooth-LE_GSFK _CH00_2402MHz **ANT** Pol. Horizontal **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 150 65.0 65.0 48.8 Peak 32.5 32.5 16.3 16.3 2310 1000 2336. 2362. 2388. 2414. 2440 1400. 1800. 2200. 2600. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg cm deg 1 2402.00 92.50 ----- 80.51 32.21 6.62 32.84 6.00 1 2326.51 55.03 74.00 -18.97 43.79 31.69 6.51 32.96 6.00 100 229 PEAK 100 229 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 15C (AVG FCC PART 15C (AVG Avg 32.5 32.5 16.3 16.3 2310 1000 2336. 2. 2388. Frequency (MHz) 2414. 2440 1400. 2200. 2600. 3000 Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 2383.97 44.39 54.00 -9.61 32.69 31.98 6.59 32.87 6.00 100 229 AVERAGE 1 2402.00 91.59 ----- 79.60 32.21 6.62 32.84 6.00 100 229 AVERAGE

1 Mode **Band Edge** 2400-2483.5_Bluetooth-LE_GSFK _CH00_2402MHz **ANT** Vertical Pol. **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 150 65.0 65.0 48.8 Peak 32.5 32.5 16.3 16.3 2310 1000 2336. 2362. 2388. 2414. 2440 1400. 1800. 2200. 2600. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg cm deg 1 2402.00 89.81 ----- 77.82 32.21 6.62 32.84 6.00 1 2383.97 55.25 74.00 -18.75 43.55 31.98 6.59 32.87 6.00 300 125 PEAK 300 125 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 FCC PART 15C (AVG FCC PART 15C (AVG Avg 32.5 32.5 16.3 16.3 2310 1000 2336. 2. 2388. Frequency (MHz) 2414. 2440 1400. 2200. 2600. 3000 Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 2388.78 43.93 54.00 -10.07 32.15 32.04 6.60 32.86 6.00 300 125 AVERAGE 1 2402.00 88.89 ----- 76.90 32.21 6.62 32.84 6.00 300 125 AVERAGE

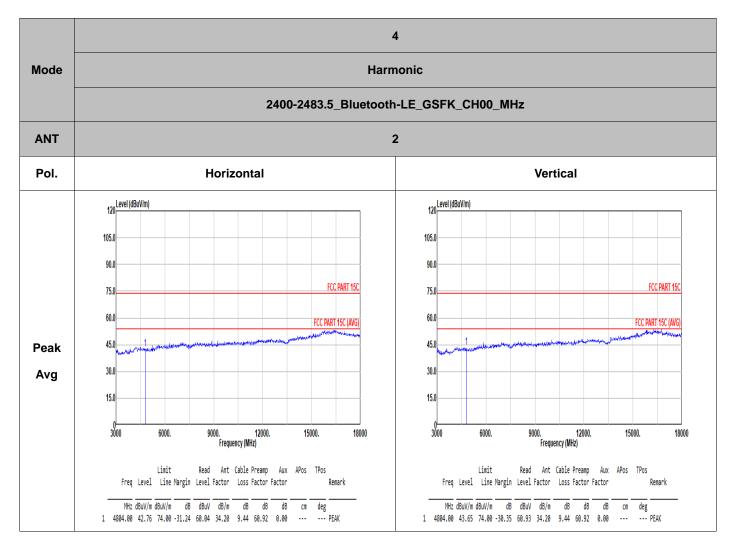
Page Number

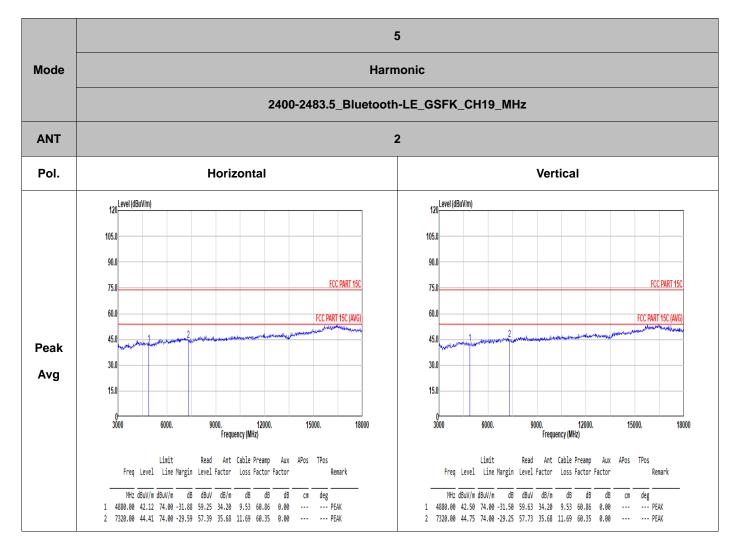

: C4 of C17

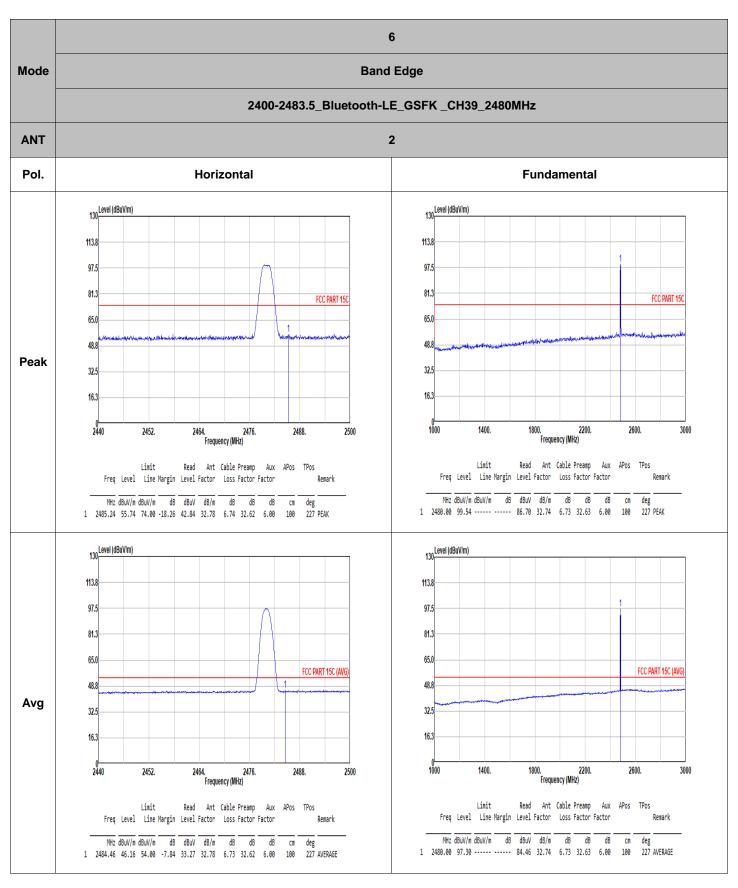
3 Mode **Band Edge** 2400-2483.5_Bluetooth-LE_GSFK _CH39_2480MHz **ANT** Pol. Horizontal **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 150 65.0 65.0 48.8 Peak 32.5 32.5 16.3 16.3 2440 1000 2452. 2476. 2488. 2500 1400. 1800. 2200. 2600. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg cm deg 1 2495.14 56.78 74.00 -17.22 43.76 32.86 6.75 32.59 6.00 1 2480.00 95.66 ----- 82.82 32.74 6.73 32.63 6.00 100 228 PEAK 100 228 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 FCC PART 15C (AVG FCC PART 15C (AVG Avg 32.5 32.5 16.3 16.3 1000 2440 2452. 4. 2476. Frequency (MHz) 2488. 2500 1400. 2200. 2600. 3000 Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 2497.24 45.65 54.00 -8.35 32.61 32.88 6.75 32.59 6.00 100 228 AVERAGE 1 2480.00 94.70 ----- 81.86 32.74 6.73 32.63 6.00 100 228 AVERAGE


3 Mode **Band Edge** 2400-2483.5_Bluetooth-LE_GSFK _CH39_2480MHz **ANT** Vertical Pol. **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 65.0 48.8 Peak 32.5 32.5 16.3 16.3 2440 1000 2452. 2476. 2488. 2500 1400. 1800. 2200. 2600. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg cm deg 1 2497.72 56.66 74.00 -17.34 43.62 32.88 6.75 32.59 6.00 1 2480.00 92.36 ----- 79.52 32.74 6.73 32.63 6.00 365 125 PEAK 365 125 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 FCC PART 15C (AVG FCC PART 15C (AVG Avg 32.5 32.5 16.3 16.3 0<u>-</u> 1000 2440 2452. 4. 2476. Frequency (MHz) 2488. 2500 1400. 2200. 2600. 3000 Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 2494.12 45.77 54.00 -8.23 32.77 32.85 6.75 32.60 6.00 365 125 AVERAGE 1 2480.00 91.33 ----- 78.49 32.74 6.73 32.63 6.00 365 125 AVERAGE

4 Mode **Band Edge** 2400-2483.5_Bluetooth-LE_GSFK _CH00_2402MHz **ANT** 2 Pol. Horizontal **Fundamental** 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 FCC PART 150 FCC PART 150 65.0 65.0 48.8 48.8 Peak 32.5 32.5 16.3 16.3 2310 1800. 2 Frequency (MHz) 2336. 2362. 2388. Frequency (MHz) 2414. 2440 1000 1400. 2200. 3000 Limit Read Ant Cable Preamp Aux APos TPos Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB cm deg 1 2312.99 54.69 74.00 -19.31 43.39 31.80 6.48 32.98 6.00 100 227 PEAK 1 2402.00 97.89 ----- 85.90 32.21 6.62 32.84 6.00 100 227 PEAK 130 Level (dBuV/m) 130 Level (dBuV/m) 113.8 113.8 97.5 97.5 81.3 81.3 65.0 65.0 FCC PART 15C (AVG FCC PART 15C (AVG Avg 32.5 32.5 16.3 16.3 1000 2310 1400. 2600. 2336. 1800. 2200. 3000 Frequency (MHz) Frequency (MHz) Limit Read Ant Cable Preamp Aux APos TPos Read Ant Cable Preamp Aux APos TPos Limit Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB deg 1 2402.00 95.56 ----- 83.57 32.21 6.62 32.84 6.00 100 227 AVERAGE 1 2385.40 44.90 54.00 -9.10 33.17 32.00 6.60 32.87 6.00 100 227 AVERAGE

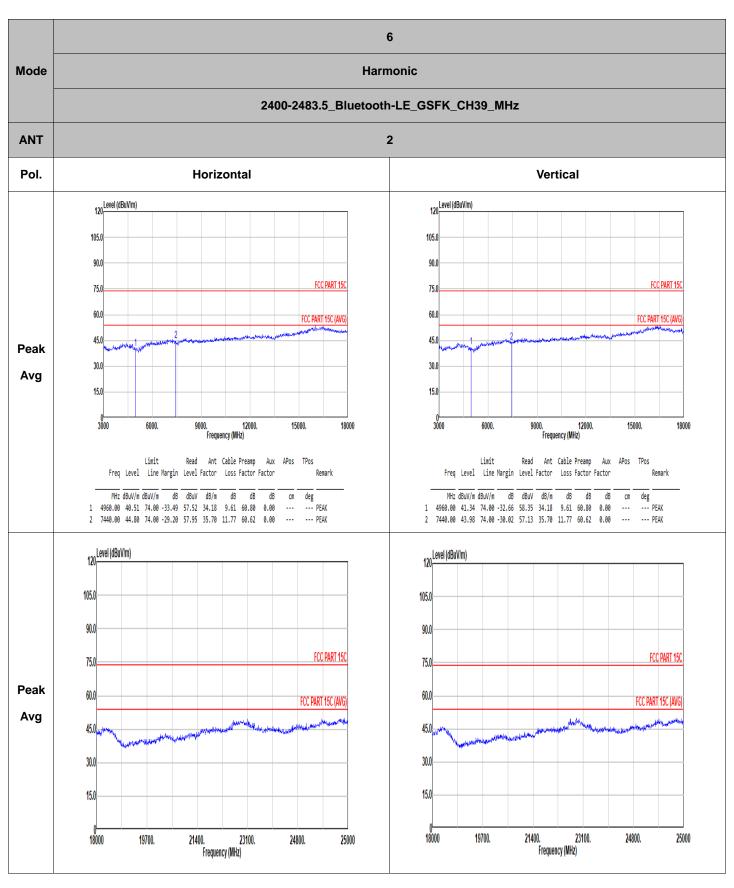

Page Number


: C10 of C17

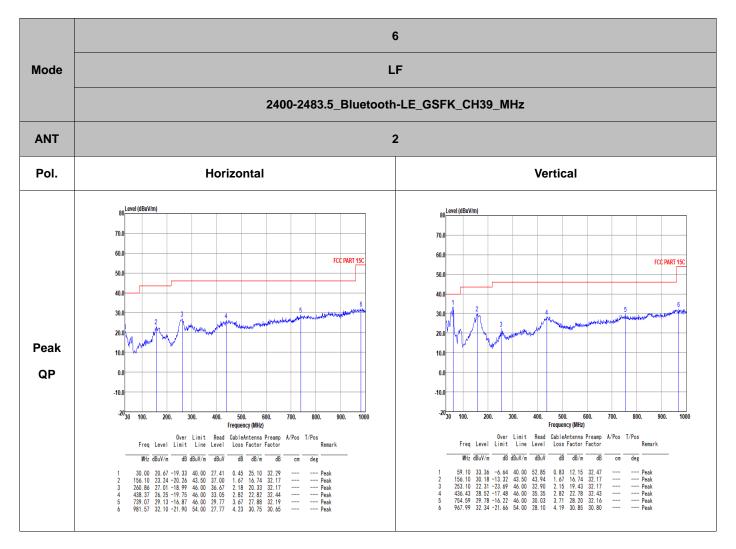


Page Number

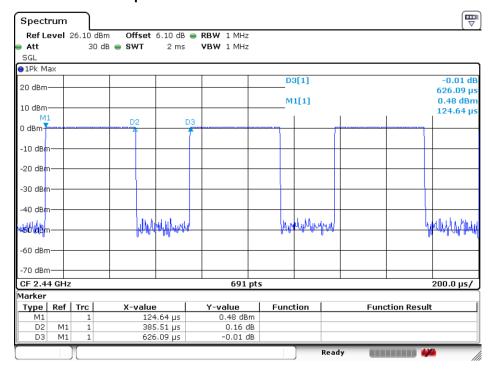
: C11 of C17



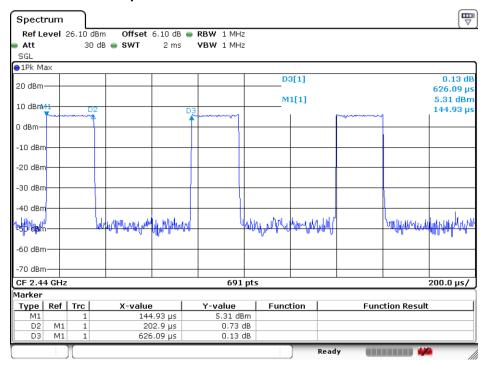
Page Number


: C14 of C17

Page Number


: C16 of C17

Appendix D. Duty Cycle Plots


Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting	
Bluetooth LE 1Mbps	61.57	0.386	2.594	2.7KHz	
Bluetooth LE 2Mbps	32.41	0.203	4.929	5.1KHz	

Bluetooth LE 1Mbps

Date: 18.AUG.2023 17:50:07

Bluetooth LE 2Mbps

Date: 18.AUG.2023 17:52:18

TEL: +86-512-57900158 FCC ID: HLEEA660BWNW